[go: up one dir, main page]

JPH03244637A - Spherical composite particle, its production and dispersion thereof - Google Patents

Spherical composite particle, its production and dispersion thereof

Info

Publication number
JPH03244637A
JPH03244637A JP2042130A JP4213090A JPH03244637A JP H03244637 A JPH03244637 A JP H03244637A JP 2042130 A JP2042130 A JP 2042130A JP 4213090 A JP4213090 A JP 4213090A JP H03244637 A JPH03244637 A JP H03244637A
Authority
JP
Japan
Prior art keywords
fine particles
spherical composite
composite fine
group
silanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2042130A
Other languages
Japanese (ja)
Other versions
JP2942298B2 (en
Inventor
Ippei Noda
一平 野田
Masanobu Abe
阿部 雅信
Fumitoshi Sugiura
文俊 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takemoto Oil and Fat Co Ltd
Original Assignee
Takemoto Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takemoto Oil and Fat Co Ltd filed Critical Takemoto Oil and Fat Co Ltd
Priority to JP4213090A priority Critical patent/JP2942298B2/en
Publication of JPH03244637A publication Critical patent/JPH03244637A/en
Priority to US08/046,393 priority patent/US5296569A/en
Application granted granted Critical
Publication of JP2942298B2 publication Critical patent/JP2942298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To obtain the title particle having a reduced mean diameter, a narrow diame ter distribution, a specified shape, and improved dispersion properties by incorporating a polysiloxane and a vinyl polymer into the particles and specifying the mean diameter, standard deviation of diameter, and ratio of the major to minor diameter. CONSTITUTION:The title particle having a mean diameter of 0.05-30 mum, a standard deviation of the diameter of 1.0-2.5, and a ratio of the major to minor diameter of 1.0-1.2 and contg. 97-30 wt.% polysiloxane of formula V (wherein (n) is 0-3; and R is a (substd.) hydrocarbon group having a C atom directly attached to the Si atom and having no radical polymerizability) and 3-70 wt.% vinyl polymer is prepd. by dispersing a silanol compd. and a vinyl compd. in a wt. ratio of (99:1) to (33:67) in an aq. medium, hydrolyzing and polymerizing the silanol compd. and polymerizing the vinyl compd. in the presence of a radical polymn. catalyst. The silanol compd. contains a silanol group-forming silicon compds. of formula I [wherein R<1> is as de scribed above 3 is 1-4C alkoxy(-contg. alkoxyethyoxy), 2-4C acyloxy, 1-4C alkyo-contg. N, N-dialkylamino, OH, halogen, or H] and/or formula II and comprises a compd. shown by formula III or IV (wherein (p) is 0-3; (q) is 3-20; and R<2> and R<3> are each R<1>).

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は球状複合微粒子及びその製造方法並びにその分
散体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to spherical composite fine particles, a method for producing the same, and a dispersion thereof.

塗判、化粧品、ゴム、プラスチックス、紙等を改質する
ために、それらの製造乃至加工工程で微粒子を添加する
ことが行なわれている。そして近年では、かかる微粒子
として、その特性を設計し、また制御し易いことから1
粒径分布の狭い球状微粒子が注目されている。
BACKGROUND OF THE INVENTION In order to modify coatings, cosmetics, rubber, plastics, paper, etc., fine particles are added during their manufacturing or processing steps. In recent years, such fine particles have become popular because their properties can be easily designed and controlled.
Spherical fine particles with a narrow particle size distribution are attracting attention.

本発明は上記のような粒径分布の狭い球状微粒子、特に
ポリシロキサンとビニル重合体とから主形成された球状
複合微粒子及びその製造方法並びにその分散体に関する
ものである。
The present invention relates to spherical fine particles having a narrow particle size distribution as described above, particularly spherical composite fine particles mainly formed from polysiloxane and a vinyl polymer, a method for producing the same, and a dispersion thereof.

〈従来の技術、その課題〉 従来、上記のような微粒子として、ポリスチレン、ポリ
酢酸ビニル、ポリエチレン、ナイロン、エポキシ樹脂、
フェノール樹脂、ポリシロキサン等の各種の微粒子が提
案されている。これらのうちで、ポリシロキサン系の微
粒子としては、シリカ粒子(J、 Co11oid a
nd Interface Sci、 26巻、62〜
69.1968年)、ポリメチルシルセスキオキサン粒
子(特開昭63−77940)、ポリオルガ/シロキサ
ン粒子(特開昭63−312324)等が提案されてお
り、またかかるポリシロキサン系の微粒子による改質に
ついては、これをポリエステルフィルムへ添加すると、
良好な滑性を付与することができるという報告もある(
特開昭59−171623)。
<Conventional technology and its problems> Conventionally, as the above-mentioned fine particles, polystyrene, polyvinyl acetate, polyethylene, nylon, epoxy resin,
Various types of fine particles such as phenol resin and polysiloxane have been proposed. Among these, as polysiloxane-based fine particles, silica particles (J, Co11oid a
nd Interface Sci, Volume 26, 62~
69.1968), polymethylsilsesquioxane particles (Japanese Unexamined Patent Publication No. 63-77940), polyorgan/siloxane particles (Japanese Unexamined Patent Publication No. 63-312324), etc., and modifications using such polysiloxane-based fine particles have been proposed. Regarding the quality, when this is added to polyester film,
There are also reports that it can impart good lubricity (
Japanese Patent Publication No. 59-171623).

ところが、これら従来の微粒子には、1〕機械的な衝撃
で割れ易い、2)媒体や高分子材料に分散し難い、3)
分散安定性が悪い、4)粒子形状や粒径分布等が不揃、
という課題があり、実際のところ結局は、設計通りの改
質を得難いという課題がある。
However, these conventional microparticles have the following problems: 1) They are easily broken by mechanical impact, 2) They are difficult to disperse in media and polymeric materials, and 3) They are difficult to disperse in media and polymeric materials.
Poor dispersion stability; 4) irregular particle shape and particle size distribution;
In reality, there is a problem that it is difficult to obtain the modification as designed.

〈発明が解決しようとする課題、その解決手段〉本発明
は叙上の如き従来の課題を解決する新たな球状複合微粒
子及びその製造方法並びにその分散体を提供するもので
ある。
<Problems to be Solved by the Invention, Means for Solving the Problems> The present invention provides new spherical composite fine particles, a method for producing the same, and a dispersion thereof, which solve the conventional problems as described above.

しかして本発明名らは、上記1)〜4)の課題を解決す
る、粒径分布が狭いミクロンオーダーの球状微粒子を得
るべく鋭意研究した結果、双方が一体的に混在しており
且つ双方が実質的に共有結合していない特定のポリシロ
キサンと特定のビニル重合体とから主形成されてなる特
定の球状複合微粒子が好適であることを見出し、本発明
を完成するに到った。
However, as a result of intensive research to obtain micron-order spherical particles with a narrow particle size distribution that solves the problems 1) to 4) above, the inventors of the present invention have found that both are integrally mixed together, and both are integrated. The present inventors have found that specific spherical composite fine particles mainly formed from a specific polysiloxane and a specific vinyl polymer that are not substantially covalently bonded are suitable, and have completed the present invention.

すなわち本発明は、 双方が一体的に混在しており且つ双方が実質的に共有結
合していない下記(I)のポリシロキサンと下記(II
 )のビニル重合体とから主形成されてなる球状複合微
粒子であって、且つ該ポリシロキサン/該ビニル重合体
が97/3〜30/70(屯量比)、また平均粒径が0
.05〜30gm、史に粒径の標準偏差値が1.0〜2
.5.そして長径と短径との比が1.0〜162である
ことを特徴とする球状複合微粒子と、該球状複合微粒子
の製造方法と、該球状複合微粒子の分散体とに係わる。
That is, the present invention provides the following polysiloxane (I) and the following polysiloxane (II), in which both are integrally mixed and both are not substantially covalently bonded.
), the polysiloxane/vinyl polymer has a ratio of 97/3 to 30/70 (volume ratio), and has an average particle size of 0.
.. 05~30gm, standard deviation value of particle size is 1.0~2
.. 5. The present invention also relates to spherical composite fine particles characterized in that the ratio of the major axis to the minor axis is 1.0 to 162, a method for producing the spherical composite fine particles, and a dispersion of the spherical composite fine particles.

(I):一般式[Rn5iO(i−n)z21で示され
る構成単位の1種又は2種以上からなるポリシロキサン
であって、且つnが1以下の構成単位を少なくとも15
モル%以上含有するポリシロキサン。
(I): A polysiloxane consisting of one or more types of structural units represented by the general formula [Rn5iO(i-n)z21, and where n is 1 or less, at least 15
Polysiloxane containing mol% or more.

[但し、nは0〜3の整数、Rはケイ素原子に直接結合
した炭素原子を有する非置換又は置換炭化水X基であっ
て、且つラジカル重合性をもたない炭化水素基、] (TI):シラノール基及びシラノール基形成性原子団
と反応性をもたないビニル単量体の1種又は2種以上を
重合して得られるビニル重合体。
[However, n is an integer of 0 to 3, R is an unsubstituted or substituted hydrocarbon group X having a carbon atom directly bonded to a silicon atom, and a hydrocarbon group having no radical polymerizability.] (TI ): A vinyl polymer obtained by polymerizing one or more vinyl monomers that have no reactivity with silanol groups and silanol group-forming atomic groups.

本発明において、平均粒径は、電子顕微鏡写真から50
個の粒子を任意に選定し、選定した個々の粒子の長径(
粒子の中心を通る最長の径=Dt)及び短径(粒子の中
心を通る最短の径−Ds)を測定して計算した(OL+
 Ds) / 2の平均値であり、また長径と短径との
比は、同様に測定して計算したDL105の平均値であ
る。モして粒径の標準偏差f〆1は遠心沈降式の粒度分
相測定によって得られるイメである0本発明の球状複合
微粒子は、平均粒径が0.05〜30pLm、また粒径
の標準偏差値が1.0〜2.5の範囲にあり、且つ長径
と短径との比が1,0〜1.2の範囲にあるもので、長
径と短径との比が1.0〜1.2の範囲にあるが故に球
状のものであるが、これらのうちでは合目的的に、平均
粒径が0.1〜logm、また粒径の標準偏差値が1.
0〜2.0の範囲にあり、且つ長径と短径との比が1.
0〜1.1の範囲にあるものが好ましい。
In the present invention, the average particle size is 50
The major diameter of each selected particle (
The longest diameter passing through the center of the particle = Dt) and the shortest diameter (shortest diameter passing through the center of the particle - Ds) were measured and calculated (OL+
Ds)/2, and the ratio of the major axis to the minor axis is the average value of DL105 measured and calculated in the same manner. The standard deviation f〆1 of the particle size is the image obtained by centrifugal sedimentation type particle size phase separation measurement. The deviation value is in the range of 1.0 to 2.5, and the ratio of the major axis to the minor axis is in the range of 1.0 to 1.2, and the ratio of the major axis to the minor axis is 1.0 to 2.5. It is spherical because it is in the range of 1.2, but among these, for purposes of purpose, the average particle size is 0.1 to logm, and the standard deviation value of the particle size is 1.
It is in the range of 0 to 2.0, and the ratio of the major axis to the minor axis is 1.
Those in the range of 0 to 1.1 are preferred.

本発明の球状複合微粒子を主形成する成分の一つである
ポリシロキサンは前記(I)の一般式で示される構成単
位の1種又は2種以上からなるポリシロキサンであって
、且つ該一般式におけるnが1以下の構成単位を少なく
とも15モル%以上含有するポリシロキサンである。具
体的には、[5i02]、 [R5103/21. [
RzSiO]又は[R35iO+721で示される構成
単位の1種又は2種以上からなるポリシロキサンであっ
て、且つnが1以下の構成単位すなわち[5i02]又
は[R91Ch/2]で示される構成単位の1種又は2
種を少なくとも15モル%以上、好ましくは20モル%
以上含有するポリシロキサンである。nが1以下の構成
単位が15モル%未満では、前述したような粒径に係る
特性の球状複合微粒子を得ることができない。
The polysiloxane, which is one of the main components of the spherical composite fine particles of the present invention, is a polysiloxane consisting of one or more constituent units represented by the general formula (I) above, and It is a polysiloxane containing at least 15 mol% or more of a structural unit in which n is 1 or less. Specifically, [5i02], [R5103/21. [
RzSiO] or [R35iO+721] A polysiloxane consisting of one or more types of structural units, and where n is 1 or less, that is, one of the structural units represented by [5i02] or [R91Ch/2] species or two
At least 15 mol% or more, preferably 20 mol% of seeds
This is a polysiloxane containing the above. If the content of the structural unit in which n is 1 or less is less than 15 mol %, it is not possible to obtain spherical composite fine particles having the characteristics related to the particle size as described above.

