[go: up one dir, main page]

JPH03221130A - Fluorine separation membrane - Google Patents

Fluorine separation membrane

Info

Publication number
JPH03221130A
JPH03221130A JP29927490A JP29927490A JPH03221130A JP H03221130 A JPH03221130 A JP H03221130A JP 29927490 A JP29927490 A JP 29927490A JP 29927490 A JP29927490 A JP 29927490A JP H03221130 A JPH03221130 A JP H03221130A
Authority
JP
Japan
Prior art keywords
oxygen
separation
separation membrane
membrane
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29927490A
Other languages
Japanese (ja)
Other versions
JP2542533B2 (en
Inventor
Teruhiko Sugimori
輝彦 杉森
Takashi Yamamoto
隆 山本
Kunihiro Aoki
青木 邦廣
Shiruyoshi Matsumoto
松本 鶴義
Hiroaki Onishi
宏明 大西
Hiroshi Takahashi
洋 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of JPH03221130A publication Critical patent/JPH03221130A/en
Application granted granted Critical
Publication of JP2542533B2 publication Critical patent/JP2542533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide good oxygen-permeability, heat resistance, and chemical resistance by forming a separation membrane using a copolymer of perfluoro-(2,2-dimethyl-1,3-dioxole) and at least one kind of ethylenic unsaturated monomers. CONSTITUTION:A separation membrane is prepared using a copolymer of perfluoro-(2,2-dimethyl-1,3-dioxole) 'a first component' and at least one kind of ethylenic unsaturated monomers by a melting method, a solution method, etc. The obtained membrane is preferable to have at least oxygen permeability 1X10<-5>cm<3>/cm<2>.sec.cmHg at air permeating time in a temperature range from room temperature to 200 deg.C and at least 1.5 oxygen/nitrogen separation coefficient. The content of the first component of the copolymer is preferably at least about 50 mole % for improving the heat resistance. The obtained separation membrane has high gas permeability coefficient and separation coefficient in separation of high temperature gases.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はフッ素系高分子からなる。混合気体の分離等に
適した分離膜に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention comprises a fluoropolymer. This invention relates to a separation membrane suitable for separating mixed gases, etc.

〈従来技術〉 近年、流体混合物の分離、精製を、蒸留、深冷等の相変
化を伴うエネルギー多消費プロセスに代えて、選択透過
性模によつ行なうことが積極的に検討されている。
<Prior Art> In recent years, active consideration has been given to separating and purifying fluid mixtures using permselective models instead of energy-intensive processes involving phase changes such as distillation and deep cooling.

流体混合物の膜分離、精製プロセスのうち、工業的規模
で実用化されてhるのは、毎水の淡水化、工場廃水の処
理などの液体−液体外離すよび液体一固体分離が主であ
って、気億−気体の分離についてはほとんどなされてい
ない。ガスの膜分離が実用化され難い理由としては、選
択透過性が小さいこと、すなわち特定の気体を選択的に
通し、他の気体をほとんど通さないという膜がない為、
高純度′7)気体を得る為VCは、膜分離を何回か繰り
返す多段方式を採用する必要があり、その為に装fが大
型になることと、透過量が小さい為、大量の気体を処理
し難いことの2点が主としてあげられる。
Among membrane separation and purification processes for fluid mixtures, the ones that have been put into practical use on an industrial scale are mainly liquid-liquid separation and liquid-solid separation, such as in water desalination and industrial wastewater treatment. However, very little work has been done on gas-gas separation. The reason why gas membrane separation is difficult to put into practical use is that there is no membrane that has low selective permselectivity, that is, it selectively allows certain gases to pass through while almost completely blocking other gases.
In order to obtain high purity '7) gas, VC needs to adopt a multi-stage method in which membrane separation is repeated several times, which requires a large device and a small amount of permeation, so a large amount of gas must be used. There are two main points that are difficult to handle.

しかし、選択透過の点からみれば気体の最終も 用途として必ずしも高純度の気体供必要としない分子F
も多い。例えば酸素の場合、高温送風用や燃焼補助用等
の用途では畜純度酸素Fi必ずしも・必要としない。そ
ればかりか、X純度唆素は炉の損傷や火災の危険等、か
えって不都合な場合もある。これら用途には高い選択性
よりも大量の電本金生産する為の透過速度会よび膜を含
めた分N装置の耐久性、特に耐熱安定性や耐薬品性が重
要になってくる。
However, from the point of view of selective permeation, the final use of gas does not necessarily require the supply of high-purity gas.
There are also many. For example, in the case of oxygen, high purity oxygen Fi is not necessarily required in applications such as high-temperature ventilation and combustion assistance. Not only that, X-purity stimulants may be inconvenient, such as damage to the furnace and the risk of fire. For these applications, the permeation rate for producing a large amount of electrolyte metal and the durability of the nitrogen equipment including the membrane, especially heat stability and chemical resistance, are more important than high selectivity.

