[go: up one dir, main page]

JPH03188826A - Measuring device for adjusting power of eye - Google Patents

Measuring device for adjusting power of eye

Info

Publication number
JPH03188826A
JPH03188826A JP1329116A JP32911689A JPH03188826A JP H03188826 A JPH03188826 A JP H03188826A JP 1329116 A JP1329116 A JP 1329116A JP 32911689 A JP32911689 A JP 32911689A JP H03188826 A JPH03188826 A JP H03188826A
Authority
JP
Japan
Prior art keywords
eye
optotype
movement
target
microcomputer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1329116A
Other languages
Japanese (ja)
Other versions
JP2775183B2 (en
Inventor
Masanao Fujieda
正直 藤枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP1329116A priority Critical patent/JP2775183B2/en
Publication of JPH03188826A publication Critical patent/JPH03188826A/en
Application granted granted Critical
Publication of JP2775183B2 publication Critical patent/JP2775183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To accurately and promptly measure changes in the refractive power of an eye by using as a target for inducing adjustment a pattern having plural rectilinear components extending in the same direction. CONSTITUTION:Movement of a target 19 as stimulus for adjustment is added by a microcomputer circuit 121 to a microcomputer circuit 111 as a signal 1 following preset conditions of the amount, the starting point and the speed of movement of the target toward and away from an eye and the number of times that this movement is repeated. A driver 212 and a motor 213 then drive a third relay lens 17. A potentiometer 215 directly connected to the third relay lens 17 and a buffer amplifier 214 are provided and the signal is returned as a position signal of actual movement to the microcomputer circuit 121 through an A/D converter 105 by analog output (2) indicating the position of the target 19. The eye 6 to be tested is fixed on movement of the target 19 toward and away from it whereby changes in the refractive power of the eye can be measured succesively as movement of a spot diaphragm 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、眼調節力測定に適するような視標を有する眼
調節力測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an accommodative power measuring device having an optotype suitable for measuring accommodative power.

[従来の技術] 近年、ワードプロセッサ及びコンピューター等によるV
DT作業が増加傾向にあるが、作業者の作業前及び作業
後の眼調節力の変動を測定することによって眼精疲労や
肉体的な疲労を定量的に把握することができる。
[Prior art] In recent years, word processors, computers, etc.
Although DT work is on the rise, it is possible to quantitatively understand eye strain and physical fatigue by measuring fluctuations in the eye accommodation power of workers before and after work.

眼調節力を測定するには、可視の視標位置を外部からの
信号により遠方から近方へ、また近方から遠方へ移動制
御することで、この固視標によって誘起される眼屈折力
変化を経時的に連続的に測定する装置が知られている。
To measure eye accommodation, the position of a visible visual target is controlled to move from far to near and from near to far using an external signal, and the change in eye refractive power induced by this fixation target is measured. There are known devices that continuously measure over time.

ところで、従来の眼調節力測定装置では眼屈折力を測定
する際に被検者にその中心を注視させ、被検眼を固定す
るスターバーストのような放射線状パターンによる指標
を眼調節力測定にも用いている。
By the way, in conventional eye accommodation measuring devices, when measuring eye refractive power, the subject is made to gaze at the center, and an index using a radial pattern such as a starburst that fixes the eye to be examined is also used for measuring eye accommodation. I am using it.

[発明が解決しようとする課題] ところが、このような放射線状の形状をしだ視標を遠点
方向から近点方向へ、或いはその逆方向へ移動した場合
、以下のような不具合が生じる。
[Problems to be Solved by the Invention] However, when an optotype having such a radial shape is moved from the far point direction to the near point direction or in the opposite direction, the following problems occur.

第5図は定屈折力変化速度(単位、 drop%c、)
で視標を遠点方向から近点方向へ移動したときの軌跡a
と、その逆の軌跡すと比較し、その刺激に誘起された眼
屈折力変化をASBとして示す。ここで、A、Bのシフ
トc、dは被検者が放射線状の視標を固視する方向を変
えたために起きたものである。
Figure 5 shows constant refractive power change rate (unit: drop%c)
Locus a when the visual target is moved from the far point direction to the periapsis direction
and its opposite trajectory, and the change in eye refractive power induced by that stimulus is shown as ASB. Here, shifts c and d in A and B occur because the subject changes the direction in which he or she fixates the radial visual target.

これは、被検眼が乱視眼である場合、焦点が2つあるの
で被検者には放射線の各方向中に2方向、線が濃く見え
る位置があるためであり、被検者が無意識に固視の方向
を変えるものである。一般に、これら2方向は互いに9
0度の角度をなす方向であり、刺止経、強主経方向であ
る。
This is because if the eye to be examined has astigmatism, there are two focal points, so there are two positions in each direction of the radiation where the lines appear darker, and the examinee unconsciously fixates the eye. It changes the direction of vision. Generally, these two directions are 9
It is a direction that forms an angle of 0 degrees, and is the direction of the puncture meridian and strong principal meridian.

本発明は上記欠点に鑑み案出されたもので、眼屈折力変
化を正確かつ迅速に測定することのできる眼調節力測定
装置を提供することを技術課題とする。
The present invention was devised in view of the above-mentioned drawbacks, and an object of the present invention is to provide an accommodative power measuring device that can accurately and quickly measure changes in eye refractive power.

[課題を解決するための手段] 本発明の眼調節力測定装置は光軸方向に移動する第1視
標を被検者に固視させることにより被検眼の眼調節力を
測定する眼調節力測定装置において、調節を誘起する第
1視標を同一方向に伸びる複数の直線成分を持つパター
ンとし、該直線の向きを、第2視標を持つ入力用測定手
段を用いて予め測定した乱視軸と一定の位置関係をもつ
よう回転させる視標呈示手段を具備したことを特徴とす
る。
[Means for Solving the Problems] The ocular accommodation power measurement device of the present invention measures the ocular accommodation power of the eye to be examined by having the test subject fixate on a first visual target that moves in the optical axis direction. In the measuring device, the first optotype that induces accommodation is a pattern having a plurality of linear components extending in the same direction, and the direction of the straight line is determined by the astigmatism axis measured in advance using an input measurement means having a second optotype. The present invention is characterized by comprising an optotype presenting means that rotates so as to have a constant positional relationship with the target.

入力用測定手段は装置に内蔵、あるいは外部に取り付け
られた公知の自動眼屈折力計を採用してもよいし、他の
乱視軸の測定手段であっても良い。
The input measuring means may be a known automatic eye refractometer built into the apparatus or attached externally, or may be other means for measuring the astigmatic axis.

[作用コ 上記構成のとおり、調節を誘起する視標を同一方向にの
びる複数の直線成分を持つパターンとすることによって
、視標を回転させある特定経線方向での眼屈折力変化だ
けを抽出することができる。
[Operation: As in the above configuration, by making the optotype that induces accommodation into a pattern with multiple linear components extending in the same direction, the optotype is rotated to extract only the change in eye refractive power in a certain meridian direction. be able to.

ここで特定経線とは被検眼の刺止経線か強主経線のいず
れかであり、視標の方向はこれらの方向に回転可能とし
である。なお、第4−1図は眼調節力の変化を示すグラ
フであり、乱視軸が30度の場合を示す。この場合、視
標が遠点付近では被検者から見たとき第4−2図のよう
に60度方向の線がはっきり見える。続いて、第5図の
aのように視標を遠から近方向に移動したときに眼屈折
力はelからe2のように変化する。この8102間の
距離が大きいほど眼調節力は良好であるといえる。
Here, the specific meridian is either the puncturing meridian or the strong principal meridian of the eye to be examined, and the direction of the optotype can be rotated in these directions. Note that FIG. 4-1 is a graph showing changes in eye accommodation, and shows the case where the astigmatism axis is 30 degrees. In this case, when the visual target is near the far point, when viewed from the subject, a line in the 60 degree direction is clearly visible as shown in Figure 4-2. Subsequently, when the optotype is moved from far to near as shown in a of FIG. 5, the eye refractive power changes from el to e2. It can be said that the larger the distance between these 8102, the better the eye accommodation ability.

