[go: up one dir, main page]

JPH03249529A - torque sensor - Google Patents

torque sensor

Info

Publication number
JPH03249529A
JPH03249529A JP4774290A JP4774290A JPH03249529A JP H03249529 A JPH03249529 A JP H03249529A JP 4774290 A JP4774290 A JP 4774290A JP 4774290 A JP4774290 A JP 4774290A JP H03249529 A JPH03249529 A JP H03249529A
Authority
JP
Japan
Prior art keywords
magnetic
path
shaft
magnetic flux
pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4774290A
Other languages
Japanese (ja)
Inventor
Toshiro Ichikawa
市川 敏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Atsugi Unisia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsugi Unisia Corp filed Critical Atsugi Unisia Corp
Priority to JP4774290A priority Critical patent/JPH03249529A/en
Publication of JPH03249529A publication Critical patent/JPH03249529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To improve the torque measurement accuracy with simple structure by collecting a magnetic flux flow passing through a 1st and a 2nd pickup path by a magnetism collection member when a 1st shaft is twisted and displaced, and making the magnetic flux flow in a detecting element concentrically. CONSTITUTION:When the 1st shaft 1 is applied with a turning force in its circumferential direction A, the gap space from magnetic bodies 5a and 5b to magnetic path pieces 10a and 10b becomes large. The gap space from the magnetic bodies 5a and 6b to magnetic path pieces 10a and 10b becomes small to the contrary. Consequently, one magnetic field becomes intenser than the other magnetic field and the extent is proportional to the angle of a twist applied in the direction A. For example, the direction of the magnetic field applied to a Hall element 13 with the turning force in the direction A is regarded as a plus direction and the output of the element 13 is so set that the output voltage is positive, thereby properly detecting the magnitude and direction of generated torque and stationary torque.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トルクセンサ、特に回転トルクを非接触で精
度良く測定するトルクセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a torque sensor, and particularly to a torque sensor that accurately measures rotational torque in a non-contact manner.

従来の技術 この種の従来の回転トルクを非接触で測定するトルクセ
ンサとしては、例えば本出願人が既に出願した特開昭6
1−158433号公報に記載されたものが知られてい
る。
BACKGROUND OF THE INVENTION Conventional torque sensors of this type that measure rotational torque in a non-contact manner are known, for example, from Japanese Patent Laid-open No. 6, filed by the present applicant.
The one described in Japanese Patent No. 1-158433 is known.

第5図に基づいて概略を説明すれば、このトルクセンサ
30は、第1シャフト31と第2シャフト32とを小径
部位を介して相対的に捩れ変位可能に連結し、この第1
シャフト31の外周に、所定数の磁性体33.34を極
性が周方向に交互に配設されるように取り付け、かつ第
2シャフト32に、隣接する前記磁性体33.34の中
間位置から磁束を導くように第1ピックアップ路35及
び第2ピックアップ路36を設けて一つの磁性体33か
ら他の磁性体34に至る磁路を形成している。また、こ
の磁路に臨んで該磁路を流れる磁束の変化を検出する一
対の磁気検出素子37.38を、第1シャフト31の軸
線を中心として1800の角度位置に設けている。そし
て、第2シャフト32に対して第1シャフト31が捩れ
変位したとき前記N極が第1ピンクアツプ路35あるい
は第2ビックア、磁路36の何れの側に接近することに
よって第1.第2ピックアップ路35.36を流れる磁
束量か変化し、この磁束の変化から第2シャフト32に
対する第1シャフト31の捩れ変位か非接触で検出てき
るようになっている。
To explain the outline based on FIG. 5, this torque sensor 30 connects a first shaft 31 and a second shaft 32 through a small diameter portion so as to be relatively torsionally displaceable.
A predetermined number of magnetic bodies 33 and 34 are attached to the outer periphery of the shaft 31 so that the polarities are arranged alternately in the circumferential direction, and a magnetic flux is applied to the second shaft 32 from an intermediate position between the adjacent magnetic bodies 33 and 34. A first pickup path 35 and a second pickup path 36 are provided to guide the magnetic material 33 to form a magnetic path from one magnetic material 33 to another magnetic material 34. A pair of magnetic detection elements 37 and 38 facing this magnetic path and detecting changes in the magnetic flux flowing through the magnetic path are provided at 1800 angular positions with respect to the axis of the first shaft 31. When the first shaft 31 is torsionally displaced with respect to the second shaft 32, the N pole approaches either the first pin pickup path 35 or the second magnetic path 36, thereby causing the first pin pickup path 35 to approach either side of the first pin pickup path 35 or the second magnetic path 36. The amount of magnetic flux flowing through the second pickup paths 35 and 36 changes, and from this change in magnetic flux, the torsional displacement of the first shaft 31 with respect to the second shaft 32 can be detected without contact.

ところで、斯かる従来のトルクセンサ30にあっては、
前記のように第2シャフト32に対して第1シャフト3
1が捩れ変位したときには、第6図に示すように例えば
第1シャフト31側のインナーリング39の磁路片40
と、第2シャフト32側の磁性体33.34中、一方の
磁性体33のN極とが近接して、該N極から流出した磁
束か該N極と磁路片4Qとの間のギャップ空間を経て第
2ピックアップ路36を構成する磁路片40を通ってイ
ンナーリング39から磁気検出素子3738及びアウタ
ーリング41に流れ込むが、該磁路片40からインナー
リング39に至るまでに磁束流が均一に拡散されない。
By the way, in such a conventional torque sensor 30,
As described above, the first shaft 3 is
1 is torsionally displaced, for example, as shown in FIG. 6, the magnetic path piece 40 of the inner ring 39 on the first shaft 31 side
and the N pole of one of the magnetic bodies 33 and 34 on the second shaft 32 side are close to each other, and the magnetic flux flowing out from the N pole or the gap between the N pole and the magnetic path piece 4Q The magnetic flux flows from the inner ring 39 to the magnetic detection element 3738 and the outer ring 41 through the space and through the magnetic path piece 40 that constitutes the second pickup path 36, but the magnetic flux flow from the magnetic path piece 40 to the inner ring 39 is Not evenly distributed.

このため、インナーリング39の外周と磁気検出素子3
7.38を挾んたアウタ−リング41外周のエアギヤツ
ブ接合点C,Dにおいて磁束密度が不均一となり、磁気
検出素子による測定精度の低下を招く虞がある。
Therefore, the outer circumference of the inner ring 39 and the magnetic detection element 3
There is a possibility that the magnetic flux density becomes non-uniform at the air gear joint points C and D on the outer periphery of the outer ring 41 sandwiching 7.38, leading to a decrease in measurement accuracy by the magnetic detection element.

そこで、前記従来においては、第1シャフト31の軸線
を中心として1800の角度で相対的に位置するトルク
検出用の一対の磁気検出素子37゜38の他に、さらに
平均化補正用の一対の磁気検出素子42.43を、第1
シャフト31の軸線に対して別異の180°角度で相対
する位置に配設し、これによって磁性体33のN極から
流出して第2ピックアップ路36に流入した磁束の密度
を平均化補正するようになっている。
Therefore, in the conventional method, in addition to the pair of magnetic detecting elements 37 and 38 for torque detection, which are located at an angle of 1800 degrees relative to the axis of the first shaft 31, a pair of magnetic detecting elements 37 and 38 for averaging correction are used. The detection elements 42 and 43 are
They are arranged at different positions facing the axis of the shaft 31 at different angles of 180°, thereby averaging and correcting the density of the magnetic flux flowing out from the N pole of the magnetic body 33 and flowing into the second pickup path 36. It looks like this.

発明が解決しようとする課題 然し乍ら、前記従来のトルクセンサ30にあっては、磁
性体33のN極で発生する磁束密度の不均一な状態を磁
気検出素子42.43を用いて平均化補正を行なうよう
になっているため、磁気検出素子の使用数が多くなると
共に、磁束回路も複雑になる。この結果、製造作業や保
守管理が煩雑になるばかりかコストの高騰か余儀なくさ
れる。
Problems to be Solved by the Invention However, in the conventional torque sensor 30, the non-uniform state of magnetic flux density generated at the N pole of the magnetic body 33 is averaged and corrected using the magnetic detection elements 42 and 43. As a result, the number of magnetic detection elements used increases and the magnetic flux circuit becomes complicated. As a result, manufacturing operations and maintenance management become complicated, and costs are forced to rise.

課題を解決するための手段 本発明は、前記従来の実情に鑑みて案出されたもので、
基本的には前記従来の構成と略同様であるが、とりわけ
トルク検出用の磁気検出素子に、第1.第2ピックアッ
プ路の双方あるいはいずれか一方側を流れる磁束を捕集
する集磁部材を設けたことを特徴としている。
Means for Solving the Problems The present invention was devised in view of the above-mentioned conventional situation, and
The structure is basically similar to the conventional structure described above, but in particular, the magnetic detection element for torque detection has the first. The present invention is characterized in that a magnetic flux collecting member is provided to collect the magnetic flux flowing through both or either side of the second pickup path.

作用 第1シャフトの回転方向の捩れ変位が発生した際に、第
1ビ、クアップ路あるいは第2ピックアップ路を通った
密度の異なる磁束流が集磁部材によって効率良く捕集さ
れて磁気検出素子に集中的に流入する。したかって、斯
かる磁束が磁気検出素子に至るまでに平均化補正され、
トルク測定精度が向上することは勿論のこと、従来のよ
うに平均化補正用の磁気検出素子を用いずに、単に磁力
線を通し易い材料からなる集磁部材を設けるだけである
から、磁束回路等の構造が極めて簡素化されると共に、
製造コストの低廉化等が図れる。
Operation When torsional displacement occurs in the rotational direction of the first shaft, magnetic flux flows with different densities that have passed through the first pickup path or the second pick-up path are efficiently collected by the magnetic collecting member and sent to the magnetic detection element. Concentrated inflow. Therefore, such magnetic flux is averaged and corrected before reaching the magnetic detection element,
Not only does torque measurement accuracy improve, but because a magnetic flux collecting member made of a material through which lines of magnetic force easily pass is simply provided without using a magnetic detection element for averaging correction as in the past, magnetic flux circuits, etc. The structure of is extremely simplified, and
Manufacturing costs can be reduced.

実施例 以下、本発明の実施例を図面に基づいて詳述する。Example Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

まず、第4図に基づいて本発明に係るトルクセンサの構
成を説明する。すなわち、図中1は第1シャフトであり
、該第1シャフト1は捩れ剛性を若干低(するための小
径部2を介して第2シャフト3に連結されており、図中
A、Bて示すような第1シャフト1の円周方向の回転力
を小径部2を経由して第2シャフト3に伝達する。また
、第2シャフト3の外周面3aには小径部2を包み込む
ようにして成形された円筒形のモールド部材(非磁性材
)4の突端部4aが嵌合固着されており、モールド部材
4は後述するピックアップ部材7及びホール素子13.
14等と一対となってトルク検出機構21を構成してい
る。一方、モールド部材4の他端側にはドーナッツ型の
磁性体埋込み部4bが形成され、磁性体埋込み部4bは
軸方向に対して垂直となるような端面4Cを有し、磁性
体埋込み部4bには端面4CにN極を臨むように配置し
た磁性体5aと、端面4CにS極を臨むように配置した
磁性体5bとがそれぞれ8個づつ交互に同心円状でかつ
等間隔になるように配設されている。さらに、各磁性体
5a、5bの他端部は、円環状のコモンリング6に連結
されており、該コモンリング6は、各磁性体5a、5b
から発する磁界について閉ループ状の磁路の一部を形成
する。
First, the configuration of the torque sensor according to the present invention will be explained based on FIG. 4. That is, 1 in the figure is a first shaft, and the first shaft 1 is connected to a second shaft 3 via a small diameter part 2 to slightly reduce torsional rigidity, and is indicated by A and B in the figure. The rotational force in the circumferential direction of the first shaft 1 is transmitted to the second shaft 3 via the small diameter portion 2. Also, the outer peripheral surface 3a of the second shaft 3 is molded so as to wrap around the small diameter portion 2. A tip end 4a of a cylindrical mold member (non-magnetic material) 4 is fitted and fixed, and the mold member 4 is connected to a pickup member 7 and a Hall element 13, which will be described later.
14, etc., and form a torque detection mechanism 21. On the other hand, a donut-shaped magnetic body embedded part 4b is formed on the other end side of the mold member 4, and the magnetic body embedded part 4b has an end surface 4C perpendicular to the axial direction. 8 magnetic bodies 5a are arranged so that the north pole faces the end face 4C, and 8 magnetic bodies 5b are arranged so that the south pole faces the end face 4C, which are arranged alternately in concentric circles and at equal intervals. It is arranged. Further, the other end of each magnetic body 5a, 5b is connected to an annular common ring 6, and the common ring 6 is connected to each magnetic body 5a, 5b.
It forms part of a closed loop magnetic path for the magnetic field emitted from the magnetic field.

コモンリング6及び各磁性体5a、5bは磁性体埋込み
部4b内に埋設され、非接触体からなる磁性体埋込み部
4bと一体に形成されている。
The common ring 6 and each of the magnetic bodies 5a and 5b are buried within the magnetic body embedding section 4b, and are formed integrally with the magnetic body embedding section 4b made of a non-contact material.

一方、第1シャフト1の小径部2側の外周面1aには、
端面4Cに面しかつ端面4Cと微小空隙を有する円板形
の前記ピックアップ部材7が嵌合固着されており、ピッ
クアップ部材7の入力側の端面7aには、端面7aに外
接してアウターリング8とその内方にインナーリング9
とが設けられている。また、端面4Cに面したピックア
ップ部材7の端面7bには、磁性体5aあるいは5bか
らの磁気力を受けて磁路となる磁路片]Oaと磁路片1
0bとが磁性体5a及び5bとそれぞれ1対1て対応す
るように8個づつ交互に同心円上てかつ等間隔になるよ
うに配設され、磁路片]Oaはアウターリング8に、磁
路片10bはインナーリング9に夫々連結されている。
On the other hand, on the outer peripheral surface 1a of the first shaft 1 on the small diameter portion 2 side,
The disk-shaped pickup member 7 facing the end surface 4C and having a small gap with the end surface 4C is fitted and fixed, and an outer ring 8 is provided on the input side end surface 7a of the pickup member 7 in circumferential contact with the end surface 7a. and inner ring 9
and is provided. Further, on the end surface 7b of the pickup member 7 facing the end surface 4C, there is a magnetic path piece [Oa] and a magnetic path piece 1 which becomes a magnetic path by receiving the magnetic force from the magnetic body 5a or 5b.
0b corresponds one-to-one with the magnetic bodies 5a and 5b, eight pieces are arranged alternately on a concentric circle and at equal intervals, The pieces 10b are respectively connected to the inner ring 9.

磁路片10aとアウターリング8とは第1ピックアップ
路11を構成し、磁路片Jobとインナーリング9とは
第2ピックアップ路12を構成する。ここで、コモンリ
ング6、磁路片10a、10b、アウターリング8及び
インナーリング9は磁力線を通し易い、例えばパーマロ
イ、フェライト等の材質で作られており、前記磁性体5
a、5bから発した磁気力を磁路片10a、lObを介
してアウターリング8及びインナーリング9に誘導する
。また、前記磁路片10a、Jobは、前記の磁性体5
a、5bと同様に非磁性体からなるピックアップ部材7
内に一体形成されており、定常時(すなわち、トルクが
Oのとき)では磁性体5aあるいは5bが磁路片10a
及びIObの丁度中間に位置するように構成されている
。したがって、磁性体5aから磁路片10aに至るまで
のギャップ空間l2A(図示せず)と磁性体5aから磁
路片10bに至るまでのギャップ空間QB(図示せず)
とは互いに等しく、同様に磁性体5bから磁路片10b
までのギャップ空間QAと5bから磁路片10aまでの
ギャップ空間QI]とは相等しい。したがって、第1シ
ャフト1に円周方向A(あるいはB)の回転力が加わる
と前記キャップ空間QA、 12mはその回転力に応じ
てそれぞれ所定量づつ変化する。さらに、上述したアウ
ターリング8とインナーリング9との間には、これらリ
ングやピックアップ部材7と非接触でかつアウターリン
グ8からインナーリング9に(あるいはインナーリング
9からアウターリング8に)かかる磁界と直角となるよ
うな位置に磁気検出素子たる第1ホール素子13が配置
され、この第1ホール素子13と180°の角度に相対
する位置に磁気検出素子たる第2ホール素子14が配置
されている。また、これら第1.第2ホール素子13.
14は、磁界の強さに比例した出力電圧を発生する一般
的な素子であって、それぞれプリント基板15に接着剤
等で固着されている。
The magnetic path piece 10a and the outer ring 8 constitute a first pickup path 11, and the magnetic path piece Job and the inner ring 9 constitute a second pickup path 12. Here, the common ring 6, the magnetic path pieces 10a and 10b, the outer ring 8, and the inner ring 9 are made of a material through which lines of magnetic force easily pass, such as permalloy or ferrite.
The magnetic force emitted from a and 5b is guided to the outer ring 8 and the inner ring 9 via the magnetic path pieces 10a and lOb. Further, the magnetic path piece 10a and Job are connected to the magnetic body 5.
Pick-up member 7 made of non-magnetic material like a and 5b
The magnetic body 5a or 5b is integrally formed within the magnetic path piece 10a during steady state (that is, when the torque is O).
and IOb. Therefore, a gap space 12A (not shown) from the magnetic body 5a to the magnetic path piece 10a and a gap space QB (not shown) from the magnetic body 5a to the magnetic path piece 10b.
are equal to each other, and similarly from the magnetic body 5b to the magnetic path piece 10b
The gap space QA from 5b to the magnetic path piece 10a is equal to the gap space QI from 5b to the magnetic path piece 10a. Therefore, when a rotational force in the circumferential direction A (or B) is applied to the first shaft 1, the cap spaces QA and 12m change by a predetermined amount in accordance with the rotational force. Furthermore, between the outer ring 8 and the inner ring 9 described above, there is a magnetic field that is not in contact with these rings or the pickup member 7 and is applied from the outer ring 8 to the inner ring 9 (or from the inner ring 9 to the outer ring 8). A first Hall element 13, which is a magnetic detection element, is arranged at a right angle, and a second Hall element 14, which is a magnetic detection element, is arranged at a position facing the first Hall element 13 at an angle of 180°. . Also, these first. Second Hall element 13.
14 are general elements that generate an output voltage proportional to the strength of a magnetic field, and are each fixed to a printed circuit board 15 with an adhesive or the like.

プリント基板15は、支持部材15aを介して第1シャ
フト1に回動変位自在に嵌合していると共に、ホール素
子13.14からの信号を検出・処理するための部材(
図示せず)が配設されている。
The printed circuit board 15 is rotatably fitted to the first shaft 1 via the support member 15a, and also includes a member (
(not shown) is provided.

そして、前記第1ホール素子13と第2ホール素子14
には、第1図に示すように第1ピックアップ路11及び
第2ピックアップ路12を流れる磁束を捕集する集磁部
材16.17が夫々設けられている。この集磁部材16
.17は、磁力線を通し易いパーマロイ等の材質で略工
字形状に形成され、各ホール素子13.14に固定され
て半径方向に突出した基部16a、17aと、該基部1
6a、  17aの各両端部に一体に有した各一対の円
弧状集磁部16b、16c、17b、17cとを備えて
いる。各集磁部】6b〜17Cは、アウターリング8と
インナーリング9に対して非接触状態に配置されている
と共に、基部16a、17aを中心として左右周方向に
延長されて磁性体5a、5bと磁路片10a、10bと
のエアギャップ接合点C,Dで生じた磁束密度の濃い密
部Xと該密部Xと隣接する薄い粗部Yとの両方に跨って
被う形に配置されている。
Then, the first Hall element 13 and the second Hall element 14
As shown in FIG. 1, magnetic flux collecting members 16 and 17 are provided to collect the magnetic flux flowing through the first pickup path 11 and the second pickup path 12, respectively. This magnetic collecting member 16
.. Reference numeral 17 is made of a material such as permalloy through which lines of magnetic force easily pass, and is formed into a substantially square shape, and is fixed to each Hall element 13, 14 and protrudes in the radial direction. Bases 16a and 17a;
A pair of arcuate magnetic flux collectors 16b, 16c, 17b, and 17c are integrally provided at both ends of each of the magnets 6a, 17a. Each of the magnetic collecting parts 6b to 17C is arranged in a non-contact state with respect to the outer ring 8 and the inner ring 9, and extends in the left and right circumferential direction around the base parts 16a and 17a, and connects to the magnetic bodies 5a and 5b. It is arranged so as to straddle and cover both the dense part X with high magnetic flux density generated at the air gap junction points C and D with the magnetic path pieces 10a and 10b, and the thin coarse part Y adjacent to the dense part X. There is.

次に、本実施例の作用を説明する。すなわち、トルクが
加わらない定常時にあっては、