上記のようなポリシロキサンの構成単位において、Rは
ケイ素原子に直接結合した炭素原子を有する非置換又は
W1換炭化水素基であるが、かかる炭化水素基のうちで
ラジカル重合性をもたない炭化水素基である。Rがラジ
カル重合性をもたない炭化水素基であることが、本発明
の球状複合微粒子を主形成するポリシロキサンとビニル
重合体とが実質的に共有結合・することなく一体的に混
在するための必須要件である。
In the structural unit of polysiloxane as described above, R is an unsubstituted or W1-substituted hydrocarbon group having a carbon atom directly bonded to a silicon atom, but among such hydrocarbon groups, a hydrocarbon group that does not have radical polymerizability It is a hydrogen group. The fact that R is a hydrocarbon group that does not have radical polymerizability is because the polysiloxane and vinyl polymer, which mainly form the spherical composite fine particles of the present invention, coexist integrally without substantially covalently bonding. is an essential requirement.

非置換炭化水素基である場合のRとしては、アルキル基
、シクロアルキル基、アリール基、アルキルアリール基
、アラルキII/1&等が挙げられるが、なかでも、メ
チル基、エチル基、ブチル基等の炭素数1〜4のアルキ
ル基又はフェニル基が有利に選択される。また置換炭化
水素基である場合のRとしては、置換基としてハロゲン
、エポキシ基、シアノ基、ウレイド基等を有する置換炭
化水素基が挙げられるが、なかでも、γ−グリシドキシ
プロビル基、β−(3、4−エポキシ)シクロヘキシル
エチル基、γ−クロロプロピル基、トリフルオロプロピ
ル基等が有利に選択される。これらの非置換炭化水素基
と置換炭化水素基とは任意の比率にすることができる。
Examples of R when it is an unsubstituted hydrocarbon group include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group, an aralkyl group II/1 &, among others, a methyl group, an ethyl group, a butyl group, etc. Alkyl radicals having 1 to 4 carbon atoms or phenyl radicals are advantageously chosen. Further, when R is a substituted hydrocarbon group, examples thereof include substituted hydrocarbon groups having halogen, epoxy group, cyano group, ureido group, etc. as substituents, and among them, γ-glycidoxyprobyl group, β-(3,4-epoxy)cyclohexylethyl, γ-chloropropyl, trifluoropropyl and the like are advantageously selected. These unsubstituted hydrocarbon groups and substituted hydrocarbon groups can be in any ratio.

本発明の球状複合微粒子を主形成する成分の他の一つで
あるビニル重合体は、前記(II )の通り、シラノー
ル基及びシラノール基形成性原子団と反応性をもたない
ビニル単量体の1種又は21a以上を重合して得られる
ビニル重合体である。ビニル重合体がシラノール基及び
シラノール基形成性原子団と反応性をもたないビニル単
量体を重合して得られるものであることが1本発明の球
状複合微粒子を主形成するポリシロキサンとビニル重合
体とが実質的に共有結合することなく一体的に混在する
ための必須要件である。
The vinyl polymer, which is another component that mainly forms the spherical composite fine particles of the present invention, is a vinyl monomer that does not have reactivity with silanol groups and silanol group-forming atomic groups, as described in (II) above. It is a vinyl polymer obtained by polymerizing one type or 21a or more of the following. The vinyl polymer is obtained by polymerizing a vinyl monomer that has no reactivity with silanol groups and silanol group-forming atomic groups.1. This is an essential requirement for the polymer to coexist integrally with the polymer without substantially covalent bonding.

上記のようなビニル重合体としては、ポリスチレン、ポ
リα−メチルスチレン等の芳香族ビニル重合体、ポリメ
チルメタクリレート、ポリブチルメタクリレート、ポリ
メチルアクリレート、ポリ酢酸ビニル、ポリプロピオン
酸ビニル、ポリアクリロニトリル等の脂肪族ビニル重合
体、スチレン/α−メチルスチレン共重合体、スチレン
/アクリロニトリル共重合体、スチレン/メチルメタク
リレート共重合体等のビニル共重合体、更にはスチレン
/ジビニルベンゼン共重合体、メチルメタクリレート/
トリメチロールプロパントリメタクリレート共重合体等
の架橋ビニル共重合体等が挙げられるが、なかでも、ス
チレンやα−メチルスチレン等を重合して得られる芳香
族ビニル重合体又はメタクリル酸やアクリル酸のアルキ
ルエステルを重合して得られる脂肪族ビニル重合体が有
利に選択される。
Examples of the vinyl polymers mentioned above include aromatic vinyl polymers such as polystyrene and polyα-methylstyrene, polymethyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyvinyl acetate, polyvinyl propionate, and polyacrylonitrile. Vinyl copolymers such as aliphatic vinyl polymers, styrene/α-methylstyrene copolymers, styrene/acrylonitrile copolymers, styrene/methyl methacrylate copolymers, and styrene/divinylbenzene copolymers, methyl methacrylate/
Examples include crosslinked vinyl copolymers such as trimethylolpropane trimethacrylate copolymers, among others, aromatic vinyl polymers obtained by polymerizing styrene, α-methylstyrene, etc., or alkyl methacrylic acid or acrylic acid. Aliphatic vinyl polymers obtained by polymerizing esters are advantageously chosen.

本発明におけるビニル重合体は、以上例示したような、
非水溶性ビニル単量体を重合して得られるビニル重合体
が好ましいが、非水溶性ビニル単量体と水溶性ビニル単
量体とを共重合して得られるビニル共重合体であっても
よい、この場合、水溶性ビニル単量体の共重合比率は、
得られるビニル共重合体が水に溶解又は極度に膨潤しな
い限度で任意に選択することができるが、通常は10モ
ル%以下とするのが好ましい。
The vinyl polymer in the present invention is as exemplified above.
Vinyl polymers obtained by polymerizing water-insoluble vinyl monomers are preferred, but vinyl copolymers obtained by copolymerizing water-insoluble vinyl monomers and water-soluble vinyl monomers may also be used. In this case, the copolymerization ratio of water-soluble vinyl monomer is
It can be arbitrarily selected as long as the vinyl copolymer obtained does not dissolve or swell excessively in water, but it is usually preferably 10 mol% or less.

本発明の球状複合微粒子は、双方が一体的に混在してお
り且つ双方が実質的に共有結合していない前記(I)の
ポリシロキサンと前記(II)のビニル重合体とから主
形成されてなるもので、該ポリシロキサン/該ビニル重
合体が97/3〜30/70(重量比)の範囲からなる
ものである。この範囲よりもポリシロキサンの比率が高
くなると、得られる球状複合微粒子が機械的な衝撃で割
れ易くなり、その高分子材料に対する分散性が悪くなる
。逆にこの範囲よりもビニル重合体の比率が高くなると
、得られる球状複合微粒子のポリシロキサンに起因する
低エネルギー特性が低下する。
The spherical composite fine particles of the present invention are mainly formed from the polysiloxane (I) and the vinyl polymer (II), both of which are integrally mixed and which are not substantially covalently bonded. The polysiloxane/vinyl polymer is in the range of 97/3 to 30/70 (weight ratio). When the proportion of polysiloxane is higher than this range, the resulting spherical composite fine particles tend to break due to mechanical impact, and their dispersibility in the polymeric material deteriorates. On the other hand, if the ratio of the vinyl polymer is higher than this range, the low energy properties of the obtained spherical composite fine particles due to polysiloxane will decrease.

次に1本発明の球状複合微粒子を製造する方法について
説明する0本発明の球状複合微粒子は。
Next, the method for producing the spherical composite fine particles of the present invention will be explained.

下記(III)のシラノール基形成性ケイ素化合物/下
記(■)のビニル単量体が99/1〜33/67(重量
比)で共存する水系媒体中で、該シラノール基形成性ケ
イ素化合物を加水分解しつつ縮重合して、一旦該ビニル
単量体が混在するポリシロキサンの球状微粒子を生成さ
せ、次いでラジカル重合触媒の存在下に該ビニル単量体
を重合することにより製造される。
The silanol group-forming silicon compound is hydrated in an aqueous medium in which the following silanol group-forming silicon compound (III)/the following (■) vinyl monomer coexists in a weight ratio of 99/1 to 33/67. It is produced by condensation polymerization while being decomposed to once produce spherical fine particles of polysiloxane in which the vinyl monomer is mixed, and then by polymerizing the vinyl monomer in the presence of a radical polymerization catalyst.

(III):一般式(V)又は(VI)で示されるシラ
ノール基形成性ケイ素化合物であって、且つR,’−S
iX3 で示されることとなるシラノール基形成性ケイ
素化合物及び/又はS iXaで示されることとなるシ
ラノール基形成性ケイ素化合物を全シラノール基形成性
ケイ素化合物のケイ素換算で少なくとも15モル%以と
含有するシラノール基形成性ケイ素化合物。
(III): A silanol group-forming silicon compound represented by the general formula (V) or (VI), and R,'-S
Contains a silanol group-forming silicon compound represented by iX3 and/or a silanol group-forming silicon compound represented by SiXa in an amount of at least 15 mol% in terms of silicon of the total silanol group-forming silicon compounds. Silanol group-forming silicon compound.

一般式(V); R’p−9iXa−p 一般式(VI); 2 〔但し、pは0〜3の整数、qは3〜20の整数、 1
lllJ2J3はケイ素原子に直接結合した炭素原子を
有する非置換又は置換炭化水素基であって。
General formula (V); R'p-9iXa-p General formula (VI); 2 [However, p is an integer of 0 to 3, q is an integer of 3 to 20, 1
lllJ2J3 is an unsubstituted or substituted hydrocarbon group having a carbon atom directly bonded to a silicon atom.

扛つラジカル重合性をもたない炭化水素基、Xは炭素数
1〜4のアルコキシ基、炭素数1〜4のアルコキシ基を
有するアルコキシエトキシ基、炭素数2〜4の7シロキ
シ基、炭素数1〜4のアルキル基を有するN、N−ジア
ルキルアミノ基、ヒドロキシル基、ハロゲン原子又は水
素原子、](■):シラノール基及びシラノール基形成
性原子団と反応性をもたないビニル単量体のIML又は
2種以上。
A hydrocarbon group that does not have radical polymerizability; X is an alkoxy group having 1 to 4 carbon atoms; an alkoxyethoxy group having an alkoxy group having 1 to 4 carbon atoms; N,N-dialkylamino group having 1 to 4 alkyl groups, hydroxyl group, halogen atom or hydrogen atom,] (■): Vinyl monomer having no reactivity with silanol group and silanol group-forming atomic group IML or two or more types.

前記(III)のシラノール基形成性ケイ素化合物は、
本発明の球状複合微粒子を主形成する成分の一つである
ポリシロキサンの原料であって、一般式(V)又は(V
I)で示されるシラノール基層成性ケ・f素化合物であ
り、且つR1〜5ihで示されることとなるシラノール
基形成性ケイ素化合物及び/又はSiX4で示されるこ
ととなるシラノール基形成性ケイ素化合物を全シラノー
ル基形成性ケイ素化合物のケイ素換算で少なくとも15
モル%以−ヒ含右するシラノール基形成性ケイ素化合物
である。具体的に一般式(V)で示されるシラノール基
形成性ケイ素化合物は、SiXa、R1SiX3.R1
2SiX2又はR13SiXで示されるシラノール基形
成性ケイ素化合物であるが1本発明で用いるシラノール
基形成性ケイ素化合物は、 RISihで示されるシラ
ノール基形成性ケイ素化合物及び/又はSiX4で示さ
れるシラノール基形成性ケイ素化合物を全シラノール基
形成性ケイ素化合物のケイ素換算で15モル%以上、好
ましくは20モル%以上含有するシラノール基形成性ケ
イ素化合物である。15モル%未満では、前述したよう
な粒径に係る特性の球状複合微粒子を得ることができな
い。
The silanol group-forming silicon compound (III) is
A raw material for polysiloxane, which is one of the main components of the spherical composite fine particles of the present invention, which has the general formula (V) or (V
A silanol group-forming silicon compound represented by I) and a silanol group-forming silicon compound represented by R1 to 5ih and/or a silanol group-forming silicon compound represented by SiX4. At least 15 in terms of silicon of all silanol group-forming silicon compounds
It is a silanol group-forming silicon compound containing more than mol%. Specifically, the silanol group-forming silicon compound represented by the general formula (V) includes SiXa, R1SiX3. R1
The silanol group-forming silicon compound represented by 2SiX2 or R13SiX is 1. The silanol group-forming silicon compound used in the present invention is the silanol group-forming silicon compound represented by RISih and/or the silanol group-forming silicon compound represented by SiX4. A silanol group-forming silicon compound containing the compound in an amount of 15 mol % or more, preferably 20 mol % or more in terms of silicon based on the total silanol group-forming silicon compound. If the amount is less than 15 mol %, it is impossible to obtain spherical composite fine particles having the characteristics related to the particle size as described above.

上記のようなシラノール基形成性ケイ素化合物ニ第1.
’テ、−a式(V) 又ハ(VI) (7)R1,R2
,R3はケイ素原子に直接結合した炭素原子を有する非
置換又は置換炭化水素基であって、且つラジカル重合性
をもたない炭化水素基であるが、これらについては、前
記(I)における一般式のHのところで前述したことと
同様である。
A silanol group-forming silicon compound as described above.
'Te, -a formula (V) Also c (VI) (7) R1, R2
, R3 is an unsubstituted or substituted hydrocarbon group having a carbon atom directly bonded to a silicon atom, and is a hydrocarbon group having no radical polymerizability. This is the same as what was described above in section H.

また上記のようなシラノール基形成性ケイ素化合物にお
いて、一般式(V)の又は、メトキシ基やエトキシ基等
の炭素数1〜4のアルコキシ基、メトキシエトキシ基や
ブトキシエトキシ基等の炭素数1〜4のアルコキシ基を
有するアルコキシエトキシ基、アセトキシ基やプロピオ
キシ基等の炭素数2〜4のアシロキシ基、ジメチルアミ
ノ基やジエチルアミノ基等の炭素数1〜4のアルキル基
を有するN、N−ジアルキルアミ7基、ヒドロキシル基
、塩素原子や臭素原子等のハロゲン原子又は水素原子で
ある。
In addition, in the above-mentioned silanol group-forming silicon compound, the general formula (V) or an alkoxy group having 1 to 4 carbon atoms such as a methoxy group or an ethoxy group, or an alkoxy group having 1 to 4 carbon atoms such as a methoxyethoxy group or a butoxyethoxy group. an alkoxyethoxy group having 4 alkoxy groups, an acyloxy group having 2 to 4 carbon atoms such as an acetoxy group and a propioxy group, and an N,N-dialkylamide having an alkyl group having 1 to 4 carbon atoms such as a dimethylamino group and a diethylamino group. 7 group, a hydroxyl group, a halogen atom such as a chlorine atom or a bromine atom, or a hydrogen atom.

したがってより具体的に、前記のSiX4で示されるシ
ラノール基形成性ケイ素化合物としては、テトラメトキ
シシラン、テトラエトキシシラン、テトラブトキシシラ
ン、テトラクロルシラン等が挙げられる。また前記のR
ISihで示されるシラノール基形成性ケイ素化合物と
しては、メチルトリメトキシシラン、メチルトリエトキ
シシラン、メチルトリアセトキシシラン、フェニルトリ
メトキシシラン、メチルトリス(ジメチルアミノ)シラ
ンメチルトリクロルシラン、フェニルトリクロルシラン
、メチルジクロルメトキシシラン、メチルジクロルハイ
ドロジエンシラン、メチルシラントリオール、メチルジ
クロルシラノール、メチルクロルシランジオール等が挙
げられる。更に前記のR’2SiX2で示されるシラノ
ール基形成性ケイ素化合物としては、ジメチルジメトキ
シシラン、ジメチルジェトキシシラン、メチルフエニル
ジメトキシシラン、ジメチルジアセトキシシラン、ジメ
チルビス(ジメチルアミノ)シラン、ジメチルジクロル
シラン、ジエチルジクロルシラン、ジフェニルジクロル
シラン、ジメチルクロルメトキシシラン、メチルエチル
ジクロルシラン、ジメチルシランジオール、ジエチルシ
ランジオール等が挙げられる。そして前記のR’3Si
Xで示されるシラノール基形成性ケイ素化合物としては
、トリメチルメトキシシラン、トリメチルエトキシシラ
ン、ジメチルエチルメトキシシラン、トリメチルアセト
キシシラン、トリメチル(ジメチルアミノ)シラン、ト
リメチルクロルシラン、トリフェニルクロルシラン、ト
リメチルシラノール等が挙げられる。以」−例示したも
のはいずれも、一般式(V)のR1が非21換炭化水素
基である場合のシラノール基形成性ケイ素化合物である
が、該)71が置換炭化水素基である場合のシラノール
基形戒性ケイ素化合物としては、γ−グリシドキシプロ
ビルトリメトキシシラン、γ−グリシドキシプロビルト
リエトキシシラン、β−(3,4−エポキシシクロヘキ
シル)エチルトリメトキシシラン等のエポキシ基含有シ
ラン化合物、γ−クロロプロピルトリメトキシシラン、
トリフルオロプロピルトリメトキシシラン等のハロアル
キル基含有シラン化合物、γ−ウレイドプロピルトリメ
トキシシラン等のウレイド基含有シラン化合物、シアノ
プロピルトリメトキシシラン等のシアノ基含有シラン化
合物等が挙げられる。そしてまた一般式(VI)で示さ
れるシラノール基形成性ケイ素化合物としては、オクタ
メチルシクロテトラシロキサン、テトラメチルテトラフ
ェニルシクロテトラシロキサン等が挙げられる。
Therefore, more specifically, examples of the silanol group-forming silicon compound represented by SiX4 include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, and tetrachlorosilane. Also, the above R
Silanol group-forming silicon compounds represented by ISih include methyltrimethoxysilane, methyltriethoxysilane, methyltriacetoxysilane, phenyltrimethoxysilane, methyltris(dimethylamino)silane, methyltrichlorosilane, phenyltrichlorosilane, and methyldichloro. Examples include methoxysilane, methyldichlorohydrodienesilane, methylsilanetriol, methyldichlorosilanol, methylchlorosilanediol, and the like. Furthermore, examples of the silanol group-forming silicon compound represented by R'2SiX2 include dimethyldimethoxysilane, dimethyljethoxysilane, methylphenyldimethoxysilane, dimethyldiacetoxysilane, dimethylbis(dimethylamino)silane, and dimethyldichlorosilane. , diethyldichlorosilane, diphenyldichlorosilane, dimethylchloromethoxysilane, methylethyldichlorosilane, dimethylsilanediol, diethylsilanediol, and the like. And the above R'3Si
Examples of the silanol group-forming silicon compound represented by Can be mentioned. All of the exemplified compounds are silanol group-forming silicon compounds when R1 in general formula (V) is a non-21-substituted hydrocarbon group; Examples of silanol group-based silicon compounds include epoxy groups such as γ-glycidoxyprobyltrimethoxysilane, γ-glycidoxyprobyltriethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Containing silane compound, γ-chloropropyltrimethoxysilane,
Examples include haloalkyl group-containing silane compounds such as trifluoropropyltrimethoxysilane, ureido group-containing silane compounds such as γ-ureidopropyltrimethoxysilane, and cyano group-containing silane compounds such as cyanopropyltrimethoxysilane. Examples of the silanol group-forming silicon compound represented by the general formula (VI) include octamethylcyclotetrasiloxane and tetramethyltetraphenylcyclotetrasiloxane.

前記(IV)のビニル単量体は、本発明の球状複合微粒
子を主形成する成分の他の一つであるビニル重合体の原
料であって、シラノール基及びシラノール基形成性原子
団と反応性をもたないビニル単量体の1種又は2種以上
である。かかるビニル単量体については、前記(!■)
におけるビニル重合体のところで前述したことと同様で
ある。
The vinyl monomer (IV) is a raw material for the vinyl polymer, which is another component that mainly forms the spherical composite fine particles of the present invention, and is reactive with silanol groups and silanol group-forming atomic groups. One or more types of vinyl monomers having no. Regarding such vinyl monomers, see (!■) above.
The same applies to the vinyl polymer described above.

より具体的に、かかるビニル単量体としては。More specifically, such vinyl monomers include:

メチルメタクリレート、エチルメタクリレート、ブチル
メタクリレート、インブチルメタクリレート、2−エチ
ルへキシルメタクリレート、シクロヘキシルメタクリレ
ート等のメタアクリル酸エステル類、メチルアクリレー
ト、エチルアクリレート、ブチルアクリレート等のアク
リル酸エステル類、スチレン、α−メチルスチレン等の
芳香族ビニル単量体、酢酸ビニル等の他の1価の単量体
、エチレングリコールジメタクリレート、ジエチレング
リコールジメタクリレート、ポリエチレングリコールア
クリレート、ポリエチレングリコールジメタクリレート
、ジビニルベンゼン、グリセリントリメタクリレート、
トリメチロールプロパントリメタクリレート、ビスフェ
ノールAジメタクリレート、ジェトキシ化ビスフェノー
ルAジメタクリレート等の2価以上の単量体が挙げられ
る。
Methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, inbutyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, acrylic esters such as methyl acrylate, ethyl acrylate, butyl acrylate, styrene, α-methyl Aromatic vinyl monomers such as styrene, other monovalent monomers such as vinyl acetate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, polyethylene glycol acrylate, polyethylene glycol dimethacrylate, divinylbenzene, glycerin trimethacrylate,
Divalent or higher monomers such as trimethylolpropane trimethacrylate, bisphenol A dimethacrylate, and jetoxylated bisphenol A dimethacrylate can be mentioned.

以上例示したものはいずれも非水溶性のビニル単量体で
あるが、これらと共に少量の1通常は10モル%以下で
、アクリル酸やメタアクリル酸等の水溶性のビニル単量
体を併用していてもよい。
All of the above examples are water-insoluble vinyl monomers, but in addition to these, a small amount of water-soluble vinyl monomers such as acrylic acid and methacrylic acid, usually 10 mol% or less, are also used. You can leave it there.

本発明の球状複合微粒子を製造するに際しては、前記(
III)のシラノール基形成性ケイ素化合物/前記(r
V)のビニル単量体が99/1〜33/67(重量比)
の範囲に共存する状態で反応を行なう、この範囲から外
れると、所期の球状複合微粒子は得られない。
When producing the spherical composite fine particles of the present invention, the above (
III) silanol group-forming silicon compound/(r
V) vinyl monomer is 99/1 to 33/67 (weight ratio)
The reaction is carried out in a state in which the particles coexist within the range of 1. If the reaction is outside this range, the desired spherical composite fine particles cannot be obtained.

本発明の球状複合微粒子を製造する方法は、ポリシロキ
サンを生成させる第1段階とビニル重合体を生成させる
第2段階とに大別される。
The method for producing spherical composite fine particles of the present invention is roughly divided into a first step of producing polysiloxane and a second step of producing vinyl polymer.

第1段階では、ビニル重合体の原料である前述したよう
なビニル単量体の存在下に、ポリシロキサンの原料であ
る前述したようなシラノール基形成性ケイ素化合物を水
系媒体中で加水分解しつつ縮重合する。ここで用いる水
系媒体は水又は水を30重量%以上、好ましくは50重
量%以上含有する均一溶媒系である。この場合、水以外
に併用できる溶媒としては、メタノール、エタノール、
インプロパツール、アセトン、テトラヒドロフラン、酢
酸エチル等の水溶性溶媒がある。
In the first step, a silanol group-forming silicon compound as described above, which is a raw material for polysiloxane, is hydrolyzed in an aqueous medium in the presence of a vinyl monomer as described above, which is a raw material for a vinyl polymer. Polycondensation occurs. The aqueous medium used here is water or a homogeneous solvent system containing 30% by weight or more, preferably 50% by weight or more of water. In this case, solvents that can be used in addition to water include methanol, ethanol,
Water-soluble solvents include impropatol, acetone, tetrahydrofuran, and ethyl acetate.

シラノール基形成性ケイ素化合物を加水分解しつつ縮重
合する際に用いる触媒は従来公知のものでよい、これに
は例えば、アンモニア、トリメチルアミン、トリエチル
アミン、テトラエチルアンモニウムハイドロオキサイド
等の有機塩基類、水酸化ナトリウム、水酸化カリウム、
炭酸ナトリウム、)欠酸水素ナトリウム、ナトリウムメ
トキシド等の無機塩基類、テトラメトキシチタン、テト
ラブトキシチタン等のチタン化合物、ジブチル錫オキサ
イド、ジブチル錫ラウレート等の錫化合物、更にはP−
1ルエンスルホン酸、ドデシルベンゼンスルホン酸等の
有機酸類がある。これらのうちでは、アンモニア、トリ
メチルアミン、トリエチルアミンが好ましい、共存する
ビニル単量体への影響が少なく、また生成物から除去し
易いからである。
The catalyst used for condensation polymerization while hydrolyzing a silanol group-forming silicon compound may be any conventionally known catalyst, such as ammonia, trimethylamine, triethylamine, organic bases such as tetraethylammonium hydroxide, sodium hydroxide, etc. , potassium hydroxide,
Inorganic bases such as sodium carbonate, sodium hydrogen oxide, sodium methoxide, titanium compounds such as tetramethoxytitanium and tetrabutoxytitanium, tin compounds such as dibutyltin oxide and dibutyltin laurate, and even P-
There are organic acids such as 1-luenesulfonic acid and dodecylbenzenesulfonic acid. Among these, ammonia, trimethylamine, and triethylamine are preferred because they have little effect on coexisting vinyl monomers and are easy to remove from the product.

加水分解しつつ縮重合する反応は触媒を溶解した水系媒
体系にシラノール基形成性ケイ素化合物及びビニル単量
体を投入して攪拌することにより行なう、投入の方法は
特に限定されないが、反応の均−性及び操作性等の面で
、双方を予め混合しておいてから反応系に投入する方法
が好ましい。
The reaction of polycondensation while hydrolyzing is carried out by adding the silanol group-forming silicon compound and the vinyl monomer to an aqueous medium in which the catalyst is dissolved and stirring.The method of adding is not particularly limited, but - From the viewpoint of performance and operability, it is preferable to mix both components in advance and then add them to the reaction system.

加水分解しつつ縮重合する際の温度や時間は、原料の種
類や濃度、溶媒の種類、触媒の種類や濃度等により異な
るが、温度は通常0〜90℃、好ましくは0〜60℃の
範囲であり、また時間は通常30分〜24時間の範囲で
ある。かくして第1段階の反応を行ない、ポリシロキサ
ンを生成させてビニル単量体が混在する該ポリシロキサ
ンの球状微粒子を得る。
The temperature and time for condensation polymerization while hydrolyzing vary depending on the type and concentration of raw materials, the type of solvent, the type and concentration of catalyst, etc., but the temperature is usually in the range of 0 to 90°C, preferably 0 to 60°C. and the time is usually in the range of 30 minutes to 24 hours. Thus, the first stage reaction is carried out to produce polysiloxane and obtain spherical fine particles of the polysiloxane in which vinyl monomer is mixed.

そして第2段階では、ラジカル重合触媒の存在下に、ポ
リシロキサンの球状微粒子に混在するビニル単量体を水
系媒体中で重合する。第1段階から第2段階への移行に
は種々の方法が可能である。第1段階で用いた例えば触
媒が第2段階の反応に問題がない場合にはそのまま第2
段階へ移行することができ、逆に問題がある場合には該
触媒を除去又は不活性化してから第2段階へ移行する。
In the second step, vinyl monomers mixed in the spherical fine particles of polysiloxane are polymerized in an aqueous medium in the presence of a radical polymerization catalyst. Various methods are possible for transitioning from the first stage to the second stage. For example, if the catalyst used in the first stage has no problem with the second stage reaction, it can be used directly in the second stage.
If there is a problem, the catalyst can be removed or deactivated before proceeding to the second stage.

第2段階の水系媒体は第1段階の水系媒体と同様である
が、ここでは水単独の溶媒を用いるのが好ましい。
The aqueous medium in the second stage is the same as the aqueous medium in the first stage, but here it is preferable to use water alone as a solvent.

ビニル単量体を重合する際に用いるラジカル重合触媒は
従来公知のものでよい、これには例えば、過硫酸カリウ
ム、過硫酸アンモニウム等の過硫酸塩類、t−ブチルハ
イドロパーオキサイド、ジイソプロピルベンゼンハイド
ロパーオキサイド。
The radical polymerization catalyst used in polymerizing vinyl monomers may be conventionally known catalysts, such as persulfates such as potassium persulfate and ammonium persulfate, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, etc. .

クメンハイドロパーオキサイド等のハイドロパーオキサ
イド類、ジ−t−ブチルパーオキサイド、t−ブチルパ
ーベンゾエート、ジクミルパーオキサイド、t−ブチル
パーアセテート、L−ブチルパーオクタノエート、t−
ブチルパーフタレートラウロイルパーオキサイド、シク
ロヘキサノンパーオキサイド、メチルイソブチルケトン
パーオキサイド等の有機過酸化物、2,2°−アゾビス
イソブチロニトリル、2.2′−7ゾビスー2.4−ジ
メチルバレロニトリル、2−カルバモイルアゾイソブチ
ロニトリル、ジメチル−2,2°−7ゾビスイソブチレ
ート、1,1°−アゾビスシクロヘキサンカルボニトリ
ル1のアゾ化合物、過硫酸塩・チオ硫酸ナトリウム・硫
酸銅、ハイドロパーオキサイド・硫酸第一鉄・ピロリン
酸ナトリウム・リン酸ナトリウム、ハイドロパーオキサ
イド・硫酸第一鉄・グルコース・ピロリン酸ナトリウム
等のレドックス系触媒がある。
Hydroperoxides such as cumene hydroperoxide, di-t-butyl peroxide, t-butyl perbenzoate, dicumyl peroxide, t-butyl peracetate, L-butyl peroctanoate, t-
Organic peroxides such as butyl perphthalate lauroyl peroxide, cyclohexanone peroxide, methyl isobutyl ketone peroxide, 2,2°-azobisisobutyronitrile, 2,2'-7zobis-2,4-dimethylvaleronitrile, 2-Carbamoylazoisobutyronitrile, dimethyl-2,2°-7zobisisobutyrate, 1,1°-azobiscyclohexanecarbonitrile azo compound of 1, persulfate/sodium thiosulfate/copper sulfate, hydro There are redox catalysts such as peroxide, ferrous sulfate, sodium pyrophosphate, sodium phosphate, hydroperoxide, ferrous sulfate, glucose, and sodium pyrophosphate.

ビニル単量体を重合する反応は、該ビニル単量体が混在
するポリシロキサンの球状微粒子を分散した水系媒体中
へ、不活性ガス雰囲気下でラジヵル重合触媒を投入して
攪拌することにより行なう、この際の温度は、第1段階
の場合と同様、種々の条件により異なるが、通常室温〜
該ビニル単量体の沸点、好ましくは50〜80℃の範囲
である。かくしてff12段階の反応を行ない、ビニル
重合体を生成させて、双方が一体的に混在しており且つ
双方が実質的に共有結合していないポリシロキサンとビ
ニル重合体とから主形成されてなる所望通りの球状複合
微粒子を得る。
The reaction of polymerizing the vinyl monomer is carried out by introducing a radical polymerization catalyst into an aqueous medium in which spherical fine particles of polysiloxane containing the vinyl monomer are dispersed under an inert gas atmosphere and stirring the mixture. The temperature at this time varies depending on various conditions, as in the case of the first stage, but is usually between room temperature and
The boiling point of the vinyl monomer is preferably in the range of 50 to 80°C. In this way, the ff12 step reaction is carried out to produce a vinyl polymer, and the desired compound is formed mainly from a polysiloxane and a vinyl polymer in which both are integrally mixed and both are not substantially covalently bonded. Obtain spherical composite fine particles.

得られる球状複合微粒子の平均粒径、粒径の標準偏差値
及び長径と短径との比は、用いる原料の種類や濃度、溶
媒の種類、触媒の種類や濃度、更には反応温度や反応時
間等によって異なり、これらの条件を適宜選定・するこ
とによって調整することができる。また反応系に乳化剤
や分散剤等を存在させることによって調整することもで
き、更には得られる球状複合微粒子を乾式又は湿式で解
砕、分散、分級することによっても調整することができ
る。
The average particle diameter, standard deviation value of particle diameter, and ratio of major axis to minor axis of the obtained spherical composite fine particles depend on the type and concentration of the raw materials used, the type of solvent, the type and concentration of the catalyst, and also the reaction temperature and reaction time. etc., and can be adjusted by appropriately selecting and adjusting these conditions. It can also be adjusted by the presence of an emulsifier, a dispersant, etc. in the reaction system, and it can also be adjusted by crushing, dispersing, and classifying the resulting spherical composite fine particles in a dry or wet process.

本発明の球状複合微粒子を塗料、化粧品、ゴム、プラス
チックス、紙等の改質剤として添加する場合、これをそ
のまま直接添加することもできるが、通常は該球状複合
微粒子を室温下で液状若しくは固状の有機媒体又は水系
媒体に1〜40重量%、好ましくは5〜30重量%の濃
度で分散した分散体として添加するのが有利である。こ
の場合、該球状複合微粒子を分散する媒体の種類は、改
質対象によって適宜選択することができる8例えば、該
球状複合微粒子を油性インク、油性塗料。
When the spherical composite fine particles of the present invention are added as a modifier to paints, cosmetics, rubber, plastics, paper, etc., they can be directly added as they are, but usually the spherical composite fine particles are kept in a liquid or liquid state at room temperature. Advantageously, it is added as a dispersion in a solid organic or aqueous medium at a concentration of 1 to 40% by weight, preferably 5 to 30% by weight. In this case, the type of medium in which the spherical composite fine particles are dispersed can be appropriately selected depending on the object to be modified.8 For example, the spherical composite fine particles can be dispersed in oil-based ink or oil-based paint.

磁性塗料の改質剤として用いる場合は、媒体として、酢
酸エチル等の脂肪酸エステル類、トルエンやキシレン等
の芳香族炭化水素類、メチルエチルケトン等のケトン類
が挙げられ、また該球状複合微粒子をラジカル硬化性の
樹脂やコーティング剤の改質剤として用いる場合は、媒
体として、スチレン、(メタ)アクリル酸エステル、酢
酸ビニル等のビニル単量体が挙げられ、更に該球状複合
微粒子を潤滑油や繊維処理用油剤の改質剤として用いる
場合は、媒体として、鉱物油、流動パラフィン、各種の
合成エステル類、より具体的にはブチルステアレート、
2−エチルへキシルパルミテート、トリメチロールプロ
パン、トリ脂肪酸エステル、ポリエーテル類、ポリジメ
チルシロキサン等の有機媒体が挙げられる。そして該球
状複合微粒子を熱可塑性樹脂や熱硬化性樹脂の金型成形
における離型剤の改質剤として用いる場合は、媒体とし
て、炭化水素系ワックス、シェリー、天然若しくは合成
エステルワックス類等の室温下で固状の有機媒体が挙げ
られる。そしてまた該球状複合微粒子を化粧品、水性塗
料1紙塗工剤の改質剤として用いる場合は、媒体として
、水、水と水溶性有機溶媒とを混合した水系媒体、より
具体的には水とエタノールやグリセリン等とを混合した
水系媒体が挙げられる。
When used as a modifier for magnetic paint, examples of the medium include fatty acid esters such as ethyl acetate, aromatic hydrocarbons such as toluene and xylene, and ketones such as methyl ethyl ketone. When used as a modifier for plastic resins or coating agents, vinyl monomers such as styrene, (meth)acrylic acid esters, and vinyl acetate may be used as the medium, and the spherical composite fine particles may be treated with lubricating oil or fibers. When used as a modifier for commercial oils, mineral oil, liquid paraffin, various synthetic esters, more specifically butyl stearate,
Examples include organic media such as 2-ethylhexyl palmitate, trimethylolpropane, trifatty acid esters, polyethers, and polydimethylsiloxane. When the spherical composite fine particles are used as a modifier for a mold release agent in mold molding of thermoplastic resin or thermosetting resin, the medium may be a room-temperature material such as hydrocarbon wax, sherry, natural or synthetic ester wax, etc. Solid organic media are mentioned below. When the spherical composite fine particles are used as a modifier for cosmetics or water-based paints or paper coating agents, the medium may be water, an aqueous medium prepared by mixing water and a water-soluble organic solvent, or more specifically water-based medium mixed with water and a water-soluble organic solvent. Examples include aqueous media mixed with ethanol, glycerin, etc.

本発明の球状複合微粒子は、熱可塑性樹脂のフィルムや
シート等、各種成形物の表面滑性化及びブロッキング防
止に特に有効である。該球状複合微粒子をこれらのもの
に添加する方法としては、熱可塑性樹脂の溶融ポリマー
に直接添加する方法と、熱可塑性樹脂を製造する際の重
合系に添加する方法、例えばテレフタル酸又はエステル
形成性テレフタルMU導体とエチレングリコールとを縮
重合してポリエチレンテレフタレートを製造する際の縮
重合系に添加する方法とがある。直接添加する場合には
1球状複合微粒子を5〜40重量%含有する熱可塑性樹
脂のマスターバッチを作製しておき、該マスターバッチ
を用いるのが有利であり、この場合の媒体としては、ポ
リプロピレン、ポリエチレン、ポリスチレン等の熱可塑
性有機高分子が挙げられる。また重合系に添加する場合
の媒体としては、エチレングリコール、プロピレングリ
コール、1.4−ブタンジオール、ヘキサメチレングリ
コール、ポリアルキレンゲリコール等のジオール類が挙
げられるが、なかでも炭素数2〜4のアルキレングリコ
ールが好ましい。
The spherical composite fine particles of the present invention are particularly effective in smoothing the surface and preventing blocking of various molded products such as thermoplastic resin films and sheets. The spherical composite fine particles can be added to these materials by directly adding them to the molten polymer of the thermoplastic resin, or by adding them to the polymerization system when producing the thermoplastic resin, such as adding terephthalic acid or ester-forming particles. There is a method in which the terephthalic MU conductor and ethylene glycol are condensed and polymerized to produce polyethylene terephthalate. In the case of direct addition, it is advantageous to prepare a masterbatch of thermoplastic resin containing 5 to 40% by weight of spherical composite fine particles and use this masterbatch. In this case, the medium may be polypropylene, Examples include thermoplastic organic polymers such as polyethylene and polystyrene. Examples of the medium to be added to the polymerization system include diols such as ethylene glycol, propylene glycol, 1,4-butanediol, hexamethylene glycol, and polyalkylene gelylcol, among which Alkylene glycols are preferred.

本発明の球状複合微粒子を含有する分散体の調製方法に
ついて特に制限はないが、該分散体に所期の効果をより
良く発揮させるためには1球状複合微粒子の二次凝集粒
子を解砕処理するのが好ましい、かかる場合の分散体の
調製は1球状複合微粒子を乾式で解砕処理した後に媒体
中へ分散させてもよいし、媒体中へ分散させた後に湿式
で解砕処理してもよい1本発明の球状複合微粒子は、か
かる解砕処理を行なっても、その二次凝集粒子が元来の
一次粒子に解砕されるのみであって、元来の一次粒子そ
れ自体が損傷を受けることは殆んどない。
Although there are no particular limitations on the method for preparing the dispersion containing the spherical composite fine particles of the present invention, in order for the dispersion to better exhibit the desired effect, the secondary agglomerated particles of the spherical composite fine particles are subjected to crushing treatment. In such a case, the dispersion may be prepared by dry crushing the spherical composite fine particles and then dispersing them in a medium, or by dispersing them in a medium and then wet crushing them. Good 1: Even if the spherical composite fine particles of the present invention are subjected to such crushing treatment, the secondary agglomerated particles are only crushed into the original primary particles, and the original primary particles themselves are not damaged. I almost never receive it.

かくして本発明の球状複合微粒子を含有する分散体を調
整するが、該分散体には、分散剤の他に、保護コロイド
としての界面活性剤や高分子物質等を共存させることも
できる。
In this way, a dispersion containing the spherical composite fine particles of the present invention is prepared, and in addition to the dispersant, a surfactant as a protective colloid, a polymeric substance, etc. can also be coexisting in the dispersion.

以下、本発明の構成をより具体的にするため実施例等を
挙げるが1本発明が該実施例に限定されるというもので
はない。
Examples are given below to make the structure of the present invention more specific, but the present invention is not limited to these Examples.

〈実施例等〉 試験区分l(球状複合微粒子等の製造例)以下に球状複
合微粒子等の製造例を挙げ、それらの内容及び結果を第
1表にまとめて示した。
<Examples, etc.> Test Category 1 (Production Examples of Spherical Composite Fine Particles, etc.) Examples of producing spherical composite fine particles, etc. are listed below, and their contents and results are summarized in Table 1.

尚、第1表中の内容及び結果は次の方法で測定したもの
である。
The contents and results in Table 1 were measured using the following method.

l)平均粒径及び長径と短径との比 各個で得られた球状複合微粒子等を走査型電子WJ微鏡
(SEM)で写真撮影した。そしてこの写真撮影の画像
から50個の微粒子を任意に選定し、選定した個々の微
粒子の長径(粒子の中心を通る最長の径=ロシ)及び短
径(粒子の中心を通る最短の径=D5)を測定して計算
した(OL + O3) / 2の平均値を平均粒径と
し、また0L10Sの平均値を長径と短径との比とした
l) Average particle size and ratio of major axis to minor axis The spherical composite fine particles obtained in each case were photographed using a scanning electronic WJ microscope (SEM). Then, 50 fine particles are randomly selected from the photographed image, and the major axis (the longest diameter passing through the center of the particle = D5) and the short axis (the shortest diameter passing through the center of the particle = D5) of each selected fine particle. The average value of (OL + O3) / 2 calculated by measuring ) was taken as the average particle diameter, and the average value of 0L10S was taken as the ratio of the major axis to the minor axis.

2)粒径の標準偏差値 各個で(;Iられた球状複合微粒子等を1重量%のノニ
ルフェノールエチレンオキサイドlOモル付加体を含む
水に超音波分散し、その分散液を用いて超遠心式自動粒
度9市測定器(掘場製作所社製のCAP−700型)で
測定した。
2) Ultrasonic dispersion of spherical composite fine particles, etc., each with a standard deviation value of particle size (; The particle size was measured using a 9-meter particle size measuring device (CAP-700 model manufactured by Horiba Seisakusho Co., Ltd.).

3)ポリシロキサン含有量(重量%) 各個で得られた球状複合微粒子等を硝酸/過塩素酢(5
/2)i合物中で加熱乾固して有機物を分解した後、モ
リブデンブルー法(比色法:Anal、 Chem、、
19巻、873.1947年)で5iOz含有量を求め
、そのS i02含有量と仕込んだケイ素化合物の組成
化とから算出した値をポリシロキサン含有量とした。
3) Polysiloxane content (wt%) The spherical composite fine particles obtained individually were mixed with nitric acid/perchlorine vinegar (5% by weight).
/2) After decomposing organic matter by heating to dryness in a compound, molybdenum blue method (colorimetric method: Anal, Chem,
19, 873, 1947), and the value calculated from the Si02 content and the composition of the charged silicon compound was taken as the polysiloxane content.

・実施例1 フラスコに水658■l及び28%アンモニア水8.3
gを仕込み、室温下、内容物が2層状態を保つよう緩慢
に攪拌しながら、エチルオルソシリケート6g(0,0
29モル)、オクタメチルシクロテトラシロキサン23
g(0,078モル)トリメトキシメチルシラン71g
(0,52モル)及びスチレン10g(0,o9s9g
)の混合物を1時間かけて滴下し、2層状態の溶液界面
において加水分解しつつ縮重合した0反応の進行に伴い
生成物が下層へ徐々に沈降して該下層は白濁したが、約
2時間で2暦状態は消失して均一系になった。引続き同
条件で3時間、やや強く攪拌を行なった後、白色微粒子
を濾別した0次いでこの白色微粒子を別のフラスコへ水
1000・1と共に仕込み、窒素気流下、内容物を70
℃に昇温し1%過硫酸カリウム水溶液lOO園1を1時
間かけて滴下した。引続き同条件で3時間熟成してラジ
カル重合を行なった後、内容物を室温に冷却して、白色
複合微粒子を濾別した。そしてこの白色複合微粒子を洗
浄し、乾燥して、球状複合微粒子61gt−得た。
・Example 1 658 μl of water and 8.3 liters of 28% ammonia water in a flask
6 g of ethyl orthosilicate (0,0
29 mol), octamethylcyclotetrasiloxane 23
g (0,078 mol) trimethoxymethylsilane 71 g
(0,52 mol) and 10 g of styrene (0,9s9g
) was added dropwise over a period of 1 hour, and as the reaction progressed, the product gradually settled to the lower layer, which became cloudy, but about 2 Over time, the two-calendar state disappeared and became a homogeneous system. After stirring a little more strongly under the same conditions for 3 hours, the white fine particles were filtered out.Then, the white fine particles were charged into another flask with 1000.1 of water, and the contents were reduced to 70.0 mm under nitrogen flow.
The temperature was raised to 0.degree. C., and a 1% potassium persulfate aqueous solution lOOen 1 was added dropwise over 1 hour. Subsequently, the mixture was aged for 3 hours under the same conditions to perform radical polymerization, and then the contents were cooled to room temperature and the white composite fine particles were filtered off. The white composite fine particles were washed and dried to obtain 61 gt of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が1.1gm、長
径と短径との比が1.02、標準偏差値が1.42.ポ
リシロキサン含有量が86.3重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 1.1 gm, a ratio of major axis to minor axis of 1.02, and a standard deviation value of 1.42. The polysiloxane content was 86.3% by weight.

・実施例2 実施例1と同様に、水658m1.28%アンモニア水
8.3g、エチルオルソシリケー)6g (0,029
モル)、オクタメチルシクロテトラシロキサン23g(
0,078モル)、トリメトキシメチルシラン71g(
0,52モル)、スチレン38g(0,36モル)及び
ジビニルベンゼン2g(0,015モル)を用いて、加
水分解、縮重合及びラジカル重合を行ない、球状複合微
粒子93gを得た。
・Example 2 Same as Example 1, 658 ml of water, 8.3 g of 1.28% ammonia water, 6 g of ethyl orthosilicate (0,029
mol), octamethylcyclotetrasiloxane 23g (
0,078 mol), trimethoxymethylsilane 71 g (
0.52 mol), 38 g (0.36 mol) of styrene, and 2 g (0.015 mol) of divinylbenzene were used to perform hydrolysis, polycondensation, and radical polymerization to obtain 93 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が1.0gm、長
径と短径との比が1.03.標準偏差値が1.50、ポ
リシロキサン含有量が64.7重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 1.0 gm and a ratio of major axis to minor axis of 1.03. The standard deviation value was 1.50, and the polysiloxane content was 64.7% by weight.

・実施例3 実施例1と同様に、水658m1.28%アンモニア水
8.3g、エチルオルソシリケー)75g(0,36モ
ル)、トリメトキシメチルシラン75g(0,55モル
)及びスチレン5g(0,048モル)を用いて、加水
分解、11i!重合及びラジカル重合を行ない、球状複
合微粒子55gを得た。
・Example 3 Same as Example 1, 658 ml of water, 1.28% aqueous ammonia 8.3 g, ethyl orthosilicate) 75 g (0.36 mol), trimethoxymethylsilane 75 g (0.55 mol) and styrene 5 g ( 0,048 mol), hydrolysis, 11i! Polymerization and radical polymerization were performed to obtain 55 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が1.2μm、長
径と短径との比が1.04.標準偏差値が1.67、ポ
リシロキサン含有量が92.9重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 1.2 μm and a ratio of major axis to minor axis of 1.04. The standard deviation value was 1.67, and the polysiloxane content was 92.9% by weight.

・実施例4 実施例1と同様に、水658■l、28%アンモニア水
16.6g、エチルオルソシリケート6g(0,029
モル)、オクタメチルシクロテトラシロキサン23g(
0,078モル)、トリメトキシメチルシラ771g(
0,52モル)及びメチルメタクリレ−)10g(0,
1モル)を用いて、加水分解、縮重合及びラジカル重合
を行ない、球状複合微粒子59gを得た。
・Example 4 Same as Example 1, 658 μl of water, 16.6 g of 28% ammonia water, 6 g of ethyl orthosilicate (0,029
mol), octamethylcyclotetrasiloxane 23g (
0,078 mol), trimethoxymethyl silica 771 g (
0,52 mol) and methyl methacrylate) 10 g (0,
Hydrolysis, condensation polymerization and radical polymerization were carried out using 1 mol) of the spherical composite particles to obtain 59 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が0.5μm、長
径と短径との比が1.01、標準偏差値が1.31、ポ
リシロキサン含有量が87.1重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 0.5 μm, a ratio of major axis to minor axis of 1.01, a standard deviation value of 1.31, and a polysiloxane content of 87.1% by weight.

・実施例5 実施例1と同様に、水329m1.メタノール329g
、28%アンモニア水16.6g、エチルオルソシリケ
ート6g(0,029モル)、オクタメチルシクロテト
ラシロキサン23g(0,078モル)、トリメトキシ
メチルシラン71g(0,52モル)及びスチレン10
g(0,096モル)を用いて、加水分解、縮重合及び
ラジカル重合を行ない1球状複合微粒子60gを得た。
・Example 5 Same as Example 1, 329 ml of water. 329g methanol
, 16.6 g of 28% ammonia water, 6 g (0,029 mol) of ethyl orthosilicate, 23 g (0,078 mol) of octamethylcyclotetrasiloxane, 71 g (0,52 mol) of trimethoxymethylsilane, and 10 g of styrene.
(0,096 mol) was used to perform hydrolysis, condensation polymerization, and radical polymerization to obtain 60 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が0.4p m 
、長径と短径との比が1.05、標準偏差値が1.45
.ポリシロキサン含有量が87.9重量%であった。
The obtained spherical composite fine particles have an average particle size of 0.4 p m
, the ratio of the major axis to the minor axis is 1.05, and the standard deviation value is 1.45.
.. The polysiloxane content was 87.9% by weight.

・実施例6 実施例1と同様に、水658’ml、  28%アンモ
ニア水8.3g、エチルオルソシリケート6g(0,0
29モル)、オクタメチルシクロテトラシロキサン23
g(0,078モル)、トリメトキシメチルシラン71
g(0,52モル)及びスチレン64g(0,61モル
)を用いて、加水分解、縮重合を行なった後、白色微粒
子を濾別することなく、反応系へ89%リン酸9gを加
えて該反応系を中性にし、更に水330m1を加え、引
続き実施例1と同様にラジカル重合を行ない、球状複合
微粒子110gを得た。
・Example 6 Same as Example 1, 658'ml of water, 8.3g of 28% ammonia water, 6g of ethyl orthosilicate (0,0
29 mol), octamethylcyclotetrasiloxane 23
g (0,078 mol), trimethoxymethylsilane 71
After hydrolysis and polycondensation using 64 g (0.61 mol) of styrene and 64 g (0.61 mol) of styrene, 9 g of 89% phosphoric acid was added to the reaction system without filtering out the white particles. The reaction system was neutralized, 330 ml of water was added, and radical polymerization was then carried out in the same manner as in Example 1 to obtain 110 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が0.8pm、長
径と短径との比が1.04、標準偏差値が1.77、ポ
リシロキサン含有量が5に20重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 0.8 pm, a ratio of major axis to minor axis of 1.04, a standard deviation value of 1.77, and a polysiloxane content of 5 to 20% by weight.

・実施例7 実施例1と同様に、水858m1.28%アンモニア水
8.3g、エチルオルンシリヶー)26g(0,12モ
ル)、オクタメチルシクロテトラシロキサン19g(0
,064モル)、トリメトキシメチルシラン17g(0
,12モル)及びスチレン62g(0,60モル)を用
いて、加水分解、縮重合及びラジカル重合を行ない1球
状複合微粒子75gを得た。
・Example 7 Same as Example 1, 858 ml of water, 1.28% ammonia water 8.3 g, 26 g (0.12 mol) of ethyl orne silica, 19 g (0.12 mol) of octamethylcyclotetrasiloxane
,064 mol), trimethoxymethylsilane 17g (0
, 12 moles) and 62 g (0.60 moles) of styrene were used to carry out hydrolysis, condensation polymerization, and radical polymerization to obtain 75 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が0.71Lm、
長径と短径との比が1.06.fi準偏差値が1.71
、ポリシロキサン含有量が39.3重量%であった。
The obtained spherical composite fine particles had an average particle size of 0.71 Lm,
The ratio of the major axis to the minor axis is 1.06. fi standard deviation value is 1.71
, the polysiloxane content was 39.3% by weight.

・実施例8 実施例1と同様に、水658m1.28%アンモニア水
8.3g、エチルオルソシリケー)40g(0,19モ
ル)、オクタメチルシクロテトラシロキサン53g(0
,18モル)、トリメトキシメチルシラン12g(0,
088モル)及びスチレン15g(0,14モル)を用
いて、加水分解、縮重合及びラジカル重合を行ない1球
状複合微粒子65gを得た。
・Example 8 Same as Example 1, 658 ml of water, 1.28% ammonia water 8.3 g, ethyl orthosilicate) 40 g (0.19 mol), octamethylcyclotetrasiloxane 53 g (0.
, 18 mol), trimethoxymethylsilane 12 g (0,
Hydrolysis, polycondensation and radical polymerization were carried out using 0.088 mol) and 15 g (0.14 mol) of styrene to obtain 65 g of spherical composite fine particles.

得られた球状複合微粒子は、平均粒径が1.1pm、長
径と短径との比が1.04、標準偏差値が1.56、ポ
リシロキサン含有量が81.5重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 1.1 pm, a ratio of major axis to minor axis of 1.04, a standard deviation value of 1.56, and a polysiloxane content of 81.5% by weight.

・実施例9 実施例1と同様に、木658■1,28%アンモニア水
8.3g、エチルオルソシリケート6g(0,029モ
ル)、オクタメチルシクロテトラシロキサン23g (
0,078モル)、トリメトキシメチルシラン71g(
0,52モル)、スチレン12g(0,12モル)及び
ポリエチレングリコール(分子M400)モノメタクリ
レート1g(0,0025モル)を用いて、加水分解、
縮重合及びラジカル重合を行ない、球状複合微粒子60
gを得た。
・Example 9 Same as Example 1, 8.3 g of wood 658 1,28% ammonia water, 6 g (0,029 mol) of ethyl orthosilicate, 23 g of octamethylcyclotetrasiloxane (
0,078 mol), trimethoxymethylsilane 71 g (
0,52 mol), 12 g (0,12 mol) of styrene and 1 g (0,0025 mol) of polyethylene glycol (molecule M400) monomethacrylate,
By performing condensation polymerization and radical polymerization, spherical composite fine particles 60
I got g.

得られた球状複合微粒子は、平均粒径が1.0pm、長
径と短径との比が1.03、標準偏差値が1.45、ポ
リシロキサン含有量が85.8重量%であった。
The obtained spherical composite fine particles had an average particle diameter of 1.0 pm, a ratio of major axis to minor axis of 1.03, a standard deviation value of 1.45, and a polysiloxane content of 85.8% by weight.

・比較例1 フラスコに木658鳳1及び28%アンモニア水8.3
gを仕込み、室温下、内容物が2層状態を保つよう緩慢
に攪拌しながら、エチルオルソシリケート6g(0,0
29モル)、オクタメチルシクロテトラシロキサン23
g(0,078モル)及びトリメトキシメチルシラン7
1g(0,52モル)の混合物を1時間かけて滴下し、
2層状態の溶液界面において加水分解しつつ縮重合した
・Comparative example 1 Flask contains 658 wood 1 and 28% ammonia water 8.3
6 g of ethyl orthosilicate (0,0
29 mol), octamethylcyclotetrasiloxane 23
g (0,078 mol) and trimethoxymethylsilane 7
1 g (0.52 mol) of the mixture was added dropwise over 1 hour,
Polycondensation occurred while being hydrolyzed at the interface of the two-layered solution.

引続き同条件で3時間、やや強く攪拌を行なった後、内
容物を中和し、更に湿式粉砕して、白色微粒子懸濁液を
得た。
After stirring somewhat vigorously for 3 hours under the same conditions, the contents were neutralized and further wet-pulverized to obtain a white fine particle suspension.

得られた白色微粒子懸濁液は、平均粒径が1゜3gm、
長径と短径との比が1.02.標準偏差値が1.1μm
であった0次いでこの白色微粒子懸濁液を、窒素気流下
、70℃に昇温し、これに過硫酸カリウム1gを溶解し
た後、更にスチレン10g(0,096モル)を1時間
かけて滴下した。引続き同条件で3時間熟成してラジカ
ル重合を行なった後、内容物を室温に冷却して、白色ケ
ーキ状粉末を濾別した。そしてこの白色ケーキ状粉末を
洗浄し、乾燥して、白色粉末60gを得た。
The obtained white fine particle suspension had an average particle size of 1°3 gm,
The ratio of the major axis to the minor axis is 1.02. Standard deviation value is 1.1μm
Next, this white fine particle suspension was heated to 70°C under a nitrogen stream, 1 g of potassium persulfate was dissolved therein, and then 10 g (0,096 mol) of styrene was added dropwise over 1 hour. did. Subsequently, the mixture was aged for 3 hours under the same conditions to perform radical polymerization, and then the contents were cooled to room temperature and the white cake-like powder was filtered off. This white cake-like powder was washed and dried to obtain 60 g of white powder.

得られた白色粉末の形状は球状ではなく、不定形であっ
た。
The shape of the obtained white powder was not spherical but irregular.

・比較例2 実施例1と同様に、水65Bml、28%アンモニア水
8.3g、エチルオルソシリケー)6g (0,029
モル)、オクタメチルシクロテトラシロキサン92g(
0,31モル)、トリメトキシメチルシラン2g(0,
015モル)及びスチレン10g(0,096モル)を
用いて、加水分解及び縮重合を行なった。白濁エマルジ
ョンを呈する反応系には球状微粒子は無く、一部に液状
上ツマ−の′MMが見られた。この反応系へ89%リン
酸を加えて該反応系を中性にし、史に水33(1+1及
び過硫酸カリウム1gを加え、引続き実施例1と同様に
ラジカル重合を行なった6反応系に生成した粒子の形状
は球状ではなく、不定形であった。
Comparative Example 2 Same as Example 1, 65 Bml of water, 8.3 g of 28% ammonia water, 6 g of ethyl orthosilicate (0,029
mol), octamethylcyclotetrasiloxane 92g (
0,31 mol), trimethoxymethylsilane 2g (0,
Hydrolysis and polycondensation were carried out using 0.015 mol) and 10 g (0.096 mol) of styrene. In the reaction system exhibiting a cloudy emulsion, there were no spherical fine particles, and a liquid upper layer 'MM was observed in some parts. 89% phosphoric acid was added to this reaction system to make it neutral, water 33 (1+1) and 1 g of potassium persulfate were added to the reaction system, and radical polymerization was subsequently performed in the same manner as in Example 1. The shape of the particles was not spherical but irregular.

・比較例3 実施例1と同様に、水658■1.28%アンモニア水
8.3g、エチルオルソシリケート6g(0,029モ
ル)、オクタメチルシクロテトラシロキサン23g (
0,078モル)及びトリメトキシメチルシラン71g
(0,52モル)を用いて、加水分解及び縮重合を行な
い、球状微粒子を得た。
Comparative Example 3 Same as Example 1, 658 g of water, 8.3 g of 1.28% ammonia water, 6 g (0,029 mol) of ethyl orthosilicate, 23 g of octamethylcyclotetrasiloxane (
0,078 mol) and 71 g of trimethoxymethylsilane
(0.52 mol) was used for hydrolysis and polycondensation to obtain spherical fine particles.

得られた球状微粒子は、平均粒径が1.2←m、長径と
短径との比が1.03.標準偏差値が2.1であった。
The obtained spherical fine particles had an average particle diameter of 1.2←m and a ratio of major axis to minor axis of 1.03. The standard deviation value was 2.1.

・比較例4 実施例1と同様に、水658m1.28%アンモニア水
8.3g、エチルオルンシリケー)75g(0,36モ
ル)及びトリメトキシメチルシラン75g(0,55モ
ル)を用いて、加水分解及びllii重合を行ない1球
状微粒子を得た。
Comparative Example 4 In the same manner as in Example 1, using 658 ml of water, 8.3 g of 1.28% ammonia water, 75 g (0.36 mol) of ethyl orne silica, and 75 g (0.55 mol) of trimethoxymethylsilane, Hydrolysis and llii polymerization were performed to obtain one spherical fine particle.

得られた球状微粒子は、平均粒径が1.1pm、長径と
短径との比が1.03、標準偏差値が20であった。
The obtained spherical fine particles had an average particle diameter of 1.1 pm, a ratio of major axis to minor axis of 1.03, and a standard deviation value of 20.

・比較例5 実施例1と同様に、水658m1.28%アンモニア水
8.3g、エチルオルンシリケー)2g (0,009
7モル)、オクタメチルシクロテトラシロキサン7.7
g(0,028モル)、トリメトキシメチルシラン23
.7g (0,17モル)及びスチレン80g(0,7
7モル)を用いて。
・Comparative Example 5 Same as Example 1, 658 ml of water, 1.28% ammonia water 8.3 g, ethyl orne silica) 2 g (0,009
7 mol), octamethylcyclotetrasiloxane 7.7
g (0,028 mol), trimethoxymethylsilane 23
.. 7 g (0,17 mol) and 80 g (0,7 mol) of styrene
7 mol).

加水分解及び縮重合を行なった0反応系には一部にスチ
レンの分離が見られた。この反応系へ89%リン酸を加
えて該反応系を中性にし、史に水33011及び過硫酸
カリウムIgを加え、引続き実施例1と同様にラジカル
重合を行なった1反応系には球状微粒子とスチレンホモ
ポリマーとが渾然一体となったものが生成した。
Separation of styrene was observed in some parts of the 0 reaction system in which hydrolysis and polycondensation were carried out. 89% phosphoric acid was added to this reaction system to make it neutral, water 33011 and potassium persulfate Ig were added to the reaction system, and radical polymerization was subsequently carried out in the same manner as in Example 1. A mixture of styrene homopolymer and styrene homopolymer was produced.

注)第1表において。Note) In Table 1.

(I);ポリシロキサン (II);ビニル重合体 n≦l:ポリシロキサンの構成単位のうちで、前記(I
)の一般式におけるnが1以 下の構成単位が占める割合 比;長径と短径との比(0110S) 試験区分2(球状複合微粒子等の分散体の製造例) 以下に球状複合微粒子等の分散体の製造例を挙げ、それ
らの内容及び結′果を第2表にまとめて示した。
(I); Polysiloxane (II); Vinyl polymer n≦l: Among the structural units of polysiloxane, the above (I)
) in the general formula where n is 1 or less; ratio of major axis to minor axis (0110S) Test Category 2 (Example of manufacturing a dispersion of spherical composite fine particles, etc.) The following is a dispersion of spherical composite fine particles, etc. The contents and results are summarized in Table 2.

尚、第2表中の結果は次の方法で評価したものである。The results in Table 2 were evaluated using the following method.

l)形状保持性 (qられた各分散体について、前述した電子顕微鏡によ
る写真撮影の画像から50個の微粒子を任意に選定し1
選定した個々の微粒子の破損の有無を観察して、次の基
準で評価した。
l) Shape retention (For each dispersion, 50 fine particles were arbitrarily selected from the above-mentioned electron microscope photographed image.
The presence or absence of damage to each selected fine particle was observed and evaluated based on the following criteria.

○;破損の認められる微粒子が1個以下0;破損の認め
られる微粒子が2〜6個Δ;破損の認められる微粒子が
7〜24個×;破損の認められる微粒子が25個以上2
)凝集粒子の有無 得られた各分散体を1000倍の光学顕微鏡で観察し、
20X20gmの範囲に存在する微粒子の凝集の程度を
次の基準で評価した。
○; 1 or less fine particles found to be damaged 0; 2 to 6 fine particles found to be damaged Δ; 7 to 24 fine particles found to be damaged ×; 25 or more fine particles found to be damaged 2
) The presence or absence of aggregated particles was observed by observing each dispersion obtained with a 1000x optical microscope,
The degree of aggregation of fine particles existing in the range of 20×20 gm was evaluated based on the following criteria.

O;凝集粒子が全粒子の1%未満 Δ;凝集粒子が全粒子の1%以上lO%未満×;凝集粒
子が全粒子の10%以上 3)分散安定性 得られた各分散体を円錯型ガラス容器に入れ、室温下に
密栓静置しく但し、実施例20は80℃の恒温槽中に密
栓静置し)、微粒子の分離状態を経日的に観察して1次
の基準で評価した。
O: Agglomerated particles are less than 1% of all particles Δ; Agglomerated particles are 1% or more and less than 10% of all particles ×; Agglomerated particles are 10% or more of all particles Place it in a molded glass container and leave it at room temperature with a hermetically sealed cap (however, in Example 20, leave it in a thermostat at 80°C), observe the state of separation of fine particles over time, and evaluate based on the primary criteria. did.

O;微粒子の分離が1月後でも認められない0;微粒子
の分離が7日〜1月で認められたΔ:微粒子の分離が2
日〜6日で認められた×;微粒子の分離が1日後に認め
られた・実施例10〜14及び比較例6〜10:j’、
2表に示す球状複合微粒子等40g及び該球状複合微粒
子等が所定濃度になる量のエチレングリコールを秤取し
、これをホモミキサーで予備分散した後、0.60〜0
.85mmφのガラスピーズを用いたバッチ型サンドグ
ラインダー(イガラシ機械社製、ベッセル容量400 
cc)で5時間処理して1分散体を得た。
O: Separation of fine particles is not observed even after one month 0; Separation of fine particles is observed from 7 days to January Δ: Separation of fine particles is 2
x: Separation of fine particles was observed after 1 day - Examples 10 to 14 and Comparative Examples 6 to 10: j',
Weigh out 40 g of the spherical composite fine particles shown in Table 2 and an amount of ethylene glycol that will give a predetermined concentration of the spherical composite fine particles, etc., pre-disperse this with a homomixer, and then
.. Batch type sand grinder using 85mmφ glass beads (manufactured by Igarashi Kikai Co., Ltd., vessel capacity 400
cc) for 5 hours to obtain 1 dispersion.

実施例10〜14の分散体はポリエステル成形品へ良好
な滑性を付与する改質剤として有用であO・ ・実施例15 第2表に示す球状複合微粒子40g及びエチレングリコ
ール160gを秤取し、これをホモミキサーで30分間
分散して、分散体を得た。
The dispersions of Examples 10 to 14 are useful as modifiers that impart good lubricity to polyester molded articles. Example 15 40 g of spherical composite fine particles shown in Table 2 and 160 g of ethylene glycol were weighed This was dispersed for 30 minutes using a homomixer to obtain a dispersion.

・実施例16.17 第2表に示す球状複合微粒子40g、イオン交換水16
0g、ノニルフェノールエチレンオキサイド3モル付加
体1.2g及びノニルフェノールエチレンオキサイド1
0モル付加体2.8gを秤取し、これを実施例10〜1
4と同様に分散処理して、分散体を得た。
・Example 16.17 40 g of spherical composite fine particles shown in Table 2, 16 g of ion-exchanged water
0 g, nonylphenol ethylene oxide 3 mole adduct 1.2 g and nonylphenol ethylene oxide 1
Weighed out 2.8 g of the 0 mole adduct and added it to Examples 10-1.
A dispersion treatment was carried out in the same manner as in 4 to obtain a dispersion.

これらの分散体は、水性塗料、化粧品、紙塗工剤、繊維
処理用油剤等の改質剤として有用である。
These dispersions are useful as modifiers for water-based paints, cosmetics, paper coating agents, textile treatment oils, and the like.

・実施例18 第2表に示す球状複合微粒子40g及びスチレン160
gを秤取し、これを実施例10〜14と同様に分散処理
して、分散体を得た。
・Example 18 40 g of spherical composite fine particles shown in Table 2 and 160 g of styrene
g was weighed out and subjected to a dispersion treatment in the same manner as in Examples 10 to 14 to obtain a dispersion.

この分散体はラジカル重合性の樹脂やコーティング剤の
a質剤として有用である。
This dispersion is useful as a quality agent for radically polymerizable resins and coating agents.

・実施例19 第2表に示す球状複合微粒子30g及びトリメチロール
プロパントリオクタノエート170gを秤取し、これを
実施例10〜14と同様に分散処理して1分散体を得た
- Example 19 30 g of spherical composite fine particles shown in Table 2 and 170 g of trimethylolpropanetrioctanoate were weighed out and dispersed in the same manner as in Examples 10 to 14 to obtain one dispersion.

この分散体は繊維処理用油剤や潤滑剤の改質剤として有
用である。
This dispersion is useful as a modifier for fiber processing oils and lubricants.

・実施例20 第2表に示す球状複合微粒子30g及び80℃に溶融液
状化したステアリルステアレート170gを秤取混合し
、これを実施例10〜14と同様に分散処理して、分散
体を得た。
・Example 20 30 g of spherical composite fine particles shown in Table 2 and 170 g of stearyl stearate melted and liquefied at 80°C were weighed and mixed, and this was subjected to a dispersion treatment in the same manner as in Examples 10 to 14 to obtain a dispersion. Ta.

この分散体は熱可塑性樹脂や熱硬化性樹脂の金N!成形
における離型剤として有用である。
This dispersion is a thermoplastic resin or thermosetting resin gold N! Useful as a mold release agent in molding.

第2表 注)第2表において、 実施例14;ここで使用した球状複合微粒子は、実施例
1で得た乾燥前(水分6 5%)のもの 微粒子A;特開昭63−77940号公報に記載されて
いる平均粒径1.Opmの 球状ポリメチルシルセスキオキサン 微粒子B;特開昭63−185439号公報に記載され
ている平均粒径0.8部m の球状シリカ 試験区分3(球状複合微粒子の使用例)・使用例1 実施例1で得た球状複合微粒子、ポリエチレン樹脂(ユ
カロンLF−540B、三菱油化社製)及び41)電防
止剤(グリセリンモノステアレート/N、N−ビスヒド
ロキシエチルラウリルアミンが171の混合物)を25
閣麿φ二軸押出機で混練し、球状複合微粒子3重量%及
び帯電防止剤2重量%を含有するマスターバッチを調製
した。
Table 2 Note) In Table 2, Example 14: The spherical composite fine particles used here were those obtained in Example 1 before drying (65% moisture). The average particle size listed in 1. Opm's spherical polymethylsilsesquioxane fine particles B; Spherical silica test category 3 (example of use of spherical composite fine particles) with an average particle diameter of 0.8 parts m described in JP-A No. 63-185439 (example of use) 1) A mixture of the spherical composite fine particles obtained in Example 1, polyethylene resin (Yukalon LF-540B, manufactured by Mitsubishi Yuka Co., Ltd.), and 41) antistatic agent (glycerin monostearate/N, N-bishydroxyethyl laurylamine 171) ) to 25
The mixture was kneaded using a Kamaro φ twin-screw extruder to prepare a masterbatch containing 3% by weight of spherical composite fine particles and 2% by weight of an antistatic agent.

次いで該マスターバッチ10重量%を混合したポリエチ
レン樹脂(上記と同じ)を用い、30+smφのインフ
レーション成II!imで30gm厚のポリエチレンフ
ィルムを作製した0作製したフィルムの外観は良好であ
り1巻取ったフィルムロールは23℃×65%RHの雰
囲気下に2週間放置後もブロッキングは認められなかっ
た。
Next, using a polyethylene resin (same as above) mixed with 10% by weight of the masterbatch, a 30+smφ inflation film II! A polyethylene film with a thickness of 30 gm was produced using im. The appearance of the produced film was good, and no blocking was observed even after one film roll was left in an atmosphere of 23° C. and 65% RH for two weeks.

これに対し1球状複合微粒子を使用しないでその他は上
記と同様に調製しそして作製したフィルムは、異物が無
く、外観も良好であったが、上記と同様の放置後には著
しいブロッキングが認められた。
On the other hand, a film prepared in the same manner as above without using the 1 spherical composite particles had no foreign matter and had a good appearance, but significant blocking was observed after leaving it in the same manner as above. .

試験区分4(球状複合微粒子等の分散体の使用例) 以下に球状複合微粒子等の分散体の使用例を挙げ、それ
らの内容及び結果を第3表にまとめて示した。
Test Category 4 (Example of use of dispersion of spherical composite fine particles, etc.) Examples of use of dispersion of spherical composite fine particles, etc. are listed below, and their contents and results are summarized in Table 3.

尚、第3表中の結果は次の方法で評価したものである。The results in Table 3 were evaluated using the following method.

1)凝集粒子の有無 作製した各フィルムについて、前述した電子顕微鏡によ
る写真撮影を行ない、その画像の70X50gmの範囲
を観察して、次の基準で評価した。
1) Presence or absence of aggregated particles Each of the produced films was photographed using the above-mentioned electron microscope, and a 70×50 gm area of the image was observed and evaluated based on the following criteria.

0:凝集粒子が全く存在しない Δ;凝集粒子がわずかに存在する ×;凝集粒子が全粒子の10%以上存在する2)ボイド
の有無 上記l)の画像を観察して、微粒子の周囲のボイドのイ
I無を゛量定した。
0: Absolutely no aggregated particles Δ; Slight presence of aggregated particles ×; Agglomerated particles present in 10% or more of all particles 2) Presence or absence of voids Observe the image in l) above to identify voids around the fine particles. We quantified the difference between the two.

3)#度社性 作製した各フィルムから1311輻のテープ状試ネ1を
調製し、この試料をステンレス林の固定ビン(7麿量φ
)に入側荷重30gにて接触させ、2゜5m/分で30
回往復走行させた。そして往復走行後の試料の表面状態
を肉眼観察して、次の基準で評価した。
3) Prepare 1311 pieces of tape-like sample 1 from each of the prepared films, and place this sample in a stainless steel fixed bottle (7 pieces φ
) with an entrance load of 30 g, and a speed of 30 at 2°5 m/min.
I ran it back and forth several times. After the reciprocating run, the surface condition of the sample was observed with the naked eye and evaluated based on the following criteria.

■:白化又は傷等の変化が見られない 0;わずかに白化又は傷が見られる Δ;明確に白化又は傷が見られる ×;著しい白化又は傷が見られる ・使用例2〜8 ジメチルテレフタレート100重量部、エチレングリコ
ール70重量部及び酢酸マンガン4水和物0.0’35
重量部を用い、常法にしたがい230℃に昇温してエス
テル交換反応を行なった0次いでトリメチルホスフェー
ト0.03重量部を加えた後、第3表に示す球状複合微
粒子等のエチレングリコール分散体を球状複合微粒子等
の濃度がポリマーに対して0.3重量%となるように添
加し、攪拌した。モして三酸化アンチモン0.03重量
部を加えた後に昇温を開始し、常法にしたがい高温高真
空下で縮重合反応を行なって、極限粘度0 、61dl
/gのポリエチレンテレフタレートを得た。 ここで得
られたポリエチレンテレフタレートを180℃で乾燥し
、290℃に設定した押出機でシート化した後、90℃
で縦方向に3゜5部、横方向に4.0倍延伸し、更に2
10℃で熱固定して、厚さ15pmのフィルムを作製し
た。
■: No change such as whitening or scratches 0; Slight whitening or scratches Δ; Clear whitening or scratches ×: Significant whitening or scratches - Usage Examples 2 to 8 Dimethyl terephthalate 100 Parts by weight, 70 parts by weight of ethylene glycol and 0.0'35 parts by weight of manganese acetate tetrahydrate
After adding 0.03 parts by weight of trimethyl phosphate to 0.03 parts by weight, the temperature was raised to 230°C according to a conventional method to perform a transesterification reaction. were added so that the concentration of spherical composite fine particles, etc. was 0.3% by weight based on the polymer, and the mixture was stirred. After adding 0.03 parts by weight of antimony trioxide, the temperature was started to increase, and a polycondensation reaction was carried out under high temperature and high vacuum according to a conventional method, and the intrinsic viscosity was 0.61 dl.
/g of polyethylene terephthalate was obtained. The polyethylene terephthalate obtained here was dried at 180°C, formed into a sheet using an extruder set at 290°C, and then heated to 90°C.
Stretched 3° in the longitudinal direction and 4.0 times in the transverse direction, and further stretched 2.
A film with a thickness of 15 pm was produced by heat setting at 10°C.

第3表 注)第3表において、 使用例6〜8;本発明の球状複合微粒子を使用していな
い例 ボイドの欄の有;明確に認められるという意味〈発明の
効果〉 以上説明した通りであるから、本発明には、平均粒径が
小さく、またその粒径分布が狭く、しかもその形状が一
定であり、その上凝集粒子の無い安定な球状複合微粒子
及びその分散体を得ることができ、結局は設計通りの改
質を行なうことができるという効果がある。
Table 3 Note) In Table 3, Usage Examples 6 to 8: Examples in which the spherical composite fine particles of the present invention are not used. Presence of void column: Meaning clearly recognized (effect of the invention) As explained above. Therefore, in the present invention, it is possible to obtain stable spherical composite fine particles and dispersions thereof, which have a small average particle size, a narrow particle size distribution, and a constant shape, and are free from agglomerated particles. In the end, the effect is that the modification can be carried out as designed.