又、ボイラー用水やN純水用水等から溶存酸素を除去す
る場合は酸素を透過し易くかつ水蒸気を透過しにぐい膜
であることが必要となる。
Further, when removing dissolved oxygen from boiler water, N pure water, etc., it is necessary to use a membrane that is easily permeable to oxygen and difficult to permeate water vapor.

従来、低純度ないし中間純度の酸素富化空気を大量に得
る為の膜材料としては、オルガノシロキサンーボリカー
ボ不−ト共重合体、あるhはポリ(4−メチルペンテン
−1)が知られている。
Conventionally, organosiloxane-polycarbonate copolymer, poly(4-methylpentene-1), has been known as a membrane material for obtaining a large amount of oxygen-enriched air of low to intermediate purity. ing.

又、バーフルオロ−(2,2−ジメチル−1,3−ジオ
キソール)とエチレン系不飽和単量体からなるフッ素系
共重合体は米国特許第3978030号公報や特開昭5
8−38707号公報に開示されている。
In addition, fluorine-based copolymers consisting of barfluoro-(2,2-dimethyl-1,3-dioxole) and ethylenically unsaturated monomers are disclosed in U.S. Pat.
It is disclosed in Japanese Patent No. 8-38707.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながらオルガノシロキサン−ポリカーボネートは
酸素透過係数は1o−7〜10−’−・α7国2・8Q
C・tx、Hgと大きいものの耐薬品性に乏しく汚染空
気あるいは減圧又は加圧する為の油入りポンプ又はコン
デンサーの油により劣化する恐れがある。又、ポリ(4
−メチルペンテン−1)は選択性が5〜4と大きいもの
の酸素透過係数が1 (1’ 〜10−”am” ・e
xlon” ・sec ・3Hgと低い為大面積あるい
#i梶薄Mにする必要がある。
However, the oxygen permeability coefficient of organosiloxane-polycarbonate is 1o-7 to 10-'-・α7 country 2.8Q
Although it has large C, tx, and Hg, it has poor chemical resistance and may be deteriorated by contaminated air, oil-filled pumps for depressurizing or pressurizing, or oil from condensers. Also, poly(4
-Methylpentene-1) has a high selectivity of 5 to 4, but an oxygen permeability coefficient of 1 (1' to 10-"am" ・e
xlon” ・sec ・3Hg, which is low, so it needs to be large area or #i/thin M.

すなわち高い酸素透過性能、耐熱性と耐薬品性を充分に
具備し九Hは知られてないのが現状である。
That is, at present, 9H is not known to have sufficient oxygen permeability, heat resistance, and chemical resistance.

又、ポリオルガノシロキサン系やポリ(4−メチルペン
テン−1)糸のMu水蒸気の透過係数が大きlAため、
これらの膜を用いて減圧法によりボイラー用水等から脱
酸素を行なう場合は動力コストの増大や、二次側での水
の凝縮が問題となる。
In addition, since the Mu water vapor permeability coefficient of polyorganosiloxane-based and poly(4-methylpentene-1) yarns is large lA,
When these membranes are used to deoxidize boiler water or the like by a reduced pressure method, problems arise such as increased power cost and water condensation on the secondary side.

そして、前記公報に)いてフッ素系共重合体は化学反応
器の窓等としての用途が示されているのみであって分離
、模への適用を示唆する記載はない。
In the above-mentioned publication, the fluorine-based copolymer is only shown to be used as a window for a chemical reactor, and there is no mention of its application to separation or modeling.

くs項を解決するための手段〉 *発明者らは酸素透過性に優れて訃りかつ耐熱性・@薬
品性を有する気体弁aSを開発すべく鋭意検討し本発明
を完成した。
Means for Solving Problem S> *The inventors have completed the present invention after intensive study to develop a gas valve aS that has excellent oxygen permeability, heat resistance, and chemical resistance.

すなわち本発明の要旨はバーフルオロ−(2゜2−ジメ
チル−1,3−ジオキソール)と少なくとも1種のエチ
レン系不飽和単量体の共重合体からなるガス分離膜にあ
る。
That is, the gist of the present invention is a gas separation membrane comprising a copolymer of perfluoro-(2°2-dimethyl-1,3-dioxole) and at least one ethylenically unsaturated monomer.

本発明の分離WK用いられる共重合体はバーフルオロ−
(2,2−ジメチル−1,5−ジオキソル)(以下「第
1成分」という)を構成成分とするが、この第1成分の
環構造に帰因して共重合体は良好な耐熱性を示すものと
なっている。
The copolymer used in the separation WK of the present invention is perfluoro-
The copolymer has good heat resistance due to the ring structure of the first component. It is meant to show.

共重合体の池の構成成分である少なくとも一個のエチレ
ン系不飽和単量体(以下「第2成分」という)にはオレ
フィン、ビニルIt体やバフルオロ蛍量体が含1れる。
At least one ethylenically unsaturated monomer (hereinafter referred to as "second component") which is a constituent component of the copolymer pond includes olefins, vinyl It isomers, and bafluorofluorophores.

オレフイントシてハ、エチレン、1−ブテン、インブチ
レン、トリフルオロプロペン及びトリフルオロエチレン
等が挙げられ、ビニル凰量体としては、弗化ビニル、弗
化ビニリデン、クロロトリフルオロエチレン及びテトラ
フルオロエチレン等が挙げられる。又、パーフルオロ単
量体は、異なった化学構造をもつものでもよく、例jc
−td、パーフルオロプロペン、パーフルオロ(1,3
−ジオキソール)、パーフルオロ(アルキルビニルエー
テル)、メチル−3−[:1−(ジフルオロ−〔(トリ
フルオロエチレン)オキシコメチル) −1,2,2,
2−テトラフルオロエトキシ〕−2,2,3,3−テト
ラフルオロプロパノエート、CF2 =CFOCF2 
CFOCF20F2 C00CH3CF。
Examples of olefins include ethylene, 1-butene, imbutylene, trifluoropropene, and trifluoroethylene, and examples of vinyl polymers include vinyl fluoride, vinylidene fluoride, chlorotrifluoroethylene, and tetrafluoroethylene. can be mentioned. Also, the perfluoromonomer may have a different chemical structure, e.g.
-td, perfluoropropene, perfluoro(1,3
-dioxole), perfluoro(alkyl vinyl ether), methyl-3-[:1-(difluoro-[(trifluoroethylene)oxycomethyl)-1,2,2,
2-tetrafluoroethoxy]-2,2,3,3-tetrafluoropropanoate, CF2 = CFOCF2
CFOCF20F2 C00CH3CF.

及び2−C1−(ジフルオロ−(: () +1フルオ
ロエチニル)オキン〕メチル)−t2.2.2−テトラ
フルオロエトキシ) −1,1,2,2−テトラフルオ
ロエタンスルフォニルフルオライドCF2−C?OCF
!cFocy、 CF2 S02 FC=。
and 2-C1-(difluoro-(: () +1fluoroethynyl)oxyne]methyl)-t2.2.2-tetrafluoroethoxy) -1,1,2,2-tetrafluoroethanesulfonyl fluoride CF2-C? OCF
! cFocy, CF2 S02 FC=.

等が*げしれる。Etc. are *excited.

共重合体の構成成分としてこれらの第2成分は一種でも
よく二種以上であってもよい。又、分離膜の耐熱安定性
や安価に供給できる点等を考慮すると第2威分はテトラ
フルオロエチレンであることが好!しい。
As a constituent component of the copolymer, these second components may be used alone or in combination of two or more. Also, considering the heat resistance stability of the separation membrane and the fact that it can be supplied at low cost, it is preferable that the second component is tetrafluoroethylene! Yes.

共重合体の構成成分の組成比は特に限定されないが、耐
熱性の点から第1成分が50モル4以上であることが好
1しく、75モル参以上であることがより好ましい。
The composition ratio of the constituent components of the copolymer is not particularly limited, but from the viewpoint of heat resistance, the first component is preferably 50 moles or more, and more preferably 75 moles or more.

本発明の分離膜は基本的には前記共重合体のみからなる
が、機械的強度の向上等を目的として池の重合体、オリ
ゴマーや低分量の添加剤1を数N電嘔含有させたもので
あってもよい。
The separation membrane of the present invention basically consists of only the above-mentioned copolymer, but it contains several N of polymers, oligomers, and a low amount of additive 1 for the purpose of improving mechanical strength. It may be.

本発明の分11I模は実質的に非多孔質な襖であり、平
嗅、管状膜や中空糸膜O形gをとることができも。又、
多孔質支持体と複合化した複合膜であってもよい。
The part 11I model of the present invention is a substantially non-porous sliding door, and can take the form of a flat membrane, a tubular membrane, or a hollow fiber membrane. or,
It may also be a composite membrane combined with a porous support.

