[go: up one dir, main page]

JPH03177587A - Plasma treatment method - Google Patents

Plasma treatment method

Info

Publication number
JPH03177587A
JPH03177587A JP31526189A JP31526189A JPH03177587A JP H03177587 A JPH03177587 A JP H03177587A JP 31526189 A JP31526189 A JP 31526189A JP 31526189 A JP31526189 A JP 31526189A JP H03177587 A JPH03177587 A JP H03177587A
Authority
JP
Japan
Prior art keywords
plasma
etching
processing method
plasma processing
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31526189A
Other languages
Japanese (ja)
Inventor
Yutaka Kakehi
掛樋 豊
Ryoji Fukuyama
良次 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31526189A priority Critical patent/JPH03177587A/en
Publication of JPH03177587A publication Critical patent/JPH03177587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ処理方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a plasma processing method.

〔従来の技術〕 半導体デバイスでは微細化が進むにつれて構造が立体化
し、0.3μrlLfバイスではアスペクト比5以上の
高段差エツチングが要求されるようになってきている。
[Prior Art] As the miniaturization of semiconductor devices progresses, their structures become three-dimensional, and 0.3 μrlLf devices require high step etching with an aspect ratio of 5 or more.

第4図は従来の平坦パターンのプラズマエツチングの状
況を示す図であり、(a)はパターン形状、(b)は発
光強度の時間変化、(C)は圧力,エッチングガス流量
等のプラズマパラメータの時間変化を示している。(a
)の状態はジャストエッチの状態を示しているが、−殻
内にエツチングの不均一が幾分あり、これに伴うオーバ
ーエツチングを必要とし、発光強度の変化は(b)のよ
うになる。この場合のパラメータは(C)に示すように
一段で行われたり、オーバーエツチング時にはパラメー
タを変化させる2段エツチング等が行われている。
Figure 4 is a diagram showing the state of conventional plasma etching of a flat pattern, where (a) shows the pattern shape, (b) shows the temporal change in emission intensity, and (c) shows the changes in plasma parameters such as pressure and etching gas flow rate. It shows the change over time. (a
) indicates a just-etched state; however, there is some non-uniform etching within the shell, which necessitates over-etching, and the change in emission intensity is as shown in (b). In this case, the parameters are etched in one step as shown in (C), or in the case of over-etching, two-step etching is performed in which the parameters are changed.

〔発明が解決しようとするn題〕[N problems that the invention attempts to solve]

しかしながら、第2図に示すようなアスペクト比の大き
い高段差パターンになると、平坦部と段差部では被エツ
チ材2′の垂直方向の厚さが着しく異なり,エッチング
時の発光強度は第2図(b)に示すように、オーバーエ
ツチング時にゆるやかなカーブで下降するようになる。
However, in the case of a high step pattern with a large aspect ratio as shown in Fig. 2, the vertical thickness of the etched material 2' differs significantly between the flat part and the step part, and the emission intensity during etching is as shown in Fig. 2. As shown in (b), during overetching, the etching begins to descend in a gentle curve.

従ってオーバーエツチングに時間がかかり、従来のよう
な一段エッチングや2段エツチングでは十分なエツチン
グ特性が得られないもいうl!l!題点がある。
Therefore, over-etching takes time and sufficient etching characteristics cannot be obtained with conventional one-step etching or two-step etching. l! There is an issue.

本発明の目的はこのような高段差を有するパターンの処
理においても秀れたエツチング特性を得ることである。
An object of the present invention is to obtain excellent etching characteristics even when processing patterns having such high step differences.

C問題を解決するための手段〕 本発明では上記目的を達成するために、第2図(C)に
示すように、プラズマ状B(この場合発光強度)の変化
に応じて、プラズマパラメー9jeyM続的に制御する
ようにしたものである。
Means for Solving Problem C] In order to achieve the above object, in the present invention, as shown in FIG. It is designed to be controlled in a controlled manner.

〔作   用〕[For production]

パラメータを連続的に制御することにより、被エツチ面
積の変化に対応したプラズマを連続して形成することが
できるので、高段差を有するパターンを特性良く処理す
ることができる。
By continuously controlling the parameters, it is possible to continuously form plasma that corresponds to changes in the area to be etched, so that patterns with high steps can be processed with good characteristics.

〔実 施 例〕〔Example〕

本発明を実施例により詳細に説明する。第1図は本発明
の一実施例を示すためのエツチング装置の構成図を示す
もので、μ浪人カ4を伝達する導波管5.放電管6.ソ
レノイドコイル7、ウェハ8を載置し、RFQ源1oと
接続されるt極9.真空室11により構成されており、
プラズマの発光を受光する受光aL2.コントローラ1
3によりこの実施例ではエツチングガス14のマスフロ
ーコントローラ巧が制拝されエツチングガスを処M室内
に供給している。
The present invention will be explained in detail by examples. FIG. 1 shows a configuration diagram of an etching device to illustrate one embodiment of the present invention, in which a waveguide 5. Discharge tube 6. A solenoid coil 7, a t-pole 9 on which a wafer 8 is placed and connected to an RFQ source 1o. Consists of a vacuum chamber 11,
Light receiving aL2. which receives plasma light emission. Controller 1
3 controls the mass flow controller of the etching gas 14 in this embodiment to supply the etching gas into the processing chamber.

従って、コントローラエ3はプラズマ中の発光強度の変
化に応じてエツチングガスの流■を連続的に制御できる
ようになっている。
Therefore, the controller 3 is capable of continuously controlling the flow of the etching gas according to changes in the emission intensity in the plasma.

このように構成されたエツチング装置における配線材料
であるM系のエツチング特性を従来の1段エツチングの
結果(第5図)との比較で第3図に示す。
FIG. 3 shows the etching characteristics of the M-based wiring material in the etching apparatus constructed as described above, in comparison with the results of conventional one-stage etching (FIG. 5).

第3図、第5図において、(1)はエッチ面積。In FIGS. 3 and 5, (1) is the etch area.

(b)はエツチングガス流量、(C)はエツチング速度
の時間依存性を示している。
(b) shows the etching gas flow rate, and (C) shows the time dependence of the etching rate.

従来のエツチングでは1段エツチングを行っているので
オーバーエツチング時にエツチングガスが余剰となり、
これにともなってホトレジ中のC成分の引き抜き作用が
強まって、ホトレジストのエツチング速度が上昇してし
まう。これに対して、Mのエツチング速度は流量依存性
の少ない所で行うのが普通であり大巾な変化はない。従
って、ホトレジストに対するMの選択比が悪くなり、ホ
トレジストの片落ちなどをおこしてパターンの細りの原
因となってしまう。
In conventional etching, one-stage etching is performed, so there is excess etching gas during over-etching.
Along with this, the effect of drawing out the C component in the photoresist becomes stronger, and the etching rate of the photoresist increases. On the other hand, the etching rate of M is usually performed at a location where there is little dependence on the flow rate, and there is no large change. Therefore, the selection ratio of M to the photoresist deteriorates, causing the photoresist to fall off and the pattern becoming thinner.

下地の5L02についてはイオン照射が律速となってお
り大きな差はみられない。
Regarding the base material 5L02, ion irradiation is rate-determining and no significant difference is observed.

これに対して、本実施例ではエッチ面積の減少に伴って
エツチングガスtM、IIkを低減させているので、時
々刻々最適なプラズマが生成され、オーバーエツチング
においてもホトレジストのエツチング速度を小さ(保つ
ことができる。
In contrast, in this embodiment, the etching gases tM and IIk are reduced as the etching area is reduced, so that optimal plasma is generated every moment, and even in overetching, the etching rate of the photoresist can be maintained at a low level. I can do it.

このように、本実施例によれば高段差エツチングにおけ
るオーバーエツチング時のホトレジストとの選択比を著
しく向上させることができ、ホトレジストの片落ちなど
による寸法の細りがなくなり0,3μmといった微細線
中の加工が可能となる。
As described above, according to this embodiment, the selectivity with respect to the photoresist during over-etching in high-step etching can be significantly improved, and the thinning of the dimension due to the drop-off of the photoresist is eliminated, and fine lines such as 0.3 μm can be formed. Processing becomes possible.

プラズマのパラメータとしては上記したエツチングガス
流量に限定されるものではなく、形状判制御性、下地5
i02との選択性や残渣制御性のために圧力やRFバイ
アス電圧を制御しても良い。
Plasma parameters are not limited to the above-mentioned etching gas flow rate, but include shape controllability, substrate 5
Pressure and RF bias voltage may be controlled for selectivity with i02 and residue controllability.

また、その際に発光強度の変化に比例して上記パラメー
タを変化させても良いし、あらかじめ測定したエツチン
グ特性との関連で適切に制御しても良い。
Further, at this time, the above parameters may be changed in proportion to the change in the emission intensity, or may be appropriately controlled in relation to the etching characteristics measured in advance.

さらに、プラズマ状態の検出としてはプラズマの発光強
度の他に質量分析した特定の質量のイオン量等の検出を
行っても類似の効果が得られる。
Furthermore, similar effects can be obtained by detecting the plasma state by detecting the amount of ions of a specific mass obtained by mass spectrometry in addition to the plasma emission intensity.

以上説明した実施例ではマイクロ波を用いたプラズマエ
ツチングを例にあげたが、平行平板形のプラズマエツチ
ング装置や反応性イオンエツチング装!(RIB)およ
び有m場RIgを用いても同様の効果が帰られる。
In the embodiments described above, plasma etching using microwaves was given as an example, but parallel plate type plasma etching equipment and reactive ion etching equipment can also be used! Similar effects can be obtained using (RIB) and m-field RIg.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、被処理物の被処理面積の変化に
対応したプラズマを連続して形成することができるので
、高段差を有するパターンを特性良く処理できる効果が
ある。
As described above, according to the present invention, it is possible to continuously form plasma that corresponds to changes in the area to be processed of the object to be processed, so that it is possible to process patterns with high steps with good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例のニー1チング装置の構成
図、第2図は、高段差パターンエツチングでの時間と発
光強度、パラメータ関係模式図、第3図は、第1図装置
での高段差パターンエツチング特性線図、第4図、第5
図は、従来技術による平坦パターン、高段差パターンで
のエツチング特性線図である。 1、l′・・・・・・ホトレジスト、2.2’・・・・
・・被エツチ材(M系配線材)、3,3′・・・・・・
下地、14・・・・・・エツチングガス、13・・・・
・・コントローラ、じ・・・・・・受光器、10・・・
・・・RF’!!、4・・・・・・μ波入力オ 閃
Fig. 1 is a configuration diagram of a kneeling device according to an embodiment of the present invention, Fig. 2 is a schematic diagram of the relationship between time, emission intensity, and parameters in high-step pattern etching, and Fig. 3 is a diagram of the apparatus shown in Fig. 1. High step pattern etching characteristic diagrams, Figures 4 and 5
The figure is an etching characteristic diagram for a flat pattern and a high-step pattern according to the prior art. 1, l'... Photoresist, 2.2'...
・・Etched material (M-based wiring material), 3, 3'...
Base layer, 14... Etching gas, 13...
...Controller, J...Receiver, 10...
...RF'! ! , 4...μ wave input flash

Claims (16)

【特許請求の範囲】[Claims] 1.プラズマの状態を連続的に検出し、該検出量の変化
に応じて、プラズマパラメータを連続的に制御すること
を特徴とするプラズマ処理方法。
1. A plasma processing method characterized by continuously detecting the state of plasma and continuously controlling plasma parameters according to changes in the detected amount.
2.プラズマ処理開始後所定時間経過後、前記プラズマ
パラメータを連続的に制御する第1請求項に記載のプラ
ズマ処理方法。
2. The plasma processing method according to claim 1, wherein the plasma parameters are continuously controlled after a predetermined period of time has elapsed after the start of plasma processing.
3.前記プラズマの状態としてプラズマの発光を検出す
る第1請求項に記載のプラズマ処理方法。
3. The plasma processing method according to claim 1, wherein light emission of plasma is detected as the state of the plasma.
4.前記検出量の変化に比例して前記パラメータを制御
する第1請求項に記載のプラズマ処理方法。
4. The plasma processing method according to claim 1, wherein the parameter is controlled in proportion to a change in the detected amount.
5.前記プラズマ処理がプラズマエッチングである第1
請求項に記載のプラズマ処理方法。
5. The first plasma treatment is plasma etching.
A plasma processing method according to the claims.
6.前記プラズマパラメータがエッチングガス流量であ
る第5請求項に記載のプラズマ処理方法。
6. 6. The plasma processing method according to claim 5, wherein the plasma parameter is an etching gas flow rate.
7.前記プラズマパラメータが圧力である第5請求項に
記載のプラズマ処理方法。
7. 6. The plasma processing method according to claim 5, wherein the plasma parameter is pressure.
8.前記プラズマをマイクロ波電界を用いて生成させる
第5請求項に記載のプラズマ処理方法。
8. The plasma processing method according to claim 5, wherein the plasma is generated using a microwave electric field.
9.被処理物を配置するサセプタに高周波電圧を印加し
、かつ、該高周波電圧を前記プラズマパラメータとする
第8請求項に記載のプラズマ処理方法。
9. 9. The plasma processing method according to claim 8, wherein a high frequency voltage is applied to a susceptor on which the object to be processed is placed, and the high frequency voltage is used as the plasma parameter.
10.被エッチング材料がAl系の配線材である第6請
求項に記載のプラズマ処理方法。
10. 7. The plasma processing method according to claim 6, wherein the material to be etched is an Al-based wiring material.
11.前記エッチングガス流量の制御をマスク材である
ホトレジストと前記配線材とのエッチング速度比(選択
比)との関連で制御する第10請求項に記載のプラズマ
処理方法。
11. 10. The plasma processing method according to claim 10, wherein the etching gas flow rate is controlled in relation to an etching rate ratio (selectivity) between a photoresist as a mask material and the wiring material.
12.前記パラメータを下地材料との選択比,エッチン
グ形状あるいは残渣との関連で制御する第5請求項に記
載のプラズマ処理方法。
12. 6. The plasma processing method according to claim 5, wherein the parameters are controlled in relation to selectivity with respect to the base material, etching shape, or residue.
13.高い段差部に設けられて厚さが大きく異なるエッ
チング材料をエッチングする方法において、プラズマの
状態を連続的に検出し、オーバーエッチング時点から前
記プラズマ状態の検出量の変化に対応してプラズマパラ
メータを連続的に制御することを特徴とするプラズマ処
理方法。
13. In a method for etching etching materials that are provided in high step areas and have greatly different thicknesses, the state of the plasma is continuously detected, and the plasma parameters are continuously adjusted from the point of over-etching in response to changes in the detected amount of the plasma state. A plasma processing method characterized by controlled control.
14.前記オーバーエッチに入る管理を時間設定により
行う第13請求項に記載のプラズマ処理方法。
14. 14. The plasma processing method according to claim 13, wherein the over-etching is controlled by time setting.
15.前記プラズマ処理が反応性イオンエッチングであ
る第5請求項に記載のプラズマ処理方法。
15. 6. The plasma processing method according to claim 5, wherein the plasma processing is reactive ion etching.
16.高い段差部に設けられて厚さが大きく異なるAl
系配線材をエッチングする方法において、オーバーエッ
チング時にエッチングガス流量を変化させてホトレジス
トとの選択性を向上させることを特徴とするエッチング
処理方法。
16. Al that is installed in a high step part and has a large difference in thickness
An etching treatment method for etching a wiring material, characterized in that the etching gas flow rate is changed during over-etching to improve selectivity with respect to photoresist.
JP31526189A 1989-12-06 1989-12-06 Plasma treatment method Pending JPH03177587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31526189A JPH03177587A (en) 1989-12-06 1989-12-06 Plasma treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31526189A JPH03177587A (en) 1989-12-06 1989-12-06 Plasma treatment method

Publications (1)

Publication Number Publication Date
JPH03177587A true JPH03177587A (en) 1991-08-01

Family

ID=18063305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31526189A Pending JPH03177587A (en) 1989-12-06 1989-12-06 Plasma treatment method

Country Status (1)

Country Link
JP (1) JPH03177587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273627A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Plasma etching apparatus for aluminum alloy film
JPH07335613A (en) * 1993-01-25 1995-12-22 Motorola Inc Method of etching material layer
US9728473B2 (en) 2014-09-26 2017-08-08 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor manufacturing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273627A (en) * 1990-03-23 1991-12-04 Matsushita Electron Corp Plasma etching apparatus for aluminum alloy film
JPH07335613A (en) * 1993-01-25 1995-12-22 Motorola Inc Method of etching material layer
US9728473B2 (en) 2014-09-26 2017-08-08 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor device and semiconductor manufacturing apparatus

Similar Documents

Publication Publication Date Title
US8337713B2 (en) Methods for RF pulsing of a narrow gap capacitively coupled reactor
JP3706148B2 (en) Low pressure sputtering method and apparatus
EP2048703B1 (en) End point detectable plasma etching method and plasma etching apparatus
JPS60126832A (en) Dry etching method and device thereof
JP2000294540A (en) Manufacture of semiconductor device and apparatus for manufacturing
JPS6015148B2 (en) Method for controlling the slope of the sidewalls of depressions in the processed layer
JPH10125662A (en) Method and apparatus for controlling sidewall profiles during an etching process
US20060060300A1 (en) Plasma treatment method
US5397433A (en) Method and apparatus for patterning a metal layer
US20010051438A1 (en) Process and apparatus for dry-etching a semiconductor layer
JP2845199B2 (en) Dry etching apparatus and dry etching method
US6005217A (en) Microwave plasma processing method for preventing the production of etch residue
JPH11219938A (en) Plasma etching method
JPH03177587A (en) Plasma treatment method
JP6851510B2 (en) Plasma processing equipment and plasma processing method
JPH10312899A (en) Plasma processing method and plasma processing apparatus
KR100553299B1 (en) Plasma processing method
JP3997004B2 (en) Reactive ion etching method and apparatus
JP3172340B2 (en) Plasma processing equipment
JPH0211781A (en) dry etching equipment
JP2000012529A (en) Surface processing equipment
JP2727781B2 (en) Dry etching method
JP3234321B2 (en) Method of using plasma reactor, plasma processing method of substrate, and method of manufacturing semiconductor device using the processing method
JP4004244B2 (en) Plasma processing method
JPS62249420A (en) plasma processing equipment