Claims (1)

【特許請求の範囲】 1、双方が一体的に混在しており且つ双方が実質的に共
有結合していない下記( I )のポリシロキサンと下記
(II)のビニル重合体とから主形成されてなる球状複合
微粒子であって、且つ該ポリシロキサン/該ビニル重合
体が97/3〜30/70(重量比)、また平均粒径が
0.05〜30μm、更に粒径の標準偏差値が1.0〜
2.5、そして長径と短径との比が1.0〜1.2であ
ることを特徴とする球状複合微粒子。 ( I ):一般式[RnSiO_(_4_−_n_)_
/_2]で示される構成単位の1種又は2種以上からな
るポリシ ロキサンであって、且つnが1以下の構 成単位を少なくとも15モル%以上含有 するポリシロキサン。 [但し、nは0〜3の整数。Rはケイ素原子に直接結合
した炭素原子を有する非置換又は置換炭化水素基であっ
て、且つラジカル重合性をもたない炭化水素基。] (II):シラノール基及びシラノール基形成性原子団と
反応性をもたないビニル単量体の 1種又は2種以上を重合して得られるビ ニル重合体。 2、平均粒径が0.1〜10μm、また粒径の標準偏差
値が1.0〜2.0、更に長径と短径との比が1.0〜
1.1である請求項1記載の球状複合微粒子。 3、( I )の一般式におけるRが炭素数1〜4のアル
キル基又はフェニル基である請求項1又は2記載の球状
複合微粒子。 4、(II)におけるビニル単量体が非水溶性ビニル単量
体である請求項1、2又は3記載の球状複合微粒子。 5、非水溶性ビニル単量体がアクリル酸若しくはメタク
リル酸のアルキルエステル及び芳香族ビニル単量体から
選ばれる1種又は2種以上である請求項4記載の球状複
合微粒子。 6、請求項1又は2記載の球状複合微粒子を製造するに
際し、下記(III)のシラノール基形成性ケイ素化合物
/下記(IV)のビニル単量体が99/1〜33/67(
重量比)で共存する水系媒体中で、該シラノール基形成
性ケイ素化合物を加水分解しつつ縮重合して、一旦該ビ
ニル単量体が混在するポリシロキサンの球状微粒子を生
成させ、次いでラジカル重合触媒の存在下に該ビニル単
量体を重合することを特徴とする球状複合微粒子の製造
方法。 (III):一般式(V)又は(VI)で示されるシラノー
ル基形成性ケイ素化合物であって、 且つR^1−SiX_3で示されることとなるシラノー
ル基形成性ケイ素化合物及び/又は SiX_4で示されることとなるシラノール基形成性ケ
イ素化合物を全シラノール基形 成性ケイ素化合物のケイ素換算で少なく とも15モル%以上含有するシラノール 基形成性ケイ素化合物。 一般式(V); R^1_p−SiX_4_−_p 一般式(VI); ▲数式、化学式、表等があります▼ [但し、pは0〜3の整数、qは3〜20の整数。R^
1、R^2、R^3はケイ素原子に直接結合した炭素原
子を有する非置換又は置換炭化水素基であって、且つラ
ジカル重合性をもたない炭化水素基。Xは炭素数1〜4
のアルコキシ基、炭素数1〜4のアルコキシ基を有する
アルコキシエトキシ基、炭素数2〜4のアシロキシ基、
炭素数1〜4のアルキル基を有するN,N−ジアルキル
アミノ基、ヒドロキシル基、ハロゲン原子又は水素原子
。](IV):シラノール基及びシラノール基形成性原子
団と反応性をもたないビニル単量体の 1種又は2種以上。 7、一般式(V)又は(VI)におけるR^1、R^2、
R^3が炭素数1〜4のアルキル基又はフェニル基であ
る請求項6記載の球状複合微粒子の製造方法。 8、(IV)におけるビニル単量体が非水溶性ビニル単量
体である請求項6又は7記載の球状複合微粒子の製造方
法。 9、非水溶性ビニル単量体がアクリル酸若しくはメタク
リル酸のアルキルエステル及び芳香族ビニル単量体から
選ばれる1種又は2種以上である請求項8記載の球状複
合微粒子の製造方法。 10、請求項1、2、3、4又は5記載の球状複合微粒
子と室温下で液状若しくは固状の有機媒体又は水系媒体
とを含有してなる球状複合微粒子の分散体。 11、有機媒体が炭素数2〜4のアルキレングリコール
である請求項10記載の球状複合微粒子の分散体。 12、水系媒体が水である請求項10記載の球状複合微
粒子の分散体。 13、二次凝集微粒子の解砕処理を行なった請求項10
、11又は12記載の球状複合微粒子の分散体。
[Scope of Claims] 1. Mainly formed from the following polysiloxane (I) and the vinyl polymer (II) below, in which both are integrally mixed and both are not substantially covalently bonded. spherical composite fine particles having a polysiloxane/vinyl polymer ratio of 97/3 to 30/70 (weight ratio), an average particle size of 0.05 to 30 μm, and a standard deviation value of particle size of 1 .0~
2.5, and a spherical composite fine particle characterized in that the ratio of the major axis to the minor axis is 1.0 to 1.2. (I): General formula [RnSiO_(_4_−_n_)_
/_2] A polysiloxane consisting of one or more types of structural units, and containing at least 15 mol% or more of a structural unit in which n is 1 or less. [However, n is an integer from 0 to 3. R is an unsubstituted or substituted hydrocarbon group having a carbon atom directly bonded to a silicon atom, and is a hydrocarbon group having no radical polymerizability. ] (II): A vinyl polymer obtained by polymerizing one or more vinyl monomers that do not have reactivity with silanol groups and silanol group-forming atomic groups. 2. The average particle size is 0.1 to 10 μm, the standard deviation value of the particle size is 1.0 to 2.0, and the ratio of the major axis to the minor axis is 1.0 to
1.1. The spherical composite fine particles according to claim 1. 3. The spherical composite fine particles according to claim 1 or 2, wherein R in the general formula (I) is an alkyl group having 1 to 4 carbon atoms or a phenyl group. 4. The spherical composite fine particles according to claim 1, 2 or 3, wherein the vinyl monomer in (II) is a water-insoluble vinyl monomer. 5. The spherical composite fine particles according to claim 4, wherein the water-insoluble vinyl monomer is one or more selected from alkyl esters of acrylic acid or methacrylic acid and aromatic vinyl monomers. 6. When producing the spherical composite fine particles according to claim 1 or 2, the following silanol group-forming silicon compound (III)/the vinyl monomer (IV) below is mixed in a proportion of 99/1 to 33/67 (
The silanol group-forming silicon compound is hydrolyzed and polycondensed in an aqueous medium coexisting at a weight ratio of 10 to 30% by weight to form spherical fine particles of polysiloxane in which the vinyl monomer is mixed, and then a radical polymerization catalyst is added. A method for producing spherical composite fine particles, which comprises polymerizing the vinyl monomer in the presence of. (III): A silanol group-forming silicon compound represented by the general formula (V) or (VI), and a silanol group-forming silicon compound represented by R^1-SiX_3 and/or a silanol group-forming silicon compound represented by SiX_4. A silanol group-forming silicon compound containing at least 15 mol% or more of the silanol group-forming silicon compound, calculated as silicon based on the total silanol group-forming silicon compound. General formula (V); R^1_p-SiX_4_-_p General formula (VI); ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [However, p is an integer from 0 to 3, and q is an integer from 3 to 20. R^
1, R^2, and R^3 are unsubstituted or substituted hydrocarbon groups having a carbon atom directly bonded to a silicon atom, and are non-radically polymerizable hydrocarbon groups. X has 1 to 4 carbon atoms
an alkoxy group having an alkoxy group having 1 to 4 carbon atoms, an acyloxy group having 2 to 4 carbon atoms,
N,N-dialkylamino group having an alkyl group having 1 to 4 carbon atoms, a hydroxyl group, a halogen atom or a hydrogen atom. ](IV): One or more vinyl monomers that have no reactivity with silanol groups and silanol group-forming atomic groups. 7. R^1, R^2 in general formula (V) or (VI),
7. The method for producing spherical composite fine particles according to claim 6, wherein R^3 is an alkyl group having 1 to 4 carbon atoms or a phenyl group. 8. The method for producing spherical composite fine particles according to claim 6 or 7, wherein the vinyl monomer in (IV) is a water-insoluble vinyl monomer. 9. The method for producing spherical composite fine particles according to claim 8, wherein the water-insoluble vinyl monomer is one or more selected from alkyl esters of acrylic acid or methacrylic acid and aromatic vinyl monomers. 10. A dispersion of spherical composite fine particles comprising the spherical composite fine particles according to claim 1, 2, 3, 4 or 5 and an organic medium or an aqueous medium that is liquid or solid at room temperature. 11. The dispersion of spherical composite fine particles according to claim 10, wherein the organic medium is an alkylene glycol having 2 to 4 carbon atoms. 12. The dispersion of spherical composite fine particles according to claim 10, wherein the aqueous medium is water. 13. Claim 10, wherein the secondary agglomerated fine particles are subjected to crushing treatment.
A dispersion of spherical composite fine particles according to , 11 or 12.
JP4213090A 1990-02-22 1990-02-22 Method for producing spherical composite fine particles, spherical composite fine particles and dispersion thereof Expired - Lifetime JP2942298B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4213090A JP2942298B2 (en) 1990-02-22 1990-02-22 Method for producing spherical composite fine particles, spherical composite fine particles and dispersion thereof
US08/046,393 US5296569A (en) 1990-02-22 1993-04-12 Complex microspheres, method of making same, and thermoplastic films containing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4213090A JP2942298B2 (en) 1990-02-22 1990-02-22 Method for producing spherical composite fine particles, spherical composite fine particles and dispersion thereof

Publications (2)

Publication Number Publication Date
JPH03244637A true JPH03244637A (en) 1991-10-31
JP2942298B2 JP2942298B2 (en) 1999-08-30

Family

ID=12627354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4213090A Expired - Lifetime JP2942298B2 (en) 1990-02-22 1990-02-22 Method for producing spherical composite fine particles, spherical composite fine particles and dispersion thereof

Country Status (1)

Country Link
JP (1) JP2942298B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085493A1 (en) * 2003-03-25 2004-10-07 Sekisui Plastics Co., Ltd. Polymer particle coated with silica, method for producing the same and use of the same
JP2004307837A (en) * 2003-03-25 2004-11-04 Sekisui Plastics Co Ltd Silica-coated polymer particles, production method thereof and cosmetics
JP2009138034A (en) * 2007-12-03 2009-06-25 Nippon Shokubai Co Ltd Particles and method for manufacturing the same
JP2013053237A (en) * 2011-09-05 2013-03-21 Aica Kogyo Co Ltd Composite fine particle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198846A (en) * 1986-02-27 1987-09-02 Seiko Epson Corp Transmission screen device
JPH0396686U (en) * 1990-01-23 1991-10-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62198846A (en) * 1986-02-27 1987-09-02 Seiko Epson Corp Transmission screen device
JPH0396686U (en) * 1990-01-23 1991-10-03

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085493A1 (en) * 2003-03-25 2004-10-07 Sekisui Plastics Co., Ltd. Polymer particle coated with silica, method for producing the same and use of the same
JP2004307837A (en) * 2003-03-25 2004-11-04 Sekisui Plastics Co Ltd Silica-coated polymer particles, production method thereof and cosmetics
US7138161B2 (en) 2003-03-25 2006-11-21 Sekisui Plastics Co., Ltd. Polymer particle coated with silica, method for producing the same and use of the same
JP2009138034A (en) * 2007-12-03 2009-06-25 Nippon Shokubai Co Ltd Particles and method for manufacturing the same
JP2013053237A (en) * 2011-09-05 2013-03-21 Aica Kogyo Co Ltd Composite fine particle

Also Published As

Publication number Publication date
JP2942298B2 (en) 1999-08-30

Similar Documents

Publication Publication Date Title
JP2504655B2 (en) Elastomers with a core-shell structure-granular copolymers and their preparation
JP4308668B2 (en) Impact-resistant molding material and molded body
EP0433727B1 (en) Silica-core silicone-shell particles, emulsion containing the same dispersed therein, and process for producing the emulsion
JP3149997B2 (en) Storage-stable organosiloxane composition and method for producing the same
US4859740A (en) Particulate multiphase polymers
WO2008023648A1 (en) Microparticle, process for producing microparticle, and, loaded with the microparticle, resin composition and optical film
US20110281973A1 (en) Novel particles and composite particles, their uses and a novel process for producing them from alkoxysilyl-group-carrying alkoxylation products
JP2005517058A (en) Silicone rubber-graft copolymer having core-shell structure, molding material and molded article modified to impact resistance, and method for producing the same
JPH0477022B2 (en)
JPS6243424A (en) Production of silsesquioxane emulsion
JPS62280210A (en) Graft polymers having high notch impact strength
JP2008127564A (en) Silicon-based fine particles, method for producing the same, and thermoplastic resin composition containing the fine particles
JP5550911B2 (en) Redispersible core-shell polymer and method for producing the same
JP3048738B2 (en) Silicone resin powder and synthetic resin composition
CN100593028C (en) Emulsions of organopolysiloxane resins produced by emulsion polymerization
JP2854670B2 (en) Method for producing spherical composite fine particles, spherical composite fine particles and dispersion thereof
JPH0341090B2 (en)
JPH11116681A (en) Polymethylsilylsesquioxane particle and dispersion of the same in hydrophilic solvent
JPH03244637A (en) Spherical composite particle, its production and dispersion thereof
JP3045471B2 (en) Reactive organic-inorganic composite particles
JPH11199671A (en) Production of organic and inorganic composite particle
US5296569A (en) Complex microspheres, method of making same, and thermoplastic films containing same
JP3040805B2 (en) Thermoplastic resin film with improved lubrication and anti-blocking properties
CN101479306A (en) Alkoxysilyl functional oligomers and particles surface-modified therewith
WO2002088255A1 (en) Polymeric material, molded article, and processes for producing these

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11