本発明の分離膜は常温から200℃の温度範囲にかける
空気(C対して智素透過係数が通常I Q−”:; 1
0−’cyd ・tx/czr?−QAC・c=++H
g ノオ−f−の値を、又、酸素/窒素の分xgA数が
t 51板上の値を有している。分離膜の喚匣は限定さ
れないが3 Q urn 以下であれば前記温度範囲に
かいて酸素透過速1度を10−’ cpnj/cm2・
ssc ・tym Hg以上のものとすることが可能で
ある。IIIlidj5am以下であることがより好1
しぐ、10重m以下であることが特に好ましい。膜厚が
1つμ泗以下乃至数μm以下であれば前記温度範囲にし
いて酸素透過速度を10= cm”/>2・8’3C・
倒ヨg以上のものとすることが可能でちる。
The separation membrane of the present invention is exposed to a temperature range from room temperature to 200°C, and the permeability coefficient of hydrogen permeability to air (C) is usually IQ-'': 1
0-'cyd ・tx/czr? -QAC・c=++H
The value of g no-f- and the oxygen/nitrogen fraction x gA number have values on the t51 plate. The capacity of the separation membrane is not limited, but if it is 3 Qurn or less, the oxygen permeation rate should be 10-' cpnj/cm2 in the above temperature range.
It is possible to make it more than ssc ・tym Hg. IIIlidj It is more preferable that it is 5am or less1
It is particularly preferable that the weight is 10 weight meters or less. If the film thickness is less than one μm or less than several μm, the temperature range is set to the above temperature range, and the oxygen permeation rate is set to 10=cm”/>2・8'3C・
It is possible to make it more than a knockdown.

又、水中から溶存酸素を除去すること金目的とする膜の
場合は水域気透過係数’oH26と酸素透過係数PO,
との比pg2o/?02が15以下であることが好1し
く、10以下であることがよつ好ましい。又、この場合
PO,ばI X i O−’α3・eya/lym2・
9QC−cyr Hcr、以上であればよい。
In addition, in the case of a membrane whose purpose is to remove dissolved oxygen from water, the aquatic air permeability coefficient 'oH26 and the oxygen permeability coefficient PO,
The ratio with pg2o/? 02 is preferably 15 or less, more preferably 10 or less. Also, in this case PO, I X i O-'α3・eya/lym2・
9QC-cyr Hcr or more is sufficient.

本発明の5)11!模は溶融法や溶液法等の公知の製膜
法によって製造可能であり、溶液法としては流延法、水
面展開法、スピンコード法等を採用することができる。
5)11 of the present invention! The pattern can be manufactured by a known film forming method such as a melting method or a solution method, and as the solution method, a casting method, a water surface spreading method, a spin cord method, etc. can be adopted.

又、溶液法にかいて共重合体を溶解させる溶媒としては
パーフルオロ(2−プチルテトラヒドロフラン)等を挙
げることができる。
Further, examples of the solvent for dissolving the copolymer in the solution method include perfluoro(2-butyltetrahydrofuran).

複合膜と干る場合は多孔質支持体の表面に薄5wの分離
膜をflFilする方失や多孔質支持体上にポリマー溶
液を塗布する方法等が採用可能である。
When using a composite membrane, it is possible to apply a thin 5W separation membrane on the surface of a porous support, or to apply a polymer solution onto the porous support.

〔実施例〕〔Example〕

以下実施例によって本発明を更に説明する。 The present invention will be further explained below with reference to Examples.

尚、実施例に)ける気体の透過速度の単位は(tys3
/lym’ ・5ee−cnxFi g)であり、気体
の透過係数の単位は〔c1M3・備/備2・aec・m
l珈〕である。
In addition, the unit of gas permeation rate in (Example) is (tys3
/lym' ・5ee-cnxFig), and the unit of gas permeability coefficient is [c1M3・Bi/Bi2・aec・m
It is 1 coffee.

実施例1 パーフルオロー(2,2−ツメチル−1,3−ジオキソ
ール)72そル4、テトラフルオロエチレン28モル彊
とからなる弗素系共重合体15重t4を、パーフルオロ
(2−ブチルテトラヒドロフラン)〔スリーエム社製、
商品名 フロリナー)FC−75185重量名に溶解さ
せて製膜用の重合体溶液を調製した。
Example 1 A 15-polymer fluorine-based copolymer consisting of 72 moles of perfluoro(2,2-methyl-1,3-dioxole) and 28 moles of tetrafluoroethylene was mixed with perfluoro(2-butyltetrahydrofuran) [ Manufactured by 3M,
A polymer solution for film formation was prepared by dissolving it in FC-75185 (trade name: Floriner).

この重合体溶液を平滑なガラス板上にドクターナイフで
厚さ150μmに流延した後、150℃の雰囲気で約2
時間乾燥し、厚さ15 amの緻密な膜を得た。
This polymer solution was cast onto a smooth glass plate to a thickness of 150 μm using a doctor knife, and then cast in an atmosphere of 150°C for approximately 200 μm.
After drying for hours, a dense film with a thickness of 15 am was obtained.

続いて温度25℃に会いて、空気を原料ガスとしたガス
透An性を評価したところ、酸素透過速度QOxばl 
5 X 10−5cm”/cnx2・sea −mHg
であり、酸素/窒素の分離係数は2.7であった。
Next, when the temperature was 25℃ and the gas permeability was evaluated using air as the raw material gas, the oxygen permeation rate QOxbal
5 X 10-5cm”/cnx2・sea -mHg
The oxygen/nitrogen separation coefficient was 2.7.

このQolを膜厚1信当りの酸素透過速度(即ち酸素透
過係@POh)に換算するとa3XjO−’αゝ・備/
α2・39C・備dgであった。
Converting this Qol to the oxygen permeation rate per film thickness (that is, oxygen permeation coefficient @POh) is a3XjO−'αゝ・B/
It was α2・39C・Bidg.

又、この膜の引張り破断強度は370 kg/lx”、
破断伸度は12.54であった。
In addition, the tensile strength of this membrane is 370 kg/lx",
The elongation at break was 12.54.

実施例2 バーフルオロ−(2,2−ジメチル−1,3−ジオキン
ール)89モル参とテトラフルオロエチレン11モル憾
からなる共重合体8重量部をパーフルオロ(2−ブチル
テトラヒドロフラン)92重量部に溶解させ製膜用の重
合体溶液を得た。
Example 2 8 parts by weight of a copolymer consisting of 89 moles of perfluoro-(2,2-dimethyl-1,3-dioquinol) and 11 moles of tetrafluoroethylene were added to 92 parts by weight of perfluoro(2-butyltetrahydrofuran). A polymer solution for film formation was obtained by dissolving.

続いて実施例1と同様にして流延して厚さ10μmの緻
密な模を得た。この膜は第1表の酸素透過速度、分M係
数、機械的特性を示した。
Subsequently, it was cast in the same manner as in Example 1 to obtain a dense pattern with a thickness of 10 μm. This membrane exhibited the oxygen permeation rate, minute M coefficient, and mechanical properties shown in Table 1.

実施例3 バーフルオロ−(2,2−ジメチル−1,3−ジオキソ
ール)89モル4とテトラフルオロエチレン11そル傷
からなる共重合体6重量部とパフルオロボリエーテル(
ダイキン社製、デムナムS−200)2]it部をパー
フルオロ(2−プチルテトラヒドロフラン)92重量部
に溶解させ製膜用の重合体溶液を得た。
Example 3 6 parts by weight of a copolymer consisting of 89 moles of barfluoro-(2,2-dimethyl-1,3-dioxole) and 11 moles of tetrafluoroethylene and perfluorobolyether (
Demnum S-200) (manufactured by Daikin) was dissolved in 92 parts by weight of perfluoro(2-butyltetrahydrofuran) to obtain a polymer solution for film formation.

この重合体溶液を用いて実施例1とほぼ同様にして厚さ
10μmの緻密な膜を得た。この膜の特性を評価し第1
表に示した。
Using this polymer solution, a dense film with a thickness of 10 μm was obtained in substantially the same manner as in Example 1. The characteristics of this film were evaluated and the first
Shown in the table.

実施例4 バーフルオロ−(2,2−ジメチル−1,3−ジオキソ
ール)75モル%とテトラフルオロエチレン25モル憾
からなる共重合体5重量部をバーフルオロ−(2−ブチ
ルテトラヒドロフラン)95重量部に溶解させ製膜用の
重合体溶液を得た。
Example 4 5 parts by weight of a copolymer consisting of 75 mol% of barfluoro-(2,2-dimethyl-1,3-dioxole) and 25 mols of tetrafluoroethylene were mixed with 95 parts by weight of barfluoro-(2-butyltetrahydrofuran). A polymer solution for film formation was obtained.

この重合体溶液50 uLを水面上に滴下したところ液
滴位水面支持体上に拡がり円形状の極薄膜が得られた。
When 50 μL of this polymer solution was dropped onto the water surface, the droplet level spread on the water surface support to obtain a circular, extremely thin film.

この極薄膜2枚を平均孔径cL1μm1膜厚47μmの
ポリテトラフルオロエチレン製多孔質膜上にとりだし複
合膜を作成した。この複合膜について偏度25℃、12
0℃及び200℃に会いて空気の透過速度を測定したと
ころ酸素透過速度と分離係数は第2表の値を示した。
Two of these extremely thin films were placed on a polytetrafluoroethylene porous film having an average pore diameter cL of 1 μm and a film thickness of 47 μm to prepare a composite film. For this composite membrane, the polarization is 25℃, 12
When the air permeation rate was measured at 0°C and 200°C, the oxygen permeation rate and separation coefficient showed the values shown in Table 2.

実施例5 実施例4と同様にして得らhた複合M8枚を用いその各
々に対して、トルエン、塩化メチレン、ヘキサン、エタ
ノール、アセトン、ジメチルホルムアミド、ジメチルア
セトアミド又はジメチルホルホキンドの各有機溶剤の飽
和空気を通した後、酸素透過速度と分離係数を測定した
ところ、いずれの場合も性能の変化は認められなかった
Example 5 Using eight composite M sheets obtained in the same manner as in Example 4, each of them was treated with an organic solvent of toluene, methylene chloride, hexane, ethanol, acetone, dimethylformamide, dimethylacetamide, or dimethylformoquine. After passing through the saturated air, the oxygen permeation rate and separation coefficient were measured, and no change in performance was observed in either case.

実施例6 バーフルオロ−(2,2−ジメチル−1,5−ジオかソ
ール)70モル%、テトラフルオロエチレン30モル憾
からなる弗素系共重合体を270℃に加熱して得られた
プレスフィルムについて/夕O 気体の透過係数を測定したところ、PO2は喝追X 1
0−’   PN2ばtf> OX 1 n−’   
P’H20ばZ7X101であり、pol/PNtば2
.5、pEI、○/po。
Example 6 Press film obtained by heating a fluorine-based copolymer consisting of 70 mol% of barfluoro-(2,2-dimethyl-1,5-diokasol) and 30 mol of tetrafluoroethylene to 270°C About / Evening O When the gas permeability coefficient was measured, PO2 was 1.
0-'PN2battf> OX 1 n-'
P'H20 is Z7X101, and pol/PNt is 2
.. 5, pEI, ○/po.

は山5であった。was mountain 5.

実施@7 バーフルオロ−(2,2−ジメチル−1,3−ジオキン
ール)62モル%、テトラフル10エチレン38モル幅
とからなる共重合体5重責幅を/<−7s/オロー(2
−ブチルテトラヒドロフラン)〔スリーエム社製、商品
名  70リナートPC−75)955重量部溶解させ
て製膜用の重合体溶液を調製した。
Implementation@7 Copolymer consisting of 62 mol% barfluoro-(2,2-dimethyl-1,3-dioquinol) and 38 mol width of tetrafluor 10 ethylene.
-Butyltetrahydrofuran) (manufactured by 3M, trade name: 70 Linate PC-75) was dissolved in 955 parts by weight to prepare a polymer solution for film formation.

この重合体溶液50 utを水面上に滴下したところ、
液滴は水面支持体上に拡がり、円形状の極薄膜が得られ
た。この極薄膜5枚を平均孔径(11μm1膜厚50 
amのポリテトラフルオロエチレン製多孔質膜上に取り
出し、複合膜を作成した。この複合膜の気体透過係数P
O2、PN。
When 50 ut of this polymer solution was dropped onto the water surface,
The droplet spread on the water surface support, and an extremely thin circular film was obtained. The average pore size (11 μm 1 film thickness 50
A composite membrane was prepared by taking it out onto a polytetrafluoroethylene porous membrane made by Am. Gas permeability coefficient P of this composite membrane
O2, PN.

及びPH,0ばそれぞれj a 7 X 1O−944
X1 (r”及びI Z2 X 10−’であり、po
雪/PM、は2.4、PH雪o/po、は1.6であっ
た。
and PH, 0 respectively j a 7 X 1O-944
X1 (r'' and I Z2 X 10-', po
Snow/PM was 2.4, and PH snow o/po was 1.6.

比較例1 ポリ4−メチルベンゾン−1(m品名TPXMXOO1
、三井石油化学工業株式会社製)を260℃の温度で作
成したプレスフィルムを用いて、PO,、PN雪、 P
H鵞Qを測定したところ、PO。
Comparative Example 1 Poly 4-methylbenzone-1 (Product name TPXMXOO1
, manufactured by Mitsui Petrochemical Industries, Ltd.) at a temperature of 260°C.
When I measured H Goose Q, it was PO.

は19 X 10−10  PN、は4.8 X j 
D司’  PH宜Oば415 X 10−10であった
。即ち、po、 /Pwt Fi友9と奮いものの、P
H1O/PO,は22でありかなり大きい値であった。
is 19 X 10-10 PN, is 4.8 X j
The size of the controller was 415 x 10-10. That is, po, /Pwt Fi friend 9 and P
H1O/PO was 22, which was a fairly large value.

比較例2〜4 比較例1にかいて、ポリ4−メチルベンゾン−1の代わ
りに第1表に示す高分子を用いてフィルムを作成し、そ
のpo、、PM、、PH,Oを測定し第3表の結果を得
た。
Comparative Examples 2 to 4 In Comparative Example 1, a film was prepared using the polymer shown in Table 1 instead of poly-4-methylbenzone-1, and its po, PM, PH, and O were measured. The results shown in 3 tables were obtained.

/ / / 第 表 〔発明の効果〕 本発明の分4膜は耐熱性が優れて)つ高層気体の分離K
)いても優れた気体透過係数と分離係数を示すものであ
る。又、耐薬品性が優れてかり、特定のフッ素系溶剤に
は溶解するものの一般的な有4溶剤には侵されることが
なく、かつ耐アルカリ性、耐酸性、耐酸化性に優れてい
るため広範囲の環境下にか−で使用することができる。
/ / / Table [Effects of the invention] The membrane of the present invention has excellent heat resistance and is effective in separating upper gases.
) exhibits excellent gas permeability and separation coefficients. In addition, it has excellent chemical resistance, and although it dissolves in certain fluorinated solvents, it is not affected by the four general solvents, and it has excellent alkali resistance, acid resistance, and oxidation resistance, so it can be used over a wide range of areas. It can be used in either environment.

本発明の分s、iば、水蒸気の透過係数が比較的小さめ
ため、気体分離の分野ばかりでなく水中からの溶存酸素
の除去等にも適用可能である。
Since the present invention has a relatively small water vapor permeability coefficient, it is applicable not only to the field of gas separation but also to the removal of dissolved oxygen from water.

Claims (5)

【特許請求の範囲】[Claims] (1)バーフルオロ−(2,2−ジメチル−1,3−ジ
オキソール)と少なくとも一種のエチレン系不飽和単量
体との共重合体からなる分離膜。
(1) A separation membrane made of a copolymer of barfluoro-(2,2-dimethyl-1,3-dioxole) and at least one ethylenically unsaturated monomer.
(2)エチレン系不飽和量量体がテトラフルオロエチレ
ンである請求項第1項記載の分離膜。
(2) The separation membrane according to claim 1, wherein the ethylenically unsaturated mer is tetrafluoroethylene.
(3)常温から200℃の温度範囲における空気透過時
の酸素透過速度が1×10^−^5cm^3/cm^2
・sec・cmHg以上でかつ酸素/窒素の分離係数が
1.5以上である請求項第1項記載の分離膜。
(3) Oxygen permeation rate during air permeation in the temperature range from room temperature to 200℃ is 1 x 10^-^5cm^3/cm^2
2. The separation membrane according to claim 1, which has an oxygen/nitrogen separation coefficient of 1.5 or more and sec.cmHg or more.
(4)常温から200℃の温度範囲における空気透過時
の酸素透過速度が1×10^−^4cm^3/cm^2
・sec・cmHg以上でかつ酸素/窒素の分離係数が
1.5以上である請求項第3項記載の分離膜。
(4) Oxygen permeation rate during air permeation in the temperature range from room temperature to 200℃ is 1 x 10^-^4cm^3/cm^2
The separation membrane according to claim 3, which has an oxygen/nitrogen separation coefficient of -sec.cmHg or more and an oxygen/nitrogen separation coefficient of 1.5 or more.
(5)水蒸気透過係数PH_2Oと酸素透過係数PO_
2との比PH_2O/PO_2が15以下である請求項
第1項記載の分離膜。
(5) Water vapor permeability coefficient PH_2O and oxygen permeability coefficient PO_
2. The separation membrane according to claim 1, wherein the ratio PH_2O/PO_2 is 15 or less.
JP2299274A 1989-11-09 1990-11-05 Fluorine-based separation membrane Expired - Fee Related JP2542533B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29172289 1989-11-09
JP1-291722 1989-11-09

Publications (2)

Publication Number Publication Date
JPH03221130A true JPH03221130A (en) 1991-09-30
JP2542533B2 JP2542533B2 (en) 1996-10-09

Family

ID=17772548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2299274A Expired - Fee Related JP2542533B2 (en) 1989-11-09 1990-11-05 Fluorine-based separation membrane

Country Status (1)

Country Link
JP (1) JP2542533B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281255A (en) * 1992-11-04 1994-01-25 Membrane Technology And Research, Inc Gas-separation process
JPH08511196A (en) * 1993-03-30 1996-11-26 レール・リキド・ソシエテ・アノニム・プール・レテユード・エ・レクスプロワタシヨン・デ・プロセデ・ジヨルジユ・クロード Composite carbon fluid separation membrane
WO2000061267A1 (en) * 1999-04-14 2000-10-19 Pall Corporation Porous membrane
US6248157B1 (en) * 1999-08-20 2001-06-19 Systec Inc. Vacuum degassing
US6770202B1 (en) 1999-04-14 2004-08-03 Pall Corporation Porous membrane
US6949132B2 (en) 2003-11-05 2005-09-27 Systel, Llc Axial degassing transfer lines
JP2009195833A (en) * 2008-02-21 2009-09-03 Junkosha Co Ltd Gas permeable tube and degassing module
US7713331B2 (en) 2003-11-05 2010-05-11 Rheodyne, Llc Axial transfer line degassing
US9044712B2 (en) 2011-09-12 2015-06-02 Idex Health & Science, Llc Supersaturated fluid degassing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US366400A (en) * 1887-07-12 Telegraph-key

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US366400A (en) * 1887-07-12 Telegraph-key

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281255A (en) * 1992-11-04 1994-01-25 Membrane Technology And Research, Inc Gas-separation process
JPH08511196A (en) * 1993-03-30 1996-11-26 レール・リキド・ソシエテ・アノニム・プール・レテユード・エ・レクスプロワタシヨン・デ・プロセデ・ジヨルジユ・クロード Composite carbon fluid separation membrane
EP0691882A4 (en) * 1993-03-30 1998-03-25 Air Liquide COMPOSITE CARBON MEMBRANES FOR SEPARATING FLUIDS
WO2000061267A1 (en) * 1999-04-14 2000-10-19 Pall Corporation Porous membrane
US6770202B1 (en) 1999-04-14 2004-08-03 Pall Corporation Porous membrane
JP2002540928A (en) * 1999-04-14 2002-12-03 ポール・コーポレーション Porous membrane
US6494938B2 (en) * 1999-08-20 2002-12-17 Systec, Inc. Vacuum degassing
US6248157B1 (en) * 1999-08-20 2001-06-19 Systec Inc. Vacuum degassing
US6949132B2 (en) 2003-11-05 2005-09-27 Systel, Llc Axial degassing transfer lines
US7144443B2 (en) 2003-11-05 2006-12-05 Systec, Llc Axial transfer line degassing
US7713331B2 (en) 2003-11-05 2010-05-11 Rheodyne, Llc Axial transfer line degassing
JP2009195833A (en) * 2008-02-21 2009-09-03 Junkosha Co Ltd Gas permeable tube and degassing module
US9044712B2 (en) 2011-09-12 2015-06-02 Idex Health & Science, Llc Supersaturated fluid degassing
US9656186B2 (en) 2011-09-12 2017-05-23 IDEX Health and Science, LLC Fluid degassing apparatus

Also Published As

Publication number Publication date
JP2542533B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US6770202B1 (en) Porous membrane
US6469116B2 (en) Amorphous fluoropolymer manufactured articles
KR101893239B1 (en) Polyamide water-treatment membranes having an excellent antifouling property and manufacturing method thereof
JP2000053780A5 (en)
KR101546244B1 (en) Water treatment membrane having a high chlorine resistance and a high permeability and method of manufacturing the same
KR20180008559A (en) Improved membrane for separating alkene and alkane
JP6444382B2 (en) Polymer membrane materials based on 1234yf and 1234ze, membrane preparation and use thereof
KR102097849B1 (en) Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
JPH03221130A (en) Fluorine separation membrane
JP2018527437A (en) Polyamide interfacial polymerization composition and method for producing reverse osmosis membrane using the same
WO2019016179A1 (en) Membranes comprising fluorinated polymers and use thereof
JP2001011231A (en) (per)fluorinated amorphous polymer film
KR20200098503A (en) Gas separation membrane, gas separation membrane element, and gas separation method
KR102101061B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
JP7511558B2 (en) Porous membranes for high pressure filtration
KR20190083118A (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
CA2367547A1 (en) Porous membrane
WO2019016177A1 (en) Membranes comprising fluorinated polymers and use thereof
KR20190050496A (en) Composition for interfacial polymerizing polyamide, method for manufacturing water-treatment membrane using the same and water-treatment membrane
KR102762138B1 (en) Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR102799975B1 (en) Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR102253746B1 (en) Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR102294542B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20190065655A (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR20250068319A (en) Composition for forming polyamide active layer, method for preparing water treatment membrane, water treatment membrane and water treatment module prepared thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees