JPH03201416A - magnetic thin film - Google Patents
magnetic thin filmInfo
- Publication number
- JPH03201416A JPH03201416A JP33872689A JP33872689A JPH03201416A JP H03201416 A JPH03201416 A JP H03201416A JP 33872689 A JP33872689 A JP 33872689A JP 33872689 A JP33872689 A JP 33872689A JP H03201416 A JPH03201416 A JP H03201416A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thin film
- magnetic thin
- cobalt
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/12—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
- H01F10/13—Amorphous metallic alloys, e.g. glassy metals
- H01F10/132—Amorphous metallic alloys, e.g. glassy metals containing cobalt
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Thin Magnetic Films (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、特に高い周波数で使用される高周波トランス
、マグアンプ、その他高周波用電子部品の磁性材料に関
する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to magnetic materials for high frequency transformers, mag-amps, and other high frequency electronic components used particularly at high frequencies.
近年、エレクトロニクスの技術革新は目覚しく、特に電
子機器の小型化、軽量化、高密度化は技術の中心課題に
なっている。電子機器の小型化には、インダクター素子
の改善が一つの要素である。例えば、磁気増幅器を利用
したスイッチング電源では、スイッチング周波数の高周
波化によって飛躍的に電源を小型化できることが予想さ
れる。インダクター素子を構成する磁性材料は、これま
で以上に高周波特性に優れたものが必要とされてきてい
る。In recent years, technological innovation in electronics has been remarkable, and in particular, miniaturization, weight reduction, and higher density of electronic devices have become central technological issues. One element of miniaturizing electronic devices is improving inductor elements. For example, in a switching power supply using a magnetic amplifier, it is expected that the power supply can be dramatically downsized by increasing the switching frequency. Magnetic materials constituting inductor elements are required to have better high frequency characteristics than ever before.
軟磁性材料を特徴付けるパラメータに透磁率がある。第
1図に実用化されている磁性材料の比透磁率μに対する
周波数f依存性を示す。(山内、゛89スイッチング電
源システムシンポジウム予稿集、5−2−1)高い周波
数になると比透磁率が低下し、且つ材料の違いによる比
透磁率の大きさにかかわらず、はぼ同一線上を低下して
いる。このように、磁性材料は高周波で特性が低下する
。この限界線を超えて、より高周波で使える磁性材料の
開発も試られ、フェロクス・プレーナー(Perrox
plana)とよばれる材料が開発された。(G、Ho
Jonker etal:Ph1lips、Tech、
Rev、 1B(1956)145) シかし、こ
れは電気抵抗率を充分大きくすることがむすかしく、渦
電流損失が大きく、更に特殊な結晶成長が必要で製法が
むずかしく、現在実用には用いられていない。Magnetic permeability is a parameter that characterizes soft magnetic materials. FIG. 1 shows the dependence of frequency f on the relative permeability μ of magnetic materials that have been put into practical use. (Yamauchi, '89 Switching Power Supply System Symposium Proceedings, 5-2-1) As the frequency increases, the relative magnetic permeability decreases, and regardless of the magnitude of the relative magnetic permeability due to the difference in materials, the decreases are almost on the same line. are doing. In this way, the characteristics of magnetic materials deteriorate at high frequencies. Beyond this limit, attempts were made to develop magnetic materials that could be used at higher frequencies, such as the Ferrox planer (Perrox
A material called plana has been developed. (G, Ho
Jonker etal: Ph1lips, Tech,
Rev. 1B (1956) 145) However, it is difficult to increase the electrical resistivity sufficiently, the eddy current loss is large, and the manufacturing method is difficult because it requires special crystal growth, so it is not currently used in practical use. Not yet.
最近、非晶質合金の製法が種々開発され、軟磁性に優れ
た材料が得られるようになった。特にスッパクリング法
を用いた方法では非常に薄い材料が得られる。CoZr
系非晶質合金では■−厚みで、この限界線を超えたもの
も発表されている。(島田、電子通信学会部品材料研究
会試料、CPM 8111 (1981)) Lか
しながら、Zrを用いていることから飽和磁束密度が低
く、その結果この限界線を超えているとは云えども、透
磁率の高い絶対値を得ることはできない。Recently, various methods for producing amorphous alloys have been developed, and materials with excellent soft magnetism can now be obtained. In particular, very thin materials can be obtained using the spuckling method. CoZr
Some amorphous alloys with a thickness exceeding this limit have been announced. (Shimada, Institute of Electronics and Communication Engineers Parts and Materials Study Group sample, CPM 8111 (1981)) However, since Zr is used, the saturation magnetic flux density is low, and as a result, it exceeds this limit line. It is not possible to obtain a high absolute value of magnetic permeability.
本発明者らは、電気抵抗率が高く且つ高い透磁率で高周
波における特性の低下の少ない材料について鋭意検討し
た結果本発明に到達した。The present inventors have arrived at the present invention as a result of extensive research into materials that have high electrical resistivity, high magnetic permeability, and exhibit little deterioration in characteristics at high frequencies.
本発明の要旨とするところは、鉄とコバルトを主成分と
する非晶質合金にあって、常温において電気抵抗率が5
0μΩ・(2)以上であり、且つ初透磁率μと励磁周波
数f (Hz)との間に下記式を満足する高μの存在す
ることを特徴とする高周波数磁気特性に良好な磁性薄膜
にある。The gist of the present invention is to provide an amorphous alloy mainly composed of iron and cobalt, which has an electrical resistivity of 5 at room temperature.
0 μΩ・(2) or more, and a magnetic thin film with good high frequency magnetic properties characterized by the existence of a high μ that satisfies the following formula between the initial magnetic permeability μ and the excitation frequency f (Hz). be.
log+oμ>8.9 0.9 log+of即ち、
本発明は、電気抵抗率が高く且つ高周波で高い初透磁率
μの存在する材料を見出したことにある。log+oμ>8.9 0.9 log+of i.e.
The present invention is based on the discovery of a material that has a high electrical resistivity and a high initial magnetic permeability μ at high frequencies.
本発明の磁性薄膜を得るためには以下の条件を同時に満
足しなければならない。In order to obtain the magnetic thin film of the present invention, the following conditions must be satisfied at the same time.
(1)軟磁性に優れる合金組成であること。低損失で高
周波特性に優れたものであるためには、磁気特性パラメ
ータである磁歪を極力小さくする必要がある。磁歪の大
きさは、その合金組成と密接な関係があり、例えば強磁
性を示す元素の中で(磁歪)−〇となる組成は、Fe
/ Co = 6 / 94、Re/N1=18/82
、Co/N1=46154がよく知られている。本発明
の磁性薄膜は、これらの中で高い飽和磁束密度の得られ
るFeとCoを主成分とする。(1) The alloy composition has excellent soft magnetism. In order to have low loss and excellent high frequency characteristics, it is necessary to minimize magnetostriction, which is a magnetic property parameter. The magnitude of magnetostriction is closely related to its alloy composition. For example, among elements that exhibit ferromagnetism, the composition that gives (magnetostriction) -0 is Fe.
/Co=6/94, Re/N1=18/82
, Co/N1=46154 is well known. The magnetic thin film of the present invention mainly contains Fe and Co, which provide a high saturation magnetic flux density.
しかし、その他の元素も目的によって少量含有すること
かできる。However, other elements may also be contained in small amounts depending on the purpose.
(2)電気抵抗率の大きい合金であること。一般の金属
材料ではその電気抵抗率は低く、渦電流による損失を招
く。本発明の磁性薄膜を得るためには、非晶質合金を用
いることが好ましい。非晶質合金は通常結晶質合金に比
べ電気抵抗率が2桁程度高い。常温での電気抵抗率は5
oμΩ・cm以上、好ましくは100μΩ・Cl11以
上がよい。(2) It must be an alloy with high electrical resistivity. Common metal materials have low electrical resistivity and cause loss due to eddy currents. In order to obtain the magnetic thin film of the present invention, it is preferable to use an amorphous alloy. Amorphous alloys usually have an electrical resistivity that is about two orders of magnitude higher than that of crystalline alloys. Electrical resistivity at room temperature is 5
It is preferably 0 μΩ·cm or more, preferably 100 μΩ·Cl11 or more.
(3)薄膜が薄いこと。高周波における磁気損失は渦電
流損失が支配的である。渦電流損失(W)は
この式かられかるとうり、厚さの薄いものはどWは小さ
い。本発明の磁性薄膜を得るためには、1゜殉以下好ま
しくは5−以下、更に好ましくは2I!m以下が良い。(3) Thin film. Magnetic loss at high frequencies is dominated by eddy current loss. As can be seen from this equation, the eddy current loss (W) is smaller when the thickness is thinner. In order to obtain the magnetic thin film of the present invention, the magnetic thin film must be 1° or less, preferably 5° or less, more preferably 2I! m or less is better.
(4)薄膜の表面が平滑であること。特に、高周波では
表面凹凸で磁壁がピンニングされやすく、磁気特性を低
下させる。Gyorgyらの理論によると(E、M、G
yorgy:Metallic Glasses 、
AmericanSociety for Metal
s 275(1978)) 、表面粗さを幅2χ、深さ
aの三角錐に近似して、保磁力(Hc)を計算した。(4) The surface of the thin film is smooth. In particular, at high frequencies, domain walls are likely to be pinned due to surface irregularities, reducing magnetic properties. According to the theory of Gyorgy et al. (E, M, G
yorgy: Metallic Glasses,
American Society for Metal
S 275 (1978)), the coercive force (Hc) was calculated by approximating the surface roughness to a triangular pyramid with a width of 2χ and a depth of a.
幅χが小さく、深さaの大きいはどHcが大きく、即ち
表面の凹凸の大きいものが損失が大きい。第2図(a)
に急速冷却法によって得られた市販非晶質合金の触針法
による表面状態を示す。このように表面凹凸の激しいも
のでは高周波特性は優れない。好ましい表面粗さとして
は1.On以下、より好ましくは0.5 tnn以下の
平均表面粗さを有するべきである。The smaller the width χ and the larger the depth a, the larger the Hc, that is, the larger the surface unevenness, the larger the loss. Figure 2(a)
Figure 2 shows the surface condition of a commercially available amorphous alloy obtained by the rapid cooling method using the stylus method. A material with such severe surface irregularities does not have excellent high frequency characteristics. The preferred surface roughness is 1. It should have an average surface roughness of less than On, more preferably less than 0.5 tnn.
(5)磁壁の数の多いこと。磁性膜内部に緻密な微細構
造をもつことによって磁壁の数を増やすことが必要であ
る。下記の式は渦電流損失が磁壁の数によって影響され
ることをしめしている。(5) A large number of domain walls. It is necessary to increase the number of domain walls by having a dense microstructure inside the magnetic film. The equation below shows that eddy current loss is affected by the number of domain walls.
(6)磁気異方性が小さいこと。回転磁化過程を仮定し
た初透磁率は(近角、“強磁性体の物理°”裳華房)
K、の小さいものは透磁率が高い。急速冷却法のように
高速度で引き出す方法では、内部応力によって磁気異法
性を生じ好ましくない。(6) Small magnetic anisotropy. The initial magnetic permeability assuming a rotational magnetization process is (near angle, "Physics of Ferromagnetic Materials" Shokabo) The smaller K, the higher the magnetic permeability. A method of drawing at a high speed, such as a rapid cooling method, is undesirable because magnetic anisotropy occurs due to internal stress.
本発明者らは以上の条件を同時に満足することによって
、電気抵抗率が高く、且つ高周波高い透磁率が得られる
ことを見出し本発明に到達した。The present inventors have discovered that by simultaneously satisfying the above conditions, high electrical resistivity and high magnetic permeability at high frequencies can be obtained, and have arrived at the present invention.
以下本発明を具体的に実現するための手段について述べ
るが、必ずしも以下の手段による必要はなく、上記条件
を満足する手段であれば如何なる手段を用いてもよい。Means for specifically realizing the present invention will be described below, but it is not necessarily necessary to use the following means, and any means may be used as long as it satisfies the above conditions.
本発明の磁性薄膜はめっき法によるのが適している。め
っき法によって単体状の薄膜を得るためには、表面を0
.1μ以下の表面粗さに研磨した電極を用いることが好
ましい。このような電極を用いることによって、非常に
表面の平滑な膜を電解析出させることができる。また、
合金薄膜を容易に電極から剥離することができる。一方
、銅や鉄等の電気伝導体、金属酸化物等の半導体等基板
上にめっきを行ない、本発明の磁性薄膜を形成し基板と
共に一体として用いる場合に於ては、基板の表面は出来
るだけ平滑なものが好ましい。めっき法によって非晶質
合金を析出させる技術は特開昭52−140403号、
同55−164092号、及び同60−33382号公
報などに公知であり、金属と共に半金属を析出させると
か、パルス電圧を用いた高過電圧下で析出させるなどの
手法による。電解析出した非晶質合金は軟磁気特性に優
れたものでなければならない。磁性材料の軟磁気特性は
磁歪の小さいものが優れる。鉄−コバルト系は飽和磁束
密度が高く、原子数比でコバルト90%以上のものは磁
歪が非常に小さい。特にコバルト94%のときは磁歪定
数がほぼゼロとなるのでこの原子数比のものを電解析出
させることが好ましい。非晶質状態を安定化するために
半金属元素を共析させる必要がある。めっき法によって
容易に共析できる半金属元素はP(リン)であり、めっ
き膜中に亜リン酸、又は亜リン酸塩又はこれらの混合物
、或いは次亜リン酸又は次亜リン酸塩を用いることが好
ましい。特に、亜リン酸又は亜リン酸塩を用いれば、製
膜性が非常に良好で柔軟性に冨んだ箔が得られる。めっ
き法であるから、膜厚のコントロールは電解時間によっ
て容易に可能である。上記亜リン酸又は亜リン酸塩を用
いれば製膜性が良いことから極めて薄い膜が容易に得ら
れ、2−以下でも可能である。The magnetic thin film of the present invention is suitably formed by plating. In order to obtain a single thin film by plating, the surface must be
.. It is preferable to use an electrode polished to a surface roughness of 1 μm or less. By using such an electrode, a film with a very smooth surface can be electrolytically deposited. Also,
The alloy thin film can be easily peeled off from the electrode. On the other hand, when plating a substrate such as an electrical conductor such as copper or iron or a semiconductor such as a metal oxide, and forming the magnetic thin film of the present invention and using it integrally with the substrate, the surface of the substrate should be covered as much as possible. A smooth one is preferable. The technique of depositing an amorphous alloy by plating is disclosed in Japanese Patent Application Laid-open No. 140403/1983.
This method is known in Japanese Patent Publications No. 55-164092 and No. 60-33382, and involves methods such as depositing a metalloid together with a metal, or depositing under a high overvoltage using a pulse voltage. The electrolytically deposited amorphous alloy must have excellent soft magnetic properties. The soft magnetic properties of magnetic materials are better if they have lower magnetostriction. The iron-cobalt system has a high saturation magnetic flux density, and those containing 90% or more of cobalt in terms of atomic ratio have very low magnetostriction. In particular, when the cobalt content is 94%, the magnetostriction constant becomes almost zero, so it is preferable to electrolytically deposit a material having this atomic ratio. In order to stabilize the amorphous state, it is necessary to eutectoid metalloid elements. The metalloid element that can be easily eutectoided by the plating method is P (phosphorus), and phosphorous acid, phosphite, or a mixture thereof, or hypophosphorous acid or hypophosphite is used in the plating film. It is preferable. In particular, if phosphorous acid or phosphites are used, a foil with very good film-forming properties and high flexibility can be obtained. Since it is a plating method, the film thickness can be easily controlled by changing the electrolysis time. If the above-mentioned phosphorous acid or phosphite is used, a very thin film can be easily obtained because of its good film-forming property, and it is possible to obtain a film with a thickness of 2 or less.
Pの含分は5.0at%から30a t%までが好まし
い。The content of P is preferably from 5.0 at% to 30 at%.
(特願昭平1−263975号及び同1−263976
号明細書参照)
めっき法によれば、製造時に無理な外力などが加わるこ
とがないから、内部応力に起因する磁気異方性が生じな
い。極めて等方的な膜が得られる。(Patent Application No. 1-263975 and No. 1-263976
According to the plating method, no excessive external force is applied during manufacturing, so magnetic anisotropy due to internal stress does not occur. A highly isotropic film is obtained.
一方、めっき方による合金析出過程を考察すると、電解
直後に多数の原子状の核が形成され、それを中心に合金
の析出が進行してゆく。このことから、めっき膜中には
緻密で微細なモルフォロジーが形成されていることにな
る。急速冷却法の非晶質合金は、溶融した液体状態が固
化したものであるから、このような構造をもたない。め
っき法による緻密で微細なモルフォロジーが磁壁の数を
増加させる。以下、本発明を実施するための具体例とし
てめっき法について説明する。On the other hand, when considering the alloy precipitation process due to the plating method, a large number of atomic nuclei are formed immediately after electrolysis, and alloy precipitation progresses around these nuclei. This indicates that a dense and fine morphology is formed in the plating film. Amorphous alloys produced by the rapid cooling method do not have such a structure because they are solidified from a molten liquid state. The dense and fine morphology created by the plating method increases the number of domain walls. Hereinafter, a plating method will be explained as a specific example for carrying out the present invention.
及ユ主条止
少なくとも2価のコバルトイオンと2価の鉄イオンを含
むめっき浴において、リン供給源として亜リン酸及び/
又は亜リン酸塩を含み、且つ還元剤又は錯化剤の少なく
とも1種を含む酸性めっき浴にて電析する。更に詳しく
述べるならば、2価コバルトイオンは、硫酸コバルト、
塩化コバルト、スルファミン酸コバルト、硝酸コバルト
等いずれのものでも2価コバルトイオンを供給するもの
であればよく、また、これらの塩の混合物でもよい。In a plating bath containing at least divalent cobalt ions and divalent iron ions, phosphorous acid and/or
Alternatively, electrodeposition is performed in an acidic plating bath containing phosphite and at least one of a reducing agent and a complexing agent. To explain in more detail, divalent cobalt ions include cobalt sulfate,
Cobalt chloride, cobalt sulfamate, cobalt nitrate, and the like may be used as long as they supply divalent cobalt ions, and mixtures of these salts may also be used.
この塩が1/3−2モル/1の濃度であることが好まし
い。2価の鉄イオンについては、硫酸鉄、塩化鉄、スル
ファミン酸鉄、硝酸鉄等いずれでもよく、またこれらの
塩の混合物でもよい。濃度は、0.01〜0.2モル/
1が良いが、目的の合金組成を析出させるには、コバル
トイオンと鉄イオンの濃度比を調整する。リン供給源で
ある亜リン酸及び/又は亜リン酸塩は0601〜5.0
モル/1において非晶質合金箔の形成が可能である。こ
こで、製膜性良い非晶質合金薄膜を得るためには、還元
剤又は錯化剤の少なくとも1種を添加する必要があり、
還元剤としてヒドロキノン、ヒドラジン、ジメチルアミ
ンボラン、はう水素化ナトリウム等を用い、錯化剤とし
てクエン酸、ヒドロキシカルボン酸、EDTA、グルコ
ン酸等が挙げられる。上記めっき浴をpHが1.0〜2
.0に調整し、温度40°C以上好ましくは60°C以
上で電解めっきを行う。電流密度は、通常0.005〜
1.0 A / caがよい。特に合金中の半金属元素
の量を増やしたいときは、リン供給源である亜リン酸及
び/又は亜リン酸塩の濃度を増加すると同時に、電流密
度を低くする。、電流密度は0.05A/C111以下
、好ましくは0.02A/Cl11以下が良い。非晶質
合金薄膜として取り出すには、表面を0.1 s以下の
表面粗さに研磨した作用電極を用いる。Preferably, the salt is in a concentration of 1/3-2 mol/1. The divalent iron ion may be any of iron sulfate, iron chloride, iron sulfamate, iron nitrate, etc., or a mixture of these salts. The concentration is 0.01-0.2 mol/
1 is good, but in order to precipitate the desired alloy composition, the concentration ratio of cobalt ions and iron ions should be adjusted. Phosphorous acid and/or phosphite which is a phosphorus source is 0601-5.0
Formation of an amorphous alloy foil is possible at mol/1. Here, in order to obtain an amorphous alloy thin film with good film formability, it is necessary to add at least one kind of reducing agent or complexing agent,
Hydroquinone, hydrazine, dimethylamine borane, sodium hydride, etc. are used as the reducing agent, and citric acid, hydroxycarboxylic acid, EDTA, gluconic acid, etc. are used as the complexing agent. The above plating bath has a pH of 1.0 to 2.
.. 0, and electrolytic plating is performed at a temperature of 40°C or higher, preferably 60°C or higher. Current density is usually 0.005~
1.0 A/ca is good. Particularly when it is desired to increase the amount of metalloid elements in the alloy, the concentration of phosphorous acid and/or phosphite, which is a phosphorus source, is increased and at the same time the current density is lowered. The current density is preferably 0.05 A/Cl11 or less, preferably 0.02 A/Cl11 or less. To extract the amorphous alloy thin film, a working electrode whose surface is polished to a surface roughness of 0.1 s or less is used.
以下、実施例によって更に詳しく説明する。The present invention will be explained in more detail below using examples.
〈実施例〉
造檻蓬腫へ色止製
塩化鉄(II)11.9g/j!、硫酸コバルト(II
)264.3 g / l、亜リン酸164g/f
(2mol /l)、はう酸6.2g/lおよびヒドロ
キノン(還元剤)0、2 g / lを含有する水溶液
をpH1,3に調整し、電流密度0.05A/cffl
にて電析を行った。電析時間は50秒で厚さは1μであ
った。これを電極から剥離したが、ピンホールもなく柔
軟性に優れた箔が得られた。この時用いた電極は、表面
粗さが0.1μまで研磨したステンレス板を用いた。X
線回折の結果から結晶にもとすく回折ピークがなく非晶
質であることがわかった。また、ICP発光分析装置(
日本シシャーレル・アッシュ製ICMP−575MK型
)によって定量分析した結果、原子数比でFe: Co
: P=5 ニア5:20 (at%)の結果を得た。<Example> Iron chloride (II) 11.9 g/j as a color stopper for caged polygonal tumors! , cobalt sulfate (II)
) 264.3 g/l, phosphorous acid 164 g/f
(2 mol/l), an aqueous solution containing 6.2 g/l of halonic acid and 0.2 g/l of hydroquinone (reducing agent) was adjusted to pH 1.3, and the current density was 0.05 A/cffl.
Electrodeposition was performed at The electrodeposition time was 50 seconds and the thickness was 1 μm. When this was peeled off from the electrode, a highly flexible foil with no pinholes was obtained. The electrode used at this time was a stainless steel plate polished to a surface roughness of 0.1 μm. X
Line diffraction results revealed that the crystals had no diffraction peaks and were amorphous. In addition, ICP emission spectrometer (
As a result of quantitative analysis using ICMP-575MK (manufactured by Nippon Shisharel Ash), the atomic ratio was Fe: Co.
: P=5 Near 5:20 (at%) result was obtained.
この時の鉄およびコバルトの含有原子数比は約6:94
であった。At this time, the atomic ratio of iron and cobalt is approximately 6:94.
Met.
この試料の触針法による表面の粗さを第2図(b)に示
す。第2図(a)に比べ非常に平滑である。The surface roughness of this sample measured by the stylus method is shown in FIG. 2(b). It is much smoother than in FIG. 2(a).
〈比較例〉 本発明と急速冷却法による非晶質合金とを比較した。<Comparative example> A comparison was made between the present invention and an amorphous alloy produced by a rapid cooling method.
比較試料B:日本非晶質合金■製 METGLAS@2
605CO比較試料C:日本非晶質合金■製 METG
LAS” 2714A(厚さは、いずれも25ハである
)
皿透迫圭坐明定
磁性薄膜A及び比較試料B、Cの磁性薄膜を幅5Inf
flのテープ状に切断し、片面にアルミナ粉末(1−粒
径)を有機溶剤に分散させ塗布した。その磁性薄膜を、
外径15閣φ、長さ5m+n、厚さII]III+の石
英管に巻回し、窒素雰囲気中、300″Cで焼鈍した。Comparative sample B: METGLAS@2 manufactured by Nippon Amorphous Alloy ■
605CO comparative sample C: METG made by Japan Amorphous Alloy ■
LAS" 2714A (thickness is 25mm in both cases) Disc transparent Keizaaki constant magnetic thin film A and comparative samples B and C magnetic thin films with a width of 5Inf
It was cut into a tape shape of fl and coated with alumina powder (1-particle size) dispersed in an organic solvent on one side. The magnetic thin film
It was wound around a quartz tube with an outer diameter of 15 mm, a length of 5 m+n, and a thickness of II]III+, and annealed at 300''C in a nitrogen atmosphere.
この石英管に0.511Imφのエナメル線を20ター
ン巻き付けた。横河・ヒユーレットバラカード■製 4
275A型マルチ・フリケンシ LCRメータによって
インダクタンス、及び抵抗を測定し、下記の式によって
初透磁率、tanδを求めた。但し、周波数はl0K)
Iz −10MHzで、励磁電流を0.75mA(4w
oe換算)で測定した。An enameled wire of 0.511 Imφ was wound around this quartz tube for 20 turns. Made by Yokogawa Heuret Bara Card ■ 4
Inductance and resistance were measured using a 275A multi-frequency LCR meter, and initial permeability and tan δ were determined using the following formula. However, the frequency is l0K)
At Iz -10MHz, the excitation current is 0.75mA (4w
OE conversion).
L−fi・109
ここでLはインダクタンス(H)、ωは2πf(f:周
波数)、lは平均磁路長(cm)、nは巻線回数、Sは
磁性膜総断面積(c+fl)、Rは測定された実効抵抗
(Ω)、Roは巻線の抵抗(Ω)である。L-fi・109 Here, L is the inductance (H), ω is 2πf (f: frequency), l is the average magnetic path length (cm), n is the number of windings, S is the total cross-sectional area of the magnetic film (c+fl), R is the measured effective resistance (Ω) and Ro is the resistance of the winding (Ω).
結果を第3図に初透磁率の周波数依存性、第4図にta
nδの周波数依存性として示す。比較試料B、Cは低い
周波数から初透磁率の低下がみられるが、本発明による
磁性薄膜は低下がみられない。The results are shown in Fig. 3 and the frequency dependence of the initial permeability, and Fig. 4 shows the ta
It is shown as frequency dependence of nδ. Comparative samples B and C show a decrease in initial magnetic permeability starting from low frequencies, but no decrease is observed in the magnetic thin film according to the present invention.
また、本発明の磁性薄膜はtanδの値が小さく、磁気
損失の少ないものであることがわかる。Further, it can be seen that the magnetic thin film of the present invention has a small value of tan δ and has little magnetic loss.
里見藍抜里生星主
三菱油化■製MCP−TESTEREP型を用い4端子
で電気抵抗率を測定した。尚、比較用に厚さ20μΦ銅
箔も測定した。結果を下表に示す。本発明の磁性薄膜は
銅箔に比べ約2桁近く電気抵抗率が高く、高周波での渦
電流を充分軽減できる。Electrical resistivity was measured with four terminals using MCP-TESTEREP model manufactured by Ai Satomi and Hoshinobu Mitsubishi Yuka. For comparison, a copper foil with a thickness of 20 μΦ was also measured. The results are shown in the table below. The magnetic thin film of the present invention has an electrical resistivity nearly two orders of magnitude higher than that of copper foil, and can sufficiently reduce eddy currents at high frequencies.
(表)
[発明の効果]
本発明によれば、高周波での高い透磁率を有し、かつ電
気抵抗率が高くうず電流損失の少ない、磁性材料が提供
される。(Table) [Effects of the Invention] According to the present invention, a magnetic material is provided that has high magnetic permeability at high frequencies, high electrical resistivity, and low eddy current loss.
第1図は市販磁性材料の比透磁率の周波数依存性を示す
グラフ図、第2図(a)は急速冷却法(比較試料B)の
表面粗さ、第2図(b)は磁性薄膜Aの表面粗さをそれ
ぞれ示す図、第3図は初透磁率の周波数依存性を示すグ
ラフ図、第4図はtanδの周波数依存性を示すグラフ
図である。Figure 1 is a graph showing the frequency dependence of relative magnetic permeability of commercially available magnetic materials, Figure 2 (a) is the surface roughness of the rapid cooling method (comparative sample B), and Figure 2 (b) is the magnetic thin film A. 3 is a graph showing the frequency dependence of initial magnetic permeability, and FIG. 4 is a graph showing the frequency dependence of tan δ.
Claims (1)
常温における電気抵抗率が50μΩ・cm以上であり、
且つ初透磁率μと励磁周波数f(Hz)との間に下記式
を満足する高いμの存在することを特徴とする高周波磁
気特性に良好な磁性薄膜。 log_1_0μ>8.9−0.9log_1_0f1. An amorphous alloy whose main components are iron and cobalt,
The electrical resistivity at room temperature is 50 μΩ·cm or more,
A magnetic thin film having good high frequency magnetic properties, characterized in that there exists a high μ between the initial magnetic permeability μ and the excitation frequency f (Hz) that satisfies the following formula. log_1_0μ>8.9-0.9log_1_0f
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33872689A JPH03201416A (en) | 1989-12-28 | 1989-12-28 | magnetic thin film |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33872689A JPH03201416A (en) | 1989-12-28 | 1989-12-28 | magnetic thin film |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH03201416A true JPH03201416A (en) | 1991-09-03 |
Family
ID=18320888
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33872689A Pending JPH03201416A (en) | 1989-12-28 | 1989-12-28 | magnetic thin film |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH03201416A (en) |
-
1989
- 1989-12-28 JP JP33872689A patent/JPH03201416A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5656101A (en) | Soft magnetic alloy thin film with nitrogen-based amorphous phase | |
| CN1043670C (en) | Nanocrystalline alloy having excellent pulse attenuation characteristics, method of producing the same, choke coil, and noise filter | |
| US5435903A (en) | Process for the electrodeposition of an amorphous cobalt-iron-phosphorus alloy | |
| US5587026A (en) | Ferromagnetic film | |
| US10002919B2 (en) | High resistivity iron-based, thermally stable magnetic material for on-chip integrated inductors | |
| GB2536814A (en) | High resistivity soft magnetic material for miniaturized power converter | |
| JPH06346202A (en) | Soft magnetic alloy, soft magnetic thin film and multilayer film | |
| JP3201892B2 (en) | Soft magnetic thin film and magnetic inductive MR head using the same | |
| JP2950912B2 (en) | Soft magnetic thin film | |
| Chow et al. | Magnetic and hardness properties of nanostructured Ni–Co films deposited by a nonaqueous electroless method | |
| KR100394993B1 (en) | FeCoNiN Based Soft Magnetic Thin Films Compositions | |
| JP3102505B2 (en) | Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head | |
| JPH0744108B2 (en) | Soft magnetic thin film | |
| JPH03201416A (en) | magnetic thin film | |
| JPH01241200A (en) | Electromagnetic shielding material | |
| JP2950917B2 (en) | Soft magnetic thin film | |
| JPH0696949A (en) | Manufacture of magnetic thin film | |
| Uehara | Electrodeposited nickel-iron thin films | |
| JP3810881B2 (en) | High frequency soft magnetic film | |
| JPH0927413A (en) | Choke coil magnetic core and manufacture thereof | |
| JP2001220656A (en) | Iron-zirconium-boron-silver soft magnetic material and method for producing thin film | |
| JP2950921B2 (en) | Soft magnetic thin film | |
| KR0153174B1 (en) | High Permeability Fe-Al Soft Magnetic Alloys | |
| KR100826661B1 (en) | R- フ e-B thin film magnet and manufacturing method thereof | |
| JPH08236349A (en) | Soft magnetic thin film and thin film magnetic device formed thereof |