[go: up one dir, main page]

JPH0316921A - Synthesis method of silver ion conductive solid electrolyte - Google Patents

Synthesis method of silver ion conductive solid electrolyte

Info

Publication number
JPH0316921A
JPH0316921A JP1153362A JP15336289A JPH0316921A JP H0316921 A JPH0316921 A JP H0316921A JP 1153362 A JP1153362 A JP 1153362A JP 15336289 A JP15336289 A JP 15336289A JP H0316921 A JPH0316921 A JP H0316921A
Authority
JP
Japan
Prior art keywords
silver
solid electrolyte
mixture
ion conductive
conductive solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1153362A
Other languages
Japanese (ja)
Other versions
JP2653176B2 (en
Inventor
Kazunori Takada
和典 高田
Koji Yamamura
康治 山村
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1153362A priority Critical patent/JP2653176B2/en
Publication of JPH0316921A publication Critical patent/JPH0316921A/en
Application granted granted Critical
Publication of JP2653176B2 publication Critical patent/JP2653176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To enable easy synthesis of silver ion conductive solid electrolyte by conducting the reaction of a mixture of silver iodide, silver oxide and tungsten oxide in the molten state with heat. CONSTITUTION:A mixture of silver iodide, silver oxide, and tungsten oxide, or a mixture of silver iodide and silver tungstate are used as a starting substance to synthesize silver ion conductive solid electrolyte. Thus, presynthesis of silver tungstate becomes unnecessary and the synthetic process can be simplified. Further, the solid electrolyte is prepared without use of unnecessary substance for the electrolyte an the costs can be decreased. Further, the mixture of feedstocks is heated in air without use of Pyrex glass tubes for enclosing the mixture and a large amount of product can be produced in no need of oxygen gas or nitrogen gas. Thus, installation costs are reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 全固体二次電池 全固体電気二重層キャパ
シタをはじめとする全固体電気化学素子に用いられ水 
銀イオン導電性固体電解質の合或法に関する。
[Detailed Description of the Invention] Industrial Fields of Application The present invention (all-solid-state secondary batteries)
This invention relates to a method for forming a silver ion conductive solid electrolyte.

従来の技術 現在電池をはじめとする電気化学素子において1よ 電
解質に液体を使用しているた△ 電解質の漏液等の問題
を皆無とすることができなL〜 こうした問題を解決し
信頼性を高めるたぬ また素子を小駁 薄膜化するため
に叡 液体電解質に代えて固体電解質を用し\ 素子を
全固体化する試みが各方面でなされている。
Conventional technologyCurrently, electrochemical devices such as batteries use liquid as an electrolyte, which makes it impossible to completely eliminate problems such as electrolyte leakage. In order to make the device thinner, attempts are being made in various fields to use a solid electrolyte instead of a liquid electrolyte and to make the device completely solid.

ここで用いられる主なる固体電鉢質として(戴銅イオン
導電怯 銀イオン導電怯 リチウムイオン導電性のもの
などがあるバ 特にヨウ化凱 酸素酸銀よりなる銀イオ
ン導電性固体電解質c上 大気中の湿度や酸素に対して
も安定であり、高信頼性を有する電気化学素子を構或す
る上で極めて有用な材料となっている。
The main solid electrolytes used here include copper ion conductive materials, silver ion conductive materials, lithium ion conductive materials, etc.In particular, silver ion conductive solid electrolytes made of phosphorous iodide, silver oxyoxide, etc.In the atmosphere It is stable against humidity and oxygen, making it an extremely useful material for constructing highly reliable electrochemical devices.

このようなヨウ化銀と酸素酸銀よりなる銀イオン導電性
固体電解質のなかでもAgsI4WOmで表わされるヨ
ウ化銀とタングステン酸銀よりなる銀イオン固体電解質
(よ そのガラス転移温度が他のものに比べて高く、熱
的にも安定した特性を示すことから各方面で研究が進め
られている。
Among these silver ion conductive solid electrolytes made of silver iodide and silver oxyoxide, the silver ion solid electrolyte made of silver iodide and silver tungstate represented by AgsI4WOm (its glass transition temperature is higher than that of others) Because it exhibits high thermal stability and thermal stability, research is progressing in various fields.

このA.geI4WOaで表わされるヨウ化銀とタング
ステン酸銀よりなる銀イオン固体電解質の合或法として
(よ 高橋らの論文(J.  Electrochem
.  Soc.,vol.  120,  No.  
5,647  (1973))等に書かれているように
ヨウ化舷 タングステン酸銀を出発物質として混合し 
その混合物を溶融反応させる方法が取られている。
This A. As a method for combining a silver ion solid electrolyte consisting of silver iodide and silver tungstate represented by geI4WOa (Yo Takahashi et al.'s paper (J. Electrochem.
.. Soc. , vol. 120, No.
5,647 (1973), etc., silver tungstate was mixed as a starting material.
A method has been adopted in which the mixture is melt-reacted.

またその溶融反応(上 先出の高橋らによると減圧に封
管したパイレックス管中で行なう方法が取られている。
In addition, the melting reaction (according to Takahashi et al. cited above) is carried out in a Pyrex tube sealed under reduced pressure.

またY.  C.  Chanらによると酸素雰囲気下
で溶融反応させる方法が取られており(Proceec
ling  of  NCKU/ASS  Inter
national  Symposium  On  
Enginnering  Science  and
  Mechanics  p.  1381−138
8)、Wang  Shungによると窒素雰囲気下で
溶融反応させる方法が取られている(Material
s  for  Sol id   S  t  a 
 t  e   B a  t  t  e  r  
i  e  s,   p.   4  67−4.7
3,   (1986))。
Also Y. C. According to Chan et al., a method of melting reaction in an oxygen atmosphere has been adopted (Proceec et al.
ring of NCKU/ASS Inter
National Symposium On
Engineering Science and
Mechanics p. 1381-138
8) According to Wang Shung, a method of melting and reacting in a nitrogen atmosphere is used (Material
s for Solid Sta.
t e B a t t e r
i es, p. 4 67-4.7
3, (1986)).

発明が解決しようとする課題 しかしながら固体電解質の合或に用いられるタングステ
ン酸銀を得るために(よ 硝酸銖 タングステン酸ナト
リウムの水溶液を混合し その水溶液からタングステン
酸銀の沈澱をろ過し 水洗するといった方法を取らねば
なら哄 その結果工程が複雑になるのみならず 得られ
た銀イオン導電性固体電解質にナl・リウム等の不純物
が残存する可能性があるといった問題を有している。ま
た合或された固体電解質に不要なナトリウム等の戒分を
用いるためコストが高くなるといった問題を有している
Problems to be Solved by the Invention However, in order to obtain silver tungstate used in solid electrolytes, there is a method in which an aqueous solution of sodium tungstate is mixed with a nitrate solution, and the precipitate of silver tungstate is filtered from the aqueous solution and washed with water. As a result, there is a problem that not only does the process become complicated, but also that impurities such as sodium and lithium may remain in the obtained silver ion conductive solid electrolyte. The problem is that the cost is high because unnecessary substances such as sodium are used in the solid electrolyte.

また 溶融反応を減圧封管されたパイレックス管中で行
なうと、固体電解質を大量に合或する際に合或するため
の出発物質を少量づつ封入しなければならずミ 固体電
解質を一時に大量に合戒することが困難であるといった
問題を有していた また 溶融反応を酸素雰囲気下また
は窒素雰囲気下で行なうために(よ 酸素ガスまたは窒
素ガスおよびその供給装置を設けなければならづ1 や
はり材料の合或コストが高くなるといった問題を有して
いる。
Furthermore, when the melting reaction is carried out in a Pyrex tube sealed under reduced pressure, when a large amount of solid electrolyte is combined, the starting material for the combination must be sealed in small amounts at a time. In addition, in order to carry out the melting reaction in an oxygen or nitrogen atmosphere, oxygen gas or nitrogen gas and its supply equipment must be provided. However, there is a problem that the cost becomes high.

本発明(よ タングステン酸銀の合或玄 溶融反応時の
減圧封管、雰囲気等の合或条件の複雑さを解決し 銀イ
オン導電性固体電解質を容易な方法で合戒することを可
能とし またそれに伴い合戒コストの低減を可能とさせ
るものである。
The present invention solves the complexity of the conditions such as vacuum sealed tubes and atmosphere during the melting reaction of silver tungstate, and makes it possible to form a silver ion conductive solid electrolyte in an easy manner. Along with this, it is possible to reduce the cost of gathering commandments.

課題を解決するための手段 本発明(よ 上記目的を達或するた△ ヨウ化銀と酸化
銀と酸化タングステンとの混合物を、溶融反応させるこ
とにより銀イオン導電性固体電解質の合或を行なうこと
を特徴とする。
Means for Solving the Problems The present invention achieves the above objects by melting and reacting a mixture of silver iodide, silver oxide and tungsten oxide to form a silver ion conductive solid electrolyte. It is characterized by

また ヨウ化銀と酸化銀と酸化タングステンとの混合t
m  あるいはヨウ化銀とタングステン酸銀との混合物
を、大気中で加熱溶融反応させることにより銀イオン導
電性固体電解質の合戒を行なうことができる。
Also, a mixture of silver iodide, silver oxide, and tungsten oxide
Alternatively, a silver ion conductive solid electrolyte can be formed by heating and melting a mixture of silver iodide and silver tungstate in the atmosphere.

一5一 本発明によれば、ヨウ化銀と酸化銀と酸化タングステン
との混合物、あるいはヨウ化銀とタングステン酸銀との
混合物を出発物質として銀イオン導電性固体電解質を合
成することで、タングステン酸銀を予め合成する必要が
なくなり、祠料合成工程を単純化することができる。ま
た、固体電解質に不要な成分を用いることなく合成を行
なうことになるため、コストを下げることができる。
151 According to the present invention, by synthesizing a silver ion conductive solid electrolyte using a mixture of silver iodide, silver oxide, and tungsten oxide, or a mixture of silver iodide and silver tungstate as a starting material, tungsten There is no need to synthesize acid silver in advance, and the abrasive synthesis process can be simplified. Furthermore, since synthesis is performed without using components unnecessary for the solid electrolyte, costs can be reduced.

また、出発物質の混合物を大気中で加熱することにより
、出発物質の混合物をパイレックス管中に封入する必要
がなくなり、容易に大量に合成することができ、酸素ガ
スや窒素ガスを用いることなく合成することになるため
、これらのガスおよびその供給装置が不要となりコスト
を下げることができる。
In addition, by heating the starting material mixture in the atmosphere, there is no need to seal the starting material mixture in a Pyrex tube, making it easy to synthesize in large quantities, and synthesis can be performed without using oxygen or nitrogen gas. This eliminates the need for these gases and their supply equipment, reducing costs.

実施例 (第1実施例) 最初に、出発物質として特級試薬のヨウ化銀(AgI)
、酸化銀(Ag20)、酸化タングステン( W O 
a )をモル比で4:  1:  1の比となるように
(W00をモル比で4:  1:  1の比となるよう
に秤量し アルミナ乳鉢で混合した この混合物を加圧
戊形しペレット状とした後、パイレックス管中に減圧封
入L  400℃で18時間溶融 反応させた その反
応物を乳鉢で200メッシュ以下に粉砕L  A g 
s I aW O aで表わされる銀イオン導電性の固
体電解質Aを得た 比較例として出発物質としてヨウ化銀とタングステン酸
銀を用L\ 以下の方法により銀イオン導電性固体電解
質Bを得た 先ず、硝酸銀(AgNOs)、タングステン酸ナトリウ
ム(NapWOJ・2’H*○)をモル比で1:lに秤
量レ これらを純水中で溶解混合した この溶液より沈
澱物をろ過し その沈澱物を純水により7回洗浄後、窒
素雰囲気下で120℃で3時間乾燥しA g 2W O
 4で表わされるタングステン酸銀を得氾 このように
して得たA g sw O aと上記で用いたAgIを
モル比で4=1に混合したものを用いた以外Cヨ  上
記と同様の方法でAgeI4W○4で表わされる銀イオ
ン導電性固体電解質Bを得これら得られた固体電解質A
,  Bの特性it  イオン伝導性と電子絶縁性の測
定を行なうことにより評価した 先ずイオン伝導性についてCL  以上のようにして得
られた固体電解質A,  Bの粉末を200mg秤量し
 両側に10mmφの白金板を配L,,  4ton/
am”で10mmφに加圧或形し電気伝導度の測定セル
を構或し この測定セルを用L\ 電気伝導度の温度変
化を交流インピーダンス測定法により評価した その結
果を第1図に示す。但し第l図は縦軸に電気伝導度を対
数表示し 横軸に絶対温度の逆数を表示したものである
Example (First Example) First, silver iodide (AgI), a special grade reagent, was used as a starting material.
, silver oxide (Ag20), tungsten oxide (WO
a) in a molar ratio of 4: 1: 1 (W00 was weighed out in a molar ratio of 4: 1: 1 and mixed in an alumina mortar. This mixture was pressurized and pelletized. The reaction product was then sealed in a Pyrex tube under reduced pressure and melted and reacted at 400°C for 18 hours.
As a comparative example, a silver ion conductive solid electrolyte A represented by s I aW O a was obtained using silver iodide and silver tungstate as starting materials.A silver ion conductive solid electrolyte B was obtained by the following method. First, silver nitrate (AgNOs) and sodium tungstate (NapWOJ・2'H*○) were weighed out at a molar ratio of 1:1.These were dissolved and mixed in pure water.The precipitate was filtered from this solution. After washing seven times with pure water, it was dried at 120°C for 3 hours in a nitrogen atmosphere.
Silver tungstate represented by 4 was obtained by the same method as above, except that a mixture of the thus obtained A g sw O a and the AgI used above was used in a molar ratio of 4=1. A silver ion conductive solid electrolyte B represented by AgeI4W○4 was obtained, and the obtained solid electrolyte A was
Characteristics of , B were evaluated by measuring ionic conductivity and electronic insulation properties. First, the ionic conductivity was evaluated by weighing 200 mg of powder of solid electrolytes A and B obtained in the above manner, and placing a platinum plate of 10 mm diameter on both sides. Plates L, 4ton/
am'' to a diameter of 10 mm to construct an electrical conductivity measurement cell.The temperature change in electrical conductivity was evaluated using the alternating current impedance measurement method.The results are shown in Figure 1. However, in Figure 1, the vertical axis shows electrical conductivity logarithmically, and the horizontal axis shows the reciprocal of absolute temperature.

固体電解質A,  Bについて大きな差異は認められず
、本実施例のAgI、A g * O,  W O *
を出発物質として用いた固体電解質Aについて転 比較
例のAgI、Ag之WO4を出発物質として用いた固体
電解質Bと同等のイオン伝導性を示すことがわかん 次に電子絶縁性について′(ヨ  以上のようにして?
られた固体電解質A,  Bの粉末を200mg秤■量
し 一方に10mmφのイオンプロッキング電極として
白金板を、もう一方に10mmφの銀板を配L  4t
on/cml′で10mmφに加圧或形し電子伝導度の
測定セルを構或し この測定セルを用L\ 20℃にお
いて定電圧印加時に流れる定常電流を測定することによ
り評価し1.  その結果を横軸に銀板に対する白金板
の電圧 縦軸に定常電流値をとり第2図に示す。
No major difference was observed between solid electrolytes A and B, and AgI, A g * O, W O * of this example
Regarding solid electrolyte A using AgI as a starting material, it was found that the comparison example showed the same ionic conductivity as solid electrolyte B using AgI and Ag-WO4 as a starting material.Next, regarding the electronic insulation property, Like?
Weighed 200 mg of solid electrolyte A and B powder, placed a platinum plate on one side as an ion blocking electrode with a diameter of 10 mm, and a silver plate with a diameter of 10 mm on the other.
A cell for measuring electronic conductivity was constructed by pressurizing the cell to a diameter of 10 mm at a temperature of 20° C., and was evaluated by measuring the steady current flowing when a constant voltage was applied at 20° C.1. The results are shown in Figure 2, with the horizontal axis representing the voltage of the platinum plate relative to the silver plate, and the vertical axis representing the steady current value.

固体電解質A,  Bについて大きな差異は認められず
、本実施例のAgI,AggO、WO3を出発物質とし
て用いた固体電解質AについてL 比較例のAgI、A
g2W○4を出発物質として用いた固体電解質Bと同等
の電子絶縁性を示すことがわかる。
No major difference was observed between solid electrolytes A and B, and solid electrolyte A using AgI, AggO, and WO3 of this example as a starting material was compared with L of solid electrolyte A of this example, and AgI and A of comparative example.
It can be seen that it exhibits electronic insulation properties equivalent to solid electrolyte B using g2W○4 as a starting material.

以上のように−本実施例によると、イオン伝導性 電子
絶縁性といった固体電解質の特性を損なうことなく、容
易な方法で銀イオン導電性固体電解質を得ることができ
ることがわかる。
As described above, this example shows that a silver ion conductive solid electrolyte can be easily obtained without impairing the properties of the solid electrolyte such as ionic conductivity and electronic insulation.

(第2実施例) A g L  A g*0,  WOsをモル比で4:
  1:  1に混合した混合物を加圧戊形しペレット
状とした後、パイレッシス坩堝中にいれ 大気中で40
0℃でl8時間溶敵 反応させた以外は第1実施例と同
様の方法により、A g e I aWOaで表わされ
る銀イオン導電性の固体電解質Cを得九 この固体電解質Cを用b\ 第l実施例と同様の方法で
イオン伝導性、電子絶縁性の評価を行なった その結果
を第3図(イオン伝導性)および第4図(電子絶縁性〉
に示す。
(Second Example) A g L A g*0, WOs in molar ratio 4:
1: Pressurize the mixture mixed in 1 to make it into pellets, then put it in a Pyresis crucible and heat it in the air for 40 minutes.
A silver ion conductive solid electrolyte C represented by AgeIaWOa was obtained by the same method as in the first example except that the reaction was carried out at 0°C for 18 hours. Ion conductivity and electronic insulation were evaluated using the same method as in Example 1. The results are shown in Figure 3 (ion conductivity) and Figure 4 (electronic insulation).
Shown below.

固体電解質Cの特性(よ イオン伝導怯 電子絶縁性と
L 第l実施例における固体電解質A,  Bと大きな
差異は認められず、本実施例によると、イオン伝導怯 
電子絶縁性といった固体電解質の特性を損なうことなく
、容易な方法で銀イオン導電性固体電解質を得ることが
できることがわかん(第3実地例) AgL  AgeW○4をモル比で4=1に混合したも
のを出発物質として用いた以外は第2実施例と同様の方
法により、A g e I a W O 4で表わされ
る−10− 銀イオン導電性の固体電解質Dを得九 この固体電解質Dを用1,′Y.第1実施例と同様の方
法でイオン伝導性、電子絶縁性の評価を行なっ亀 その
結果を第5図(イオン伝導性)および第6図(電子絶縁
性)に示す。
Characteristics of solid electrolyte C (i.e., ionic conductivity, electronic insulation, and
I understand that it is possible to easily obtain a silver ion conductive solid electrolyte without impairing the properties of the solid electrolyte such as electronic insulation (third practical example) AgL AgeW○4 was mixed in a molar ratio of 4=1. A -10- silver ion conductive solid electrolyte D represented by A g e I a WO 4 was obtained by the same method as in the second example except that A g e I a W O was used as the starting material. 1,'Y. Ionic conductivity and electronic insulation were evaluated using the same method as in Example 1. The results are shown in FIG. 5 (ion conductivity) and FIG. 6 (electronic insulation).

固体電解質Dの特性(よ イオン伝導性、電子絶縁性と
紅 第1実施例における固体電解質Bと大きな差異は認
められずミ 本実施例によると、イオン伝導性、電子絶
縁性といった固体電解質の特性を損なうことなく、容易
な方法で銀イオン導電性固体電解質を得ることができる
ことがわかる。
Characteristics of solid electrolyte D (ion conductivity, electronic insulation, etc.) No major differences were observed from solid electrolyte B in the first example. According to this example, the characteristics of solid electrolyte such as ionic conductivity, electronic insulation, and It can be seen that a silver ion conductive solid electrolyte can be obtained by a simple method without damaging the silver ion conductive solid electrolyte.

な耘 第1、第2実施例において(よ ヨウ化鏡酸化銖
 酸化タングステンの混合物を減圧封管中あるいは大気
中で合或した力交 そのほか不活性ガス雰囲気 酸化雰
囲気で合或した場合にも同様の結果が得られることはい
うまでもなL℃また 上記実施例において(よ 固体電
解質の組或としてA g a I 4WO4で表わされ
る銀イオン導電性の固体電解質の合或法のみについて述
べた力丈他の組慮 即ちpAgI−qAg20一r W
 O aまたはxAg I  ’jAg2WOaの一般
式で表わされる銀イオン導電性固体電解質についてL 
その組戊に固有のイオン伝導性や電子絶縁性を示すとい
う違いが生じるのみであり、同様の効果が得られること
はいうまでもな%y 発明の効果 以上のように本発明によると、タングステン酸銀を予め
合戊する必要がなく、固体電解質の構或戊分のみの混合
物から容易な方法で銀イオン導電性固体電解質を得るこ
とができ、またそれに伴い合戒コストを低減することが
できる。
In the first and second embodiments, the mixture of tungsten oxide, iodide, mirror oxide, and tungsten oxide was combined in a vacuum sealed tube or in the atmosphere. It goes without saying that the results of Other considerations: pAgI-qAg201r W
Regarding the silver ion conductive solid electrolyte represented by the general formula O a or xAg I'jAg2WOa, L
The only difference is that the structure exhibits ionic conductivity and electronic insulation properties, and it goes without saying that similar effects can be obtained. There is no need to combine acid silver in advance, and a silver ion conductive solid electrolyte can be easily obtained from a mixture of only the solid electrolyte components, and the cost of combining can be reduced accordingly. .

【図面の簡単な説明】[Brief explanation of the drawing]

it図は本発明の第l実施例および比較例における固体
電解質のイオン伝導性を示した特性阻第2図は同固体電
解質の電子絶縁性を示した特性は 第3図は本発明の第
2実施例における固体電解質のイオン伝導性を示した特
性@ 第4図は同固体電解質の電子絶縁性を示した特性
は 第5図は本発明の第3実施例における固体電解質の
イオン伝導性を示した特性は 第6図は同固体電解質1
1 12− の電子絶縁性を示した特性図である。
The IT diagram shows the ionic conductivity of the solid electrolyte in the first embodiment of the present invention and the comparative example. Figure 2 shows the electronic insulation properties of the solid electrolyte. Characteristics showing the ionic conductivity of the solid electrolyte in Example @ Figure 4 shows the characteristics showing the electronic insulation property of the solid electrolyte Figure 5 shows the ionic conductivity of the solid electrolyte in the third example of the present invention Figure 6 shows the same solid electrolyte 1.
FIG. 1 is a characteristic diagram showing the electronic insulation properties of 1 12− .

Claims (3)

【特許請求の範囲】[Claims] (1)ヨウ化銀と酸化銀と酸化タングステンとの混合物
を、加熱溶融反応させることを特徴とする銀イオン導電
性固体電解質の合成法
(1) A method for synthesizing a silver ion conductive solid electrolyte, which is characterized by heating and melting a mixture of silver iodide, silver oxide, and tungsten oxide.
(2)ヨウ化銀と酸化銀と酸化タングステンとの混合物
の加熱溶融反応を大気中で行なうことを特徴とする請求
項1記載の銀イオン導電性固体電解質の合成法
(2) The method for synthesizing a silver ion conductive solid electrolyte according to claim 1, characterized in that the heating and melting reaction of a mixture of silver iodide, silver oxide, and tungsten oxide is carried out in the atmosphere.
(3)ヨウ化銀とタングステン酸銀との混合物を、大気
中で加熱溶融させることを特徴とする銀イオン導電性固
体電解質の合成法
(3) A method for synthesizing a silver ion conductive solid electrolyte, which is characterized by heating and melting a mixture of silver iodide and silver tungstate in the atmosphere.
JP1153362A 1989-06-15 1989-06-15 Synthesis method of silver ion conductive solid electrolyte Expired - Lifetime JP2653176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153362A JP2653176B2 (en) 1989-06-15 1989-06-15 Synthesis method of silver ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153362A JP2653176B2 (en) 1989-06-15 1989-06-15 Synthesis method of silver ion conductive solid electrolyte

Publications (2)

Publication Number Publication Date
JPH0316921A true JPH0316921A (en) 1991-01-24
JP2653176B2 JP2653176B2 (en) 1997-09-10

Family

ID=15560797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153362A Expired - Lifetime JP2653176B2 (en) 1989-06-15 1989-06-15 Synthesis method of silver ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JP2653176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976975B2 (en) 2006-09-05 2011-07-12 Seiko Epson Corporation Battery device and electronic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475957A (en) * 1987-09-18 1989-03-22 Jun Kuwano Solid electrolyte type oxygen sensor
JPH01131034A (en) * 1987-11-12 1989-05-23 Jun Kuwano Solid electrolyte for sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6475957A (en) * 1987-09-18 1989-03-22 Jun Kuwano Solid electrolyte type oxygen sensor
JPH01131034A (en) * 1987-11-12 1989-05-23 Jun Kuwano Solid electrolyte for sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7976975B2 (en) 2006-09-05 2011-07-12 Seiko Epson Corporation Battery device and electronic apparatus

Also Published As

Publication number Publication date
JP2653176B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JP3510420B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
US12100804B2 (en) Alkali ION conducting plastic crystals
JPH0654687B2 (en) Glassy oxidation-phosphorus sulfide solid lithium electrolyte
Odziemkowski et al. A Raman microprobe in situ and ex situ study of film formation at lithium/organic electrolyte interfaces
JP2000508677A (en) Malonate nitrile derivative anion salts and their use as ion conductive materials
JPH06503842A (en) Bis(perfluorosulfonyl)methane derivatives, their production methods and their uses
JPS628467A (en) Quaternary glassy solid lithium cation conducting electrolyte
McHale et al. Energetics of Ternary Nitrides: Li− Ca− Zn− N and Ca− Ta− N Systems
Biernacka et al. Development of new solid-state electrolytes based on a hexamethylguanidinium plastic crystal and lithium salts
JP3528402B2 (en) Lithium ion conductive solid electrolyte and all-solid lithium secondary battery using the same
JPH0548582B2 (en)
US5141827A (en) Ion conductor or electrolyte for a galvanic element
Correia et al. Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate
JPH0316921A (en) Synthesis method of silver ion conductive solid electrolyte
Takahashi et al. Solid-state ionics-the CuCl CuI RbCl system
JPH1055717A (en) Fusion salt material
US3519404A (en) Solid ionic conductors
Barański et al. An electrochemical study of the equilibria in the nickel-mercury system
JPH04160011A (en) Conductive solid electrolyte
JPH06163051A (en) Secondary battery electrode or filling material for electrode active material
JP2512064B2 (en) Copper ion conductive glass
JPH02204312A (en) Method for synthesizing metal sulfide intercalation compounds
KR960010255B1 (en) Polyethyeneoxide-derivative and process for producing thereof
KR100224376B1 (en) Method for producing hydrophobic lithium electrolyte
JP3463852B2 (en) Conductive material and method of manufacturing the same