[実施例] 以下、図面により発明の詳細な説明する。[Example] Hereinafter, the invention will be explained in detail with reference to the drawings.

第1図はこの発明に係る眼調節力測定装置の測定光学系
配置図の一実施例であり、1は赤外領域に波長をもつ測
定用光源で、集光レンズ2のほぼ焦点位置に配置されて
いる。3は被検眼6の眼底と共役な位置に配置されるべ
く移動可能なスポット絞り、4は対物レンズ、5はビー
ムスプリッタ−である。7は対物レンズ、8はビームス
プリッタ−19は第1リレーレンズ、10は被検眼6の
角膜と共役な位置に配置されている角膜反射除去マスク
である。12は第2リレーレンズ、13は前記スポット
絞り3と一緒に移動する移動レンズ、14は結像レンズ
である。15は測定用受光素子で、前記測定用光源1及
び角膜反射除去マスク10と同期して光軸を中心に回転
するようになっている。16は反射鏡である。17は第
3リレーレンズで軸方向に移動可能になっている。18
は第4リレーレンズである。19は被検眼6の眼底上に
投影される固視用視標である。この視標19は第4−2
図に示すように一方向にのびる直線成分を備えるパター
ンで後述する駆動部により回転可能となっている。21
は集光レンズ、22は可視光源である。
FIG. 1 shows an example of the arrangement of the measurement optical system of the ocular accommodation measuring device according to the present invention, in which 1 is a measurement light source having a wavelength in the infrared region, which is placed approximately at the focal point of the condenser lens 2. has been done. 3 is a movable spot aperture so as to be placed at a position conjugate with the fundus of the eye 6 to be examined; 4 is an objective lens; and 5 is a beam splitter. 7 is an objective lens, 8 is a beam splitter, 19 is a first relay lens, and 10 is a corneal reflection removal mask disposed at a position conjugate with the cornea of the eye 6 to be examined. 12 is a second relay lens, 13 is a moving lens that moves together with the spot diaphragm 3, and 14 is an imaging lens. Reference numeral 15 denotes a measurement light receiving element, which rotates around the optical axis in synchronization with the measurement light source 1 and the corneal reflection removal mask 10. 16 is a reflecting mirror. A third relay lens 17 is movable in the axial direction. 18
is the fourth relay lens. 19 is a fixation target projected onto the fundus of the eye 6 to be examined. This optotype 19 is No. 4-2
As shown in the figure, the pattern includes a linear component extending in one direction, and can be rotated by a drive unit, which will be described later. 21
is a condensing lens, and 22 is a visible light source.

第2図は眼調節力測定全体のシステム構成要素を示す。FIG. 2 shows the overall system components for eye accommodation measurement.

101は光軸中心に回転する視標19を備え、光軸上を
遠/近方向に移動させる視標呈示部でI10回路104
を介してマイクロコンピュータ回路121−により制御
される。102は眼屈折力を検知するオプトメータ一部
であり、アナログ電圧として得られた眼屈折力変化信号
はA/D回路105を介してマイクロコンピュータ回路
121に接続されている。103は被検眼と装置間の照
準のための観察系である。111はマイクロコンピュー
タ回路であり、視標呈示部101、オプトメタ一部10
2を眼屈折力計機能及び眼屈折力計機能を満たすべく制
御するものである。マイクロコンピュータ回路121は
視標19の移動変化(刺激)と眼屈折力変化(反応)を
同時にデイスプレィ122に表示するとともに、経時変
化波形として外部記憶装置123に記憶するプログラム
を内蔵している。124はプリンタである。
Reference numeral 101 denotes an optotype presentation unit that includes an optotype 19 that rotates around the optical axis and moves in the far/near direction on the optical axis; I10 circuit 104;
It is controlled by the microcomputer circuit 121- via the microcomputer circuit 121-. 102 is a part of an optometer that detects the eye refractive power, and the eye refractive power change signal obtained as an analog voltage is connected to the microcomputer circuit 121 via the A/D circuit 105. Reference numeral 103 is an observation system for aiming between the eye to be examined and the apparatus. 111 is a microcomputer circuit, which includes an optometrist part 101 and an optometa part 10.
2 to satisfy the eye refractometer function and the eye refractometer function. The microcomputer circuit 121 has a built-in program that simultaneously displays the movement change (stimulus) of the optotype 19 and the eye refractive power change (reaction) on the display 122, and stores it in the external storage device 123 as a time-varying waveform. 124 is a printer.

第3図は本装置の自動眼屈折力計部の信号処理系を示す
ブロック図である。
FIG. 3 is a block diagram showing the signal processing system of the automatic eye refractometer section of this apparatus.

自動眼屈折力計としての機能は省略して眼調節力測定に
ついて手順にしたがって以下説明する。
The function as an automatic eye refractometer will be omitted, and the measurement of eye accommodation power will be explained below according to the procedure.

眼屈折力計の測定で球面、柱面屈折力および乱視軸の値
を得る。次に装置を不図示の測定モード切換スイッチま
たはマイクロコンピュータ回路121からの信号(1)
により眼調節力測定モードに切り換える。マイクロコン
ピュータ回路111はドライバ208を介してモータ2
09を制御し、測定用光源1、角膜反射除去マスク10
及び受光素子15を乱視軸に合わせて回転する。また乱
視軸の角度に基づいてマイクロコンピュータ回路111
がドライバ210を介してモータ211を駆動し、乱視
をマイナス表現する場合、視標19を乱視軸と直交する
主経線方向に回転させる。
Obtain the values of spherical surface, cylindrical refractive power, and astigmatic axis by measuring with an eye refractometer. Next, the device is switched to a measurement mode selector switch (not shown) or a signal (1) from the microcomputer circuit 121.
Switch to accommodative power measurement mode. The microcomputer circuit 111 connects the motor 2 via the driver 208.
09, measurement light source 1, corneal reflection removal mask 10
Then, the light receiving element 15 is rotated in alignment with the astigmatic axis. Also, based on the angle of the astigmatic axis, the microcomputer circuit 111
drives the motor 211 via the driver 210 to rotate the optotype 19 in the principal meridian direction perpendicular to the astigmatism axis when expressing astigmatism in a negative form.

つづいてマイクロコンピュータ回路121からの信号(
1)で測定開始の信号がマイクロコンピュータ回路11
1に与えられるとドライバ201によって測定用光源1
を所定のパルス周期で発光させ、スポット絞り3の像を
眼内、眼底に投影する。その反射光は受光素子15で検
出される。そして位相検波回路202で眼底に投影され
た像のフォーカスの良否に比例した直流電圧に変換され
A/D変換器203を経てマイクロコンピュータ回路1
11に加えられる。マイクロコンピュータ回路111は
スポット絞り3の位置をドライバ204を介したモータ
205の駆動により最良のフォーカスとなるまで移動さ
せる。スポット絞り3の位置は眼屈折力値と対応してお
り、スポット絞り3に連結されたポテンショメータ20
7の電圧出力(3)として眼屈折力値が得られる。そし
てマイクロコンピュータ回路121からの測定停止の信
号(1)がくるまでは常に被検眼6の眼屈折力変化をア
ナログ信号出力としてマイクロコンピュータ回路121
に出力する。なお206はバッファアンプである。
Next, the signal from the microcomputer circuit 121 (
1) The measurement start signal is sent to the microcomputer circuit 11.
1, the driver 201 outputs the measurement light source 1.
is caused to emit light at a predetermined pulse cycle, and the image of the spot aperture 3 is projected into the eye and onto the fundus. The reflected light is detected by the light receiving element 15. Then, the phase detection circuit 202 converts it into a DC voltage proportional to the focus quality of the image projected on the fundus, and the voltage is passed through the A/D converter 203 to the microcomputer circuit 1.
Added to 11. The microcomputer circuit 111 moves the position of the spot diaphragm 3 by driving a motor 205 via a driver 204 until the best focus is achieved. The position of the spot diaphragm 3 corresponds to the eye refractive power value, and a potentiometer 20 connected to the spot diaphragm 3 corresponds to the eye refractive power value.
The eye refractive power value is obtained as the voltage output (3) of 7. Then, until the measurement stop signal (1) is received from the microcomputer circuit 121, the change in the eye refractive power of the eye 6 to be examined is always output as an analog signal to the microcomputer circuit 121.
Output to. Note that 206 is a buffer amplifier.

調節刺激としての視標19の移動(本実施例では第3リ
レーレンズ17を移動させることで等価な効果が得られ
る光学系としている。視標19の移動方法は遠点よりさ
らにプラス側から近点よりさらにマイナス側に徐々に移
動させる方法と遠点と近点との間を瞬時に階段状に一定
時間ごとに移動させる方法とがある。)は、マイクロコ
ンピュータ回路121により遠近への移動量、移動の開
始位置、移動の速度、繰り返し回数などの設定条件に従
った信号(1)としてマイクロコンピュータ回路111
に加えられることによってなされる。
Movement of the optotype 19 as an accommodation stimulus (in this embodiment, an optical system is used in which an equivalent effect can be obtained by moving the third relay lens 17. There are two methods: one is to gradually move the point further to the minus side, and the other is to instantly move the point between the far point and the near point in a stepwise manner at regular intervals. , the microcomputer circuit 111 as a signal (1) according to setting conditions such as the start position of movement, speed of movement, and number of repetitions.
It is done by being added to.

ここでドライバ212とモータ213は第3リレレンズ
17を駆動するものである。また215は第3リレーレ
ンズ17に直結したポテンショメータ、214はバッフ
ァアンプであり、(2)は視標19の位置を示すアナロ
グ出力であり、実際に移動した位置信号としてA/D回
路105を経てマイクロコンピュータ回路121に返さ
れる。
Here, the driver 212 and motor 213 drive the third relay lens 17. Further, 215 is a potentiometer directly connected to the third relay lens 17, 214 is a buffer amplifier, and (2) is an analog output indicating the position of the visual target 19, which is sent as an actual position signal through the A/D circuit 105. It is returned to the microcomputer circuit 121.

被検眼6がこの視標19の遠近への移動を固視する結果
、スポット絞り3の移動として眼屈折力変化を連続的に
とらえることができる。
As a result of the subject's eye 6 fixating on the movement of the optotype 19 from far to near, it is possible to continuously perceive the change in the eye's refractive power as the movement of the spot diaphragm 3.

ここで視標19は回転させるため円形とし、遠近に移動
させてぼけた場合でも存在がわかるように直線群に適当
な面積をもたせたものとする。具体的には線の幅と各線
間の間隔は例えば1対1とし、視力0.7相当とする。
Here, the optotype 19 is made circular so that it can be rotated, and the group of straight lines has an appropriate area so that its presence can be recognized even when it is moved to a distance and becomes blurred. Specifically, the width of the lines and the spacing between the lines are, for example, 1:1, and the visual acuity is equivalent to 0.7.

面積は固視位置を制限する大きさとし、眼屈折力計の要
求するものとする。本実施例では1度から2度である。
The area should be large enough to limit the fixation position and should be as required by the eye refractometer. In this embodiment, it is from 1 degree to 2 degrees.

本実施例では自動眼屈折力計に内蔵された視標0 19で説明したが、外部に設置すべく製作された視標に
おいても同様に入力用測定手段としての機能をもたせる
ことは可能である。他面、自動眼屈折力計機能で使用す
る調節解除のための視標を別に備えて複数枚の視標を円
盤上に配置してもよい。
Although this embodiment has been explained using optotypes 0 to 19 built into an automatic eye refractometer, it is also possible to similarly provide a function as an input measurement means to an optotype manufactured to be installed externally. . On the other hand, a plurality of optotypes may be arranged on the disk by separately providing optotypes for canceling accommodation used in the automatic eye refractometer function.

各々の測定時で回転させて切り替えればよい。All you have to do is rotate and switch between each measurement.

さらにマイクロコンピュータ回路は111と121とに
分けているが1つのマイクロコンピュタ回路に統一して
もよい。
Furthermore, although the microcomputer circuit is divided into 111 and 121, they may be unified into one microcomputer circuit.

[発明の効果] 本発明の眼調節力測定装置によれば被検者の眼調節力を
容易かつ迅速かつ被検者が視標を固視する方向を変える
ことなく正確に測定することができる。
[Effects of the Invention] According to the accommodative power measurement device of the present invention, the accommodative power of a subject can be easily and quickly measured accurately without changing the direction in which the subject fixates the visual target. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の主要光学系を示す光学配置図である。 第2図は眼調節力測定装置のシステム構成要素を示すブ
ロック図である。第3図は信号処理系のブロック図であ
る。第4−1図は被検者の眼屈折力の変化を示すグラフ
である。第4−2図1 は視標を示す図である。第5図は定屈折力変化速度を示
すグラフである。 6・・・被検眼 19・・・視標 101・・・視標呈示部 102・・・オプトメータ一部 103・・・観察系 111.121・・・マイクロコンピュータ回路
FIG. 1 is an optical layout diagram showing the main optical system of the embodiment. FIG. 2 is a block diagram showing the system components of the eye accommodation measuring device. FIG. 3 is a block diagram of the signal processing system. FIG. 4-1 is a graph showing changes in the eye refractive power of the subject. Figure 4-2 1 is a diagram showing optotypes. FIG. 5 is a graph showing the constant refractive power change rate. 6...Eye to be examined 19...Optotype 101...Optotype presentation section 102...Optometer part 103...Observation system 111.121...Microcomputer circuit

Claims (4)

【特許請求の範囲】[Claims] (1)光軸方向に移動する第1視標を被検者に固視させ
ることにより被検眼の眼調節力を測定する眼調節力測定
装置において、 該第1視標を同一方向に伸びる複数の直線成分を持つパ
ターンとし、該直線の向きを、第2視標を持つ入力用測
定手段を用いて予め測定した乱視軸と一定の位置関係を
もつよう回転させる第1視標呈示手段を具備したことを
特徴とする眼調節力測定装置。
(1) In an accommodative power measurement device that measures the accommodative power of the eye to be examined by having the subject fixate on a first optotype moving in the optical axis direction, the first optotype is arranged in a plurality of eyes extending in the same direction. a pattern having a straight line component, and includes a first optotype presenting means for rotating the direction of the straight line so as to have a constant positional relationship with an astigmatism axis measured in advance using an input measuring means having a second optotype. An accommodative power measuring device characterized by:
(2)入力用測定手段は乱視軸を測定できる自動眼屈折
力計であることを特徴とする第1項記載の眼調節力測定
装置
(2) The accommodative power measuring device according to item 1, wherein the input measuring means is an automatic eye refractometer capable of measuring an astigmatic axis.
(3)第1視標の持つ光学系は第2視標の持つ光学系と
共通であることを特徴とする第2項記載の眼調節力測定
装置。
(3) The eye accommodation power measuring device according to item 2, wherein the optical system of the first optotype is the same as the optical system of the second optotype.
(4)第1視標は第2視標を共用することを特徴とする
第3項記載の眼調節力測定装置。
(4) The eye accommodation power measuring device according to item 3, wherein the first optotype shares the second optotype.
JP1329116A 1989-12-19 1989-12-19 Eye accommodation power measuring device Expired - Fee Related JP2775183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1329116A JP2775183B2 (en) 1989-12-19 1989-12-19 Eye accommodation power measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1329116A JP2775183B2 (en) 1989-12-19 1989-12-19 Eye accommodation power measuring device

Publications (2)

Publication Number Publication Date
JPH03188826A true JPH03188826A (en) 1991-08-16
JP2775183B2 JP2775183B2 (en) 1998-07-16

Family

ID=18217791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1329116A Expired - Fee Related JP2775183B2 (en) 1989-12-19 1989-12-19 Eye accommodation power measuring device

Country Status (1)

Country Link
JP (1) JP2775183B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361168B1 (en) 1999-09-29 2002-03-26 Nidek Co., Ltd. Ophthalmic apparatus
US6547392B2 (en) 2000-03-30 2003-04-15 Nidek Co., Ltd. Ophthalmic apparatus
WO2003057021A1 (en) * 2002-01-04 2003-07-17 Vision Optic Co., Ltd. Optometric apparatus, optometric method, and optometric server
JP2005507299A (en) * 2001-11-07 2005-03-17 カール ツアイス メディテック アクチエンゲゼルシャフト Method, apparatus and system for measuring dynamic behavior of optical system
JP2014147570A (en) * 2013-02-01 2014-08-21 Nidek Co Ltd Ophthalmologic apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361168B1 (en) 1999-09-29 2002-03-26 Nidek Co., Ltd. Ophthalmic apparatus
US6547392B2 (en) 2000-03-30 2003-04-15 Nidek Co., Ltd. Ophthalmic apparatus
JP2005507299A (en) * 2001-11-07 2005-03-17 カール ツアイス メディテック アクチエンゲゼルシャフト Method, apparatus and system for measuring dynamic behavior of optical system
US7789514B2 (en) 2001-11-07 2010-09-07 Carl Zeiss Meditec Ag Method, device and arrangement for measuring the dynamic behavior of an optical system
US8201944B2 (en) 2001-11-07 2012-06-19 Carl Zeiss Meditec Ag Method, device and arrangement for measuring the dynamic behavior of an optical system
WO2003057021A1 (en) * 2002-01-04 2003-07-17 Vision Optic Co., Ltd. Optometric apparatus, optometric method, and optometric server
US7267439B2 (en) 2002-01-04 2007-09-11 Vision Optic Co., Ltd. Optometric apparatus, optometric method, and optometric server
CN100353906C (en) * 2002-01-04 2007-12-12 株式会社威炯眼镜 Vision measurement device, vision measurement method, and vision measurement server
JP2014147570A (en) * 2013-02-01 2014-08-21 Nidek Co Ltd Ophthalmologic apparatus

Also Published As

Publication number Publication date
JP2775183B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JP5643078B2 (en) Eye refractive power measuring device
US8491122B2 (en) Arrangement for attaining high-precision measurements of an eye
US10188282B2 (en) Subjective optometry apparatus
US10251543B2 (en) Optometry apparatus and method for subjective measurement using optometric chart
JP5248926B2 (en) Eye refractive power measuring device
US12171492B2 (en) Ophthalmologic apparatus and measurement method using the same
JP7024295B2 (en) Awareness-based optometry device
JPS6317455B2 (en)
US20050174536A1 (en) Ocular accommodative function examination apparatus
US6547392B2 (en) Ophthalmic apparatus
WO2025162394A1 (en) Ophthalmic optical instrument and optical measurement system
US7341346B2 (en) Ocular accommodative function examination apparatus
JP7594871B2 (en) Ophthalmic device and measuring method
JP7528640B2 (en) Opthalmography device and control program for optometric device
JP6427224B2 (en) Ophthalmic imaging device
JPH03188826A (en) Measuring device for adjusting power of eye
JP2005052249A (en) Eye adjustment function measuring instrument
JP6497005B2 (en) Visual function measuring device and visual function measuring program
JP2005052248A (en) Eye adjustment function measuring instrument
JP2020137915A (en) Subjective optometric device and subjective optometric program
US20250221621A1 (en) Ophthalmic apparatus, method of controlling ophthalmic apparatus, and recording medium
EP4509033A1 (en) Ophthalmologic apparatus and method for examining subject eyes
JP3244340U (en) Science teaching materials for optics learning
JP6968644B2 (en) Ophthalmic equipment
JPH06304140A (en) Optometry device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees