[go: up one dir, main page]

JPH0324847B2 - - Google Patents

Info

Publication number
JPH0324847B2
JPH0324847B2 JP60296180A JP29618085A JPH0324847B2 JP H0324847 B2 JPH0324847 B2 JP H0324847B2 JP 60296180 A JP60296180 A JP 60296180A JP 29618085 A JP29618085 A JP 29618085A JP H0324847 B2 JPH0324847 B2 JP H0324847B2
Authority
JP
Japan
Prior art keywords
chamber
check valve
flow
ventricular
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60296180A
Other languages
Japanese (ja)
Other versions
JPS62148637A (en
Inventor
Yasuo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON MDM KK
Original Assignee
NIPPON MDM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON MDM KK filed Critical NIPPON MDM KK
Priority to JP29618085A priority Critical patent/JPS62148637A/en
Publication of JPS62148637A publication Critical patent/JPS62148637A/en
Publication of JPH0324847B2 publication Critical patent/JPH0324847B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、頭蓋内圧の上昇する水頭症等の手術
や治療中の日常生活にも用いられる脳室シヤント
に関し、特にシヤント内の流量の計測を行なえる
ようにした脳室シヤントに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ventricular shunt, which is used in daily life during surgery and treatment for hydrocephalus, etc., where intracranial pressure increases, and in particular, to measurement of the flow rate within the shunt. Concerning the ventricular shunt that made it possible to perform.

頭蓋内圧とは、頭蓋腔内に存在する脳脊髄液、
脳実質、脳室、脳血管床などによつて頭蓋内部に
かかる圧力のことであり、脳実質、髄液腔、脳血
管床などが、病変や種々の原因で容積をまして頭
蓋内圧を上昇させることがある。頭蓋内圧が上昇
する病気の内、頭蓋内に髄液が異常に貯留する状
態を水頭症といい、この水頭症の治療法として、
脳室シヤントを用いて緊急の手術が行なわれた
り、断続的な治療が行なわれたりしている。
Intracranial pressure refers to the cerebrospinal fluid present in the cranial cavity,
This refers to the pressure exerted on the inside of the skull by the brain parenchyma, ventricles, cerebrovascular bed, etc. When the brain parenchyma, cerebrospinal fluid cavity, cerebrovascular bed, etc. increase in volume due to lesions or various other causes, intracranial pressure increases. Sometimes. Among diseases that increase intracranial pressure, a condition in which cerebrospinal fluid accumulates abnormally within the skull is called hydrocephalus.As a treatment for this hydrocephalus,
Emergency surgery and intermittent treatment are performed using ventricular shunts.

〔従来の技術〕[Conventional technology]

一般に、脳室シヤントは、脳室内へ挿込まれる
細管状の脳室カテーテルと、これにリザーバやポ
ンプ室のごとき中継室を介して接続されるチユー
ブ状の腹腔カテーテルとで構成され、脳室内の余
分の液体、すなわち髄液の産性と吸収との差で生
じる過剰の髄液が、脳室カテーテル、中継室およ
び腹腔カテーテルを通じて腹腔へ流出するように
なつている。
In general, a ventricular shunt consists of a tubular ventricular catheter inserted into the ventricle and a tubular peritoneal catheter connected to this via a relay chamber such as a reservoir or pump chamber. Excess fluid, ie, excess cerebrospinal fluid resulting from differences in cerebrospinal fluid production and absorption, is allowed to drain into the peritoneal cavity through the ventricular catheter, the relay chamber, and the peritoneal catheter.

このような髄液の処理は、細菌の感染を伴わな
いように、すべて皮膚の内側で行なわれる。
All of this treatment of cerebrospinal fluid is done inside the skin to avoid bacterial infection.

そして、上記中継室の内部には、脳室からの排
出液の液圧により押し開かれうる逆止弁が設けら
れ、この逆止弁により流量の規制が行なわれるよ
うになつている。
A check valve that can be pushed open by the hydraulic pressure of fluid discharged from the ventricle is provided inside the relay chamber, and the flow rate is regulated by this check valve.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、水頭症の手術等に際しては、前述の
中継室を経由する流量の計測を必要とする場合が
あるが、従来の脳室シヤントでは流量計測手段が
設けられておらず、患者に対して適切な医療処置
を施すのが難しいという問題点がある。
By the way, during hydrocephalus surgery, etc., it may be necessary to measure the flow rate via the aforementioned relay room, but conventional ventricular shunts are not equipped with a flow rate measurement means, so it is not possible to measure the flow rate appropriately for the patient. The problem is that it is difficult to administer appropriate medical treatment.

本発明は、このような問題点の解決をはかろう
とするもので、患者に装着された中継室に流量計
測手段を設けることにより、適切な医療処置を施
すのに寄与できるようにした、流量計測式脳室シ
ヤントを提供することを目的とする。
The present invention aims to solve such problems, and by providing a flow rate measuring means in a relay chamber attached to a patient, a flow rate measuring means that can contribute to appropriate medical treatment is provided. The purpose is to provide a measured ventricular shunt.

〔問題点を解決するための手段〕[Means for solving problems]

このため本発明の流量計測式脳室シヤントは、
脳室へ挿込まれる脳室カテーテルと、同脳室カテ
ーテルに接続された中継室と、同中継室に接続さ
れた腹腔カテーテルとをそなえる脳室シヤントに
おいて、上記中継室に上壁をメンブレンで形成さ
れた流量計測用脈動室をそなえ、同脈動室に上流
側からの流れを導入すべく第1の所定値以上の液
圧により押し開かれうる第1の計測用逆止弁が設
けられるとともに、上記脈動室内の上記第1の所
定値よりも大きい第2の所定値以上の液圧により
押し開かれて同脈動室内の液を上記腹腔カテーテ
ルへ排出しうる第2の計測用逆止弁が設けられた
ことを特徴としている。
For this reason, the flow measurement type ventricular shunt of the present invention,
In a ventricular shunt that includes a ventricular catheter inserted into the ventricle, a relay chamber connected to the ventricular catheter, and a peritoneal catheter connected to the relay chamber, the upper wall of the relay chamber is formed with a membrane. a pulsating chamber for measuring a flow rate, and a first measuring check valve that can be pushed open by a hydraulic pressure equal to or higher than a first predetermined value in order to introduce a flow from the upstream side into the pulsating chamber; A second measurement check valve is provided that can be pushed open by a fluid pressure of a second predetermined value or more, which is greater than the first predetermined value, in the pulsation chamber to discharge the fluid in the pulsation chamber to the peritoneal catheter. It is characterized by the fact that

〔作用〕[Effect]

上述の本発明の流量計測式脳室シヤントでは、
患者の脳室からの排出液が、第1の所定値以上の
液圧をもつて第1の計測用逆止弁を通り脈動室内
に流入しながら、同脈動室の上壁を膨らませるよ
うにして貯留されてゆき、その液圧が第2の所定
値以上になると、脈動室内の液は第2の計測用逆
止弁を通じ腹腔カテーテルへ流出して、脈動室の
上壁がしぼんだ状態に復帰する。
In the flow measurement type ventricular shunt of the present invention described above,
Fluid discharged from the patient's ventricle flows into the pulsating chamber through the first measurement check valve with a fluid pressure equal to or higher than a first predetermined value, while inflating the upper wall of the pulsating chamber. When the fluid pressure exceeds a second predetermined value, the fluid in the pulsation chamber flows out into the peritoneal catheter through the second measuring check valve, and the upper wall of the pulsation chamber becomes deflated. Return.

このような脈動室の上壁の1回の脈動に伴う液
の流出量は、予め患者への脳室シヤント装着前に
模擬的実験を行なつて計測しておくことができる
ので、ある脈動から次の脈動までの時間を計測す
ることにより、較正手段を介し流量を求めること
ができる。
The amount of fluid flowing out of the upper wall of the pulsating chamber with a single pulsation can be measured in advance by conducting a simulation experiment before installing the ventricular shunt on the patient. By measuring the time until the next pulsation, the flow rate can be determined through the calibration means.

〔実施例〕〔Example〕

以下、図面により本発明の実施例について説明
すると、第1,2図は本発明の一実施例としての
流量計測式脳室シヤントを示すもので、第1図は
その上壁を除去して示す平面図、第2図は第1図
の−矢視断面図であり、第3図は上記脳室シ
ヤントの流量切替えに用いられる電磁石ボツクス
の上壁を除去して示す平面図である。
Hereinafter, an embodiment of the present invention will be explained with reference to the drawings. Figures 1 and 2 show a flow measurement type ventricular shunt as an embodiment of the present invention, and Figure 1 shows the ventricular shunt with its upper wall removed. The plan view, FIG. 2 is a sectional view taken along the - arrow in FIG. 1, and FIG. 3 is a plan view with the upper wall of the electromagnetic box used for switching the flow rate of the ventricular shunt removed.

第1,2図に示すように、シリコン樹脂などの
軟質壁からなる中継室1が、小室状のリザーバ1
aをそなえるとともに、同リザーバ1aに連通す
る弁室1bをそなえて形成されており、リザーバ
1aには、患者の脳室へ挿込まれる細管状の脳室
カテーテル2が接続されている。
As shown in Figures 1 and 2, a relay chamber 1 made of a soft wall made of silicone resin, etc. is a small chamber-shaped reservoir 1.
A and a valve chamber 1b that communicates with the reservoir 1a, and a tubular ventricular catheter 2 inserted into the patient's ventricle is connected to the reservoir 1a.

また中継室1の後流側の部分には、上壁1eを
弾性のメンブレン(膜)で形成された流量計測用
脈動室Cが設けられており、同脈動室Cの底部に
は上流側からの流れを導入しうるように第1の所
定値以上の液圧により押し開かれうる第1の計測
用逆止弁14aが設けられるとともに、上記第1
の所定値よりも大きい第2の所定値以上の液圧に
より押し開かれて脈動室C内の液を腹腔カテーテ
ル3へ排出しうる第2の計測用逆止弁14bが設
けられている。
In addition, a pulsating chamber C for flow rate measurement is provided in the downstream part of the relay chamber 1, and the upper wall 1e is formed of an elastic membrane. A first measurement check valve 14a that can be pushed open by a hydraulic pressure equal to or higher than a first predetermined value is provided so as to introduce the flow of the first measurement check valve 14a.
A second measuring check valve 14b is provided which can be pushed open by a hydraulic pressure equal to or higher than a second predetermined value, which is greater than the predetermined value of , to discharge the liquid in the pulsation chamber C to the peritoneal catheter 3.

さらに、中継室1の内部を上流側区画室Aと下
流側区画室Bとに仕切る隔壁1cが設けられてい
て、上流側区画室Aは脳室カテーテル2に連通
し、下流側区画室Bは脈動室Cを介して腹腔カテ
ーテル3に連通している。
Furthermore, a partition wall 1c is provided to partition the inside of the relay chamber 1 into an upstream compartment A and a downstream compartment B, with the upstream compartment A communicating with the ventricular catheter 2 and the downstream compartment B being connected to the ventricular catheter 2. It communicates with the peritoneal catheter 3 via the pulsation chamber C.

すなわち、第1の計測用逆止弁14aには下流
側区画室Bからの流れが導かれるようになつてお
り、このような第1の計測用逆止弁14aへ至る
流れと脈動室Cから第2の計測用逆止弁14bを
通じて腹腔カテーテル3へ向かう流れとが混じら
ないように、仕切壁14cが設けられている。
That is, the flow from the downstream compartment B is guided to the first measurement check valve 14a, and the flow from the pulsation chamber C to the first measurement check valve 14a is connected to the first measurement check valve 14a. A partition wall 14c is provided so that the flow toward the peritoneal catheter 3 through the second measurement check valve 14b does not mix with the flow.

そして、患者の脳室からの排出液が脳室カテー
テル2を通り、リザーバ1aを経由して弁室1b
の上流側区画室Aに流入した際に、その排出液の
液圧によりそれぞれ押し開かれうるように、第1
の逆止弁4、第2の逆止弁5および第3の逆止弁
6が、弁室1b内の基準位置7から放射方向へ離
隔した位置において隔壁1cに設けられている。
Then, fluid discharged from the patient's ventricle passes through the ventricular catheter 2, passes through the reservoir 1a, and then passes through the valve ventricle 1b.
When the discharge liquid flows into the upstream compartment A, the first
A check valve 4, a second check valve 5, and a third check valve 6 are provided on the partition wall 1c at positions spaced apart in the radial direction from a reference position 7 within the valve chamber 1b.

第1の逆止弁4は第2の逆止弁5よりも大きい
規制流量を有し、第2の逆止弁5は第3の逆止弁
6よりも大きい規制流量を有していて、本実施例
では各逆止弁4,5,6がいずれも単一スリツト
型の逆止弁として構成されているが、これらを十
字スリツト型のものや、スプリング付きのものあ
るいはメンブレン式のものなどに変更するように
してもよい。なお、第1〜3の全逆止弁4〜6が
すべて開かれている最大流量の場合でも、その流
れを抑制することなく脈動室Cへの流入が行なわ
れるように、第1の計測用逆止弁14aは十分に
大きく規制流量を有している。
The first check valve 4 has a larger regulated flow rate than the second check valve 5, and the second check valve 5 has a larger regulated flow rate than the third check valve 6, In this embodiment, each of the check valves 4, 5, and 6 is configured as a single slit type check valve, but these may be of a cross slit type, a spring type, or a membrane type. You may also change it to . In addition, even in the case of the maximum flow rate when all the first to third check valves 4 to 6 are open, the first measurement The check valve 14a has a sufficiently large regulated flow rate.

上流側区画室Aにおいて、隔壁1cには各逆止
弁4,5,6をそれぞれ取り囲む円形弁座4a,
5a,6aが設けられ、また各弁座4a,5a,
6aのいずれかに係合して各逆止弁4,5,6を
選択的に閉塞しうる磁性材製の可動球体8が、弁
室1bの外側からの電磁石による磁石を受けて移
動できるように、上流側区画室A内に封入されて
いる。
In the upstream compartment A, the partition wall 1c has circular valve seats 4a surrounding each check valve 4, 5, 6, respectively.
5a, 6a are provided, and each valve seat 4a, 5a,
6a to selectively close each of the check valves 4, 5, 6, so that the movable sphere 8 made of a magnetic material can be moved by receiving a magnet generated by an electromagnet from outside the valve chamber 1b. It is enclosed in the upstream compartment A.

さらに、基準位置7において、可動球体8を着
座させるための円座9が、上流側区画室Aにおけ
る隔壁1cの表面に形成されている。
Further, at the reference position 7, a circular seat 9 for seating the movable sphere 8 is formed on the surface of the partition wall 1c in the upstream compartment A.

そして、各弁座4a,5a,6aや円座9に可
動球体8が着座すると、弁室1bの軟質壁との間
に挟持されることにより、可動球体8の位置保持
が行なわれるようになつている。なお、磁力によ
り移動する可動球体8を緩衝的に受けるための可
撓性受板4b,5b,6b,13がそれぞれ各弁
座4a,5a,6aおよび円座9の近傍におい
て、隔壁1cに一体に突設されている。
When the movable sphere 8 is seated on each valve seat 4a, 5a, 6a or the circular seat 9, the position of the movable sphere 8 is held by being held between the soft wall of the valve chamber 1b. ing. In addition, flexible receiving plates 4b, 5b, 6b, and 13 for cushioningly receiving the movable sphere 8 that moves by magnetic force are integrated with the partition wall 1c in the vicinity of each valve seat 4a, 5a, and 6a, and the circular seat 9, respectively. It is installed protrudingly.

また、リザーバ1aと円座9との間には、上流
側区画室Aの軟質壁と隔壁1cとに形成された弁
座としての球体用抱持部10が設けられ、同抱持
部10に磁性材からなる第2の可動球体11を磁
力で押込むことにより、リザーバ1aから弁室1
bの上流側区画室Aにおける各逆止弁4,5,6
へ向かう液体の流れが阻止されるようになつてい
る。
Further, between the reservoir 1a and the circular seat 9, a sphere holding part 10 is provided as a valve seat, which is formed on the soft wall of the upstream compartment A and the partition wall 1c. By pushing the second movable sphere 11 made of magnetic material with magnetic force, the valve chamber 1 is moved from the reservoir 1a.
Each check valve 4, 5, 6 in the upstream compartment A of b
The flow of liquid towards is blocked.

そして、抱持部10を開放状態に保つ際に第2
の可動球体11を係止するための係止板12が、
円座9の上流側近傍において、可動球体8の受板
13と一体に隔壁1c上に設けられている。
Then, when keeping the holding part 10 in the open state, the second
A locking plate 12 for locking the movable sphere 11 of
Near the upstream side of the circular seat 9, it is provided on the partition wall 1c integrally with the receiving plate 13 of the movable sphere 8.

各可動球体8,11の材質としては、鉄などの
磁性材が用いられるが、その金属球の表面にはシ
リコン樹脂などの被覆を施すことが望ましい。
Although a magnetic material such as iron is used as the material for each movable sphere 8, 11, it is desirable that the surface of the metal sphere be coated with silicone resin or the like.

第3図に示すように、電磁石ボツクス20は、
各可動球体8,11を磁力により駆動するための
複数の電磁石21,22a,22b,23〜25
を内蔵しており、これを使用する場合は、患者の
頭部皮膚下に埋め込まれた脳室シヤント中継室1
に沿うように、電磁石ボツクス20が患者の頭部
外側に図示しないベルトを介して固定される。
As shown in FIG. 3, the electromagnet box 20 is
A plurality of electromagnets 21, 22a, 22b, 23-25 for driving each movable sphere 8, 11 by magnetic force
When using this, the ventricular shunt relay chamber 1 is implanted under the skin of the patient's head.
The electromagnetic box 20 is fixed to the outside of the patient's head via a belt (not shown) along the patient's head.

そして、各電磁石21,22a,22b,23
〜25は、中継室1内の各受板4b,5b,6
b,13および係止板12ならびに抱持部10に
対し、第3図に示すような相対位置をとれるよう
に配設されている。
And each electromagnet 21, 22a, 22b, 23
-25 are each receiving plate 4b, 5b, 6 in relay room 1
b, 13, the locking plate 12, and the holding part 10, so as to be able to take a relative position as shown in FIG.

また各電磁石21,22a,22b,23〜2
5を選択的に励磁する操作が行なわれるように、
これらの電磁石に接続された電線のハーネスが、
図示しない操作盤のスイツチを介して直流電源に
接続されている。
In addition, each electromagnet 21, 22a, 22b, 23-2
5 is selectively excited.
A wire harness connected to these electromagnets
It is connected to a DC power source via a switch on an operation panel (not shown).

なお、電磁石ボツクス20の底壁は、中継室1
に対応する凹みを形成されていて、これにより患
者の頭部への電磁石ボツクス20の装着が安定よ
く行なわれるようになつている。
Note that the bottom wall of the electromagnet box 20 is connected to the relay room 1.
A recess corresponding to the height is formed, so that the electromagnetic box 20 can be stably attached to the patient's head.

上述の構成により、第3図の電磁石ボツクス2
0における一対の電磁石22a,22bのみを励
磁して、可動球体8を受板13へ向けて吸引する
とともに、第2の可動球体11を係止板12へ向
けて吸引するような磁力を発生させ、第1,2図
に示すように、可動球体8を円座9上に着座させ
るとともに、第2の可動球体11を係止板12に
係止させると、患者の脳室から脳室カテーテル2
を通つてリザーバ1aへ流入してきた排出液が、
弁室1bの上流側区画室A内に入り、3つの逆止
弁4,5,6を通過して下流側区画室B内に入
る。
With the above configuration, electromagnet box 2 in FIG.
Only the pair of electromagnets 22a and 22b at 0 are excited to generate a magnetic force that attracts the movable sphere 8 toward the receiving plate 13 and attracts the second movable sphere 11 toward the locking plate 12. As shown in FIGS. 1 and 2, when the movable sphere 8 is seated on the circular seat 9 and the second movable sphere 11 is engaged with the locking plate 12, the ventricular catheter 2 is removed from the patient's ventricle.
The effluent that has flowed into the reservoir 1a through
It enters the upstream compartment A of the valve chamber 1b, passes through three check valves 4, 5, and 6, and enters the downstream compartment B.

そして、この下流側区画室B内の排出液は、さ
らに腹腔カテーテル3を通つて、患者の腹腔内へ
流入する。
The drained fluid in this downstream compartment B further passes through the peritoneal catheter 3 and flows into the patient's peritoneal cavity.

このようにして、脳室からの排出液は、3つの
逆止弁4,5,6の各規制流量の和としての最大
流量で流れることができる。
In this way, the fluid discharged from the ventricle can flow at the maximum flow rate as the sum of the regulated flow rates of the three check valves 4, 5, 6.

次に、流量をやや減少させたい場合は、電磁石
25のみの励磁により、可動球体8を円座9から
受板6bへ向けて駆動するように吸引し、第3の
逆止弁6への流路における弁座6aに可動球体8
を着座させて同逆止弁6を閉塞させればよく、こ
れにより排出液は規制流量のもつとも大きい第1
の逆止弁4と次に規制流量の大きい第2の逆止弁
5とのみを通つて流れることができる。
Next, when it is desired to reduce the flow rate slightly, by energizing only the electromagnet 25, the movable sphere 8 is attracted so as to be driven from the circular seat 9 toward the receiving plate 6b, and the flow to the third check valve 6 is reduced. A movable sphere 8 is attached to the valve seat 6a in the path.
It is sufficient to close the check valve 6 by closing the check valve 6, and as a result, the discharged liquid is discharged from the first valve, which has a large regulated flow rate.
The flow can only flow through the check valve 4 and the second check valve 5, which has the next highest regulated flow rate.

また流量を一層小さくしたい場合は、電磁石2
2a,22bのみの励磁により可動球体8を弁座
6aから円座9へ一旦戻したのち、電磁石24の
みの励磁により、可動球体8を第2の逆止弁8へ
至る弁座5aに着座させて同逆止弁5を閉塞させ
ればよく、これにより排出液は規制流量のもつと
も大きい第1の逆止弁4と最小の規制流量を有す
る第3の逆止弁6とのみを通つて流れることがで
きる。
Also, if you want to make the flow rate even smaller, use the electromagnet 2
After the movable sphere 8 is once returned from the valve seat 6a to the circular seat 9 by excitation of only 2a and 22b, the movable sphere 8 is seated on the valve seat 5a leading to the second check valve 8 by excitation of only the electromagnet 24. The check valve 5 may be closed by using the regulated flow rate, so that the discharged liquid flows only through the first check valve 4, which has the largest regulated flow rate, and the third check valve 6, which has the smallest regulated flow rate. be able to.

さらに、流量を最小にしたい場合は、電磁石2
2a,22bのみの励磁により可動球体8を弁座
5aから円座9へ一旦戻したのち、電磁石23の
みの励磁により、可動球体8を第1の逆止弁4へ
至る弁座4aに着座させて同逆止弁4を閉塞させ
ればよく、これにより排出液は規制流量の2番目
および最小の各逆止弁5,6のみを通つて、最小
の流量で流れることができる。
Additionally, if you want to minimize the flow rate, electromagnet 2
After the movable sphere 8 is once returned from the valve seat 5a to the circular seat 9 by excitation of only 2a and 22b, the movable sphere 8 is seated on the valve seat 4a leading to the first check valve 4 by excitation of only the electromagnet 23. Then, the check valve 4 can be closed, thereby allowing the drained liquid to flow at the minimum flow rate through only the second and minimum check valves 5 and 6 of the regulated flow rate.

なお、この脳室シヤントを経由する排出液の流
出を停止させたい場合は、電磁石21のみの励磁
により、第2の可動球体11を球体用抱持部10
へ導いて、リザーバ1aから弁室1bへの流路を
閉塞すればよい。
In addition, if it is desired to stop the outflow of fluid through the ventricular shunt, the second movable sphere 11 is moved to the sphere holding part 10 by energizing only the electromagnet 21.
The flow path from the reservoir 1a to the valve chamber 1b may be closed.

上述のごとく、本実施例では3個の逆止弁4〜
6が相互に異なる規制流量を有しているので、3
個の逆止弁4,5,6により4段階の流量切替え
が行なわれるが、逆止弁を2個にして、相互に異
なる規制流量をもたせれば、3段階の流量切替え
を行なうことができる。
As mentioned above, in this embodiment, three check valves 4-
Since 6 have mutually different regulated flow rates, 3
Four-stage flow rate switching is performed using the check valves 4, 5, and 6, but if two check valves are used and each has different regulated flow rates, three-stage flow rate switching can be performed. .

また、逆止弁を2個にして、各逆止弁が同一の
規制流量を有している場合でも、その一方のみに
流通させる場合と、両方に流通させる場合との2
段階の流量切替えを行なうことができる。
In addition, even if there are two check valves and each check valve has the same regulated flow rate, there are two cases: when the flow is allowed to flow to only one of them, and when it is allowed to flow to both.
Stepwise flow rate switching can be performed.

上述のように、流量切替用逆止弁を操作するこ
とにより規制流量の制御を行なうことはできる
が、これだけでは実際の流量がどうなつているか
を正確に知ることはできない。
As described above, the regulated flow rate can be controlled by operating the flow rate switching check valve, but this alone does not allow accurate knowledge of the actual flow rate.

本発明の脳室シヤントでは、上述の流量を的確
に知るために、メンブレンとしての上壁1eをも
つ脈動室Cと、第1および第2の計測用逆止弁1
4a,14bとからなる流量計測機構が設けられ
ているのである。
In the ventricular shunt of the present invention, in order to accurately know the above-mentioned flow rate, a pulsating chamber C having an upper wall 1e as a membrane, and first and second measurement check valves 1 are provided.
A flow rate measuring mechanism consisting of 4a and 14b is provided.

すなわち、流量切替用逆止弁4〜6の全部また
は一部を通つて下流側区画室Bへ流入した流れ
は、そのまま第1の計測用逆止弁14aを通つて
脈動室C内へ流入することができるが、第2の計
測用逆止弁14bは、脈動室C内の液圧が比較的
大きい所定値以上にならないと開かないので、脈
動室Cのメンブレン製上壁1eは、脈動室C内の
液体の増加により膨らんだり、第2の計測用逆止
弁14bからの排出に伴にしぼんだりする脈動を
行なうようになる。
That is, the flow that flows into the downstream compartment B through all or part of the flow rate switching check valves 4 to 6 directly flows into the pulsation chamber C through the first measuring check valve 14a. However, since the second measurement check valve 14b does not open unless the liquid pressure in the pulsation chamber C reaches a relatively large predetermined value or more, the membrane upper wall 1e of the pulsation chamber C As the liquid in C increases, it expands, and as the liquid is discharged from the second measurement check valve 14b, it deflates, causing pulsation.

このような脈動室Cの上壁1eの1回の脈動に
伴う液の流出量は、予め患者への脳室シヤント装
着前に模擬的実験を行なつて計測しておくことが
できるので、ある脈動から次の脈動までの時間を
計測することにより、較正手段を介して流量を正
確に求めることができる。
The amount of fluid flowing out with one pulsation of the upper wall 1e of the pulsating chamber C can be measured in advance by conducting a simulation experiment before installing the ventricular shunt on the patient. By measuring the time from one pulsation to the next pulsation, the flow rate can be accurately determined through the calibration means.

脈動現象の検出は目視によつても行なえるが、
上記脈動に応動して接点を閉じるような電子回路
付きセンサの検出器を、患者の頭部外側に装着し
て、その検出結果を自動的に記録するレコーダー
を設けるようにしてもよい。
Although pulsation phenomena can be detected visually,
A detector including a sensor with an electronic circuit that closes its contacts in response to the pulsation may be attached to the outside of the patient's head, and a recorder may be provided to automatically record the detection results.

なお、上述の模擬的実験では、脈動室Cの上壁
1eを覆う患者の頭部皮膚の弾性膜としての作用
も考慮に入れることが望ましい。
In addition, in the above-mentioned simulation experiment, it is desirable to take into account the effect of the patient's head skin covering the upper wall 1e of the pulsation chamber C as an elastic membrane.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明の流量計測式脳室
シヤントによれば、脳室カテーテルと腹腔カテー
テルとを接続する中継室に、上壁をメンブレンで
形成された流量計測用脈動室をそなえ、同脈動室
に上流側からの流れを導入すべく第1の所定値以
上の液圧により押し開かれうる第1の計測用逆止
弁が設けられるとともに、上記脈動室内の上記第
1の所定値よりも大きい第2の所定値以上の液圧
により押し開かれて同脈動室内の液を上記腹腔カ
テーテルへ排出しうる第2の計測用逆止弁が設け
られるという簡素な構造で、従来困難とされてい
た流量の正確な計測を、脈動室の上壁の脈動を検
出することにより、著しく簡便に且つ安全に行な
える利点がある。
As detailed above, according to the flow measurement type ventricular shunt of the present invention, the relay chamber that connects the ventricular catheter and the peritoneal catheter is provided with a flow measurement pulsation chamber whose upper wall is formed of a membrane, A first measurement check valve that can be pushed open by a hydraulic pressure equal to or higher than a first predetermined value is provided in order to introduce a flow from the upstream side into the pulsation chamber, and a first measurement check valve that can be pushed open by a hydraulic pressure equal to or higher than a first predetermined value is provided. It has a simple structure in which a second measuring check valve is provided, which is pushed open by a hydraulic pressure equal to or higher than a second predetermined value and can discharge the fluid in the pulsating chamber to the peritoneal catheter, which is difficult to do in the past. By detecting the pulsations on the upper wall of the pulsation chamber, accurate measurement of the flow rate, which has previously been performed, has the advantage of being extremely easy and safe.

特に本発明では、中継室に上壁をメンブレンで
形成された脈動室が設けられて、同脈動室に上流
側からの流れを導入しうる第1の計測用逆止弁
と、脈動室内の液を下流側の腹腔カテーテルへ流
出させる第2の計測用逆止弁とが設けられ、第1
の計測用逆止弁を開きうる所定液圧よりも第2の
計測用逆止弁を開きうる所定液圧の方が高く設定
されているので、脈動室における脈動が的確に行
なわれるようになり、ある脈動から次の脈動まで
の時間を計測することにより、較正手段を介して
流量を正確に求めうる効果がある。
In particular, in the present invention, a pulsation chamber whose upper wall is formed of a membrane is provided in the relay chamber, and a first measuring check valve capable of introducing a flow from the upstream side into the pulsation chamber, and a liquid in the pulsation chamber. A second measuring check valve is provided to allow the fluid to flow out into the peritoneal catheter on the downstream side.
Since the predetermined hydraulic pressure that can open the second measuring check valve is set higher than the predetermined hydraulic pressure that can open the second measuring check valve, pulsation in the pulsation chamber can be performed accurately. By measuring the time from one pulsation to the next, the flow rate can be accurately determined through the calibration means.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は本発明の一実施例としての流量計
測式脳室シヤントを示すもので、第1図はその上
壁を除去して示す平面図、第2図は第1図の−
矢視断面図であり、第3図は上記脳室シヤント
の流量切替えに用いられる電磁石ボツクスの上壁
を除去して示す平面図である。 1……中継室、1a……リザーバ、1b……弁
室、1c……隔壁、1e……脈動室上壁の弾性メ
ンブレン、2……脳室カテーテル、3……腹腔カ
テーテル、4……第1の逆止弁、5……第2の逆
止弁、6……第3の逆止弁、4a,5a,6a…
…円形弁座、4b,5b,4b……受板、7……
基準位置、8……可動球体、9……円座、10…
…抱持部、11……第2の可動球体、12……係
止板、13……受板、14a……第1の計測用逆
止弁、14b……第2の計測用逆止弁、14c…
…仕切壁、20……電磁石ボツクス、21,22
a,22b,23〜25……電磁石、A……上流
側区画室、B……下流側区画室、C……脈動室。
Figures 1 and 2 show a flow measurement type ventricular shunt as an embodiment of the present invention. Figure 1 is a plan view with the upper wall removed, and Figure 2 is the same as in Figure 1.
It is a sectional view taken in the direction of arrows, and FIG. 3 is a plan view showing the electromagnetic box used for switching the flow rate of the ventricular shunt with the upper wall removed. 1... Relay chamber, 1a... Reservoir, 1b... Valve chamber, 1c... Septum, 1e... Elastic membrane on the upper wall of the pulsating chamber, 2... Ventricular catheter, 3... Peritoneal catheter, 4... No. 1 check valve, 5... second check valve, 6... third check valve, 4a, 5a, 6a...
...Circular valve seat, 4b, 5b, 4b...Socket plate, 7...
Reference position, 8...Movable sphere, 9...Round seat, 10...
... Holding part, 11 ... Second movable sphere, 12 ... Locking plate, 13 ... Reception plate, 14a ... First measurement check valve, 14b ... Second measurement check valve , 14c...
...Partition wall, 20...Electromagnetic box, 21, 22
a, 22b, 23-25...electromagnet, A...upstream compartment, B...downstream compartment, C...pulsation chamber.

Claims (1)

【特許請求の範囲】 1 脳室に挿込まれる脳室カテーテルと、同脳室
カテーテルに接続された中継室と、同中継室に接
続された腹腔カテーテルとをそなえる脳室シヤン
トにおいて、上記中継室に上壁をメンブレンで形
成された流量計測用脈動室をそなえ、同脈動室に
上流側からの流れを導入すべく第1の所定値以上
の液圧により押し開かれうる第1の計測用逆止弁
が設けられるとともに、上記脈動室内の上記第1
の所定値よりも大きい第2の所定値以上の液圧に
より押し開かれて同脈動室内の液を上記腹腔カテ
ーテルへ排出しうる第2の計測用逆止弁が設けら
れたことを特徴とする、流量計測式脳室シヤン
ト。 2 上記中継室において上記第1の計測用逆止弁
よりも上流側に複数の流量切替用逆止弁が設けら
れていることを特徴とする、特許請求の範囲第1
項に記載の流量計測式脳室シヤント。 3 上記中継室の内部を上記脳室カテーテルに連
通する上流側区画室と上記脈動室を介して上記腹
腔カテーテルに連通しうる下流側区画室とに仕切
る隔壁をそなえ、同隔壁に上記複数の流量切替用
逆止弁が設けられていることを特徴とする、特許
請求の範囲第2項に記載の流量計測式脳室シヤン
ト。
[Scope of Claims] 1. In a ventricular shunt comprising a ventricular catheter inserted into a ventricle, a relay chamber connected to the ventricular catheter, and a peritoneal catheter connected to the relay chamber, the relay chamber is provided with a pulsating chamber for flow measurement whose upper wall is formed of a membrane, and a first measuring chamber that can be pushed open by a hydraulic pressure of a first predetermined value or higher to introduce a flow from the upstream side into the pulsating chamber. A stop valve is provided, and the first valve in the pulsation chamber is provided with a stop valve.
A second measurement check valve is provided that can be pushed open by a hydraulic pressure equal to or higher than a second predetermined value that is greater than the predetermined value of , and can discharge the fluid in the pulsation chamber to the peritoneal catheter. , flow-metered ventricular shunt. 2. Claim 1, characterized in that a plurality of flow rate switching check valves are provided upstream of the first measuring check valve in the relay room.
Flow-measuring ventricular shunt as described in section. 3. A partition is provided to partition the interior of the relay chamber into an upstream compartment that communicates with the ventricular catheter and a downstream compartment that communicates with the peritoneal catheter via the pulsation chamber, and the partition wall has the plurality of flow rates. The flow rate measuring type ventricular shunt according to claim 2, characterized in that a switching check valve is provided.
JP29618085A 1985-12-24 1985-12-24 Flow measuring type ventricle shunt Granted JPS62148637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29618085A JPS62148637A (en) 1985-12-24 1985-12-24 Flow measuring type ventricle shunt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29618085A JPS62148637A (en) 1985-12-24 1985-12-24 Flow measuring type ventricle shunt

Publications (2)

Publication Number Publication Date
JPS62148637A JPS62148637A (en) 1987-07-02
JPH0324847B2 true JPH0324847B2 (en) 1991-04-04

Family

ID=17830197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29618085A Granted JPS62148637A (en) 1985-12-24 1985-12-24 Flow measuring type ventricle shunt

Country Status (1)

Country Link
JP (1) JPS62148637A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1248425A (en) * 1983-02-17 1989-01-10 Michael D. Hooven Intercranial pressure regulator valve

Also Published As

Publication number Publication date
JPS62148637A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
US4867741A (en) Physiological draining system with differential pressure and compensating valves
Rohde et al. Four-year experience with the routine use of the programmable Hakim valve in the management of children with hydrocephalus
US3991768A (en) Shunt system resistant to overdrainage and siphoning and valve therefor
CA2265859C (en) Device for the treatment of hydrocephalus
US3233610A (en) Hydrocephalus shunt pump
US4551128A (en) Cerebrospinal fluid shunt valve
Chari et al. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory
EP2432544B1 (en) Passive fluid flow regulator
EP2331169B1 (en) Passive fluid flow regulator for the administration of medicaments with constant flow rate and drug infusion device comprising the same.
US4557721A (en) Servo valve
US4621654A (en) Attitude and pressure responsive valve
JPS63115538A (en) Endocranial pressure measuring apparatus and ventricle shunt for measuring endocranial pressure
US6336924B1 (en) External biological fluid drainage device
JP2012531993A (en) Apparatus and method for measuring and adjusting cerebrospinal fluid parameters
CN100584397C (en) Gravity pressure adjusting mechanism
US5042974A (en) Shunt valve
GB2131496A (en) Apparatus for dispensing infusate to a mammal body
Czosnyka et al. Hydrodynamic properties of hydrocephalus shunts
JPH0324847B2 (en)
EP0117050B1 (en) Intercranial pressure regulator valve
KR102201288B1 (en) System for treating brain disease
JPH0324849B2 (en)
US20240091512A1 (en) Adjustable implantable throttle
JPS6358587B2 (en)
JPH0362409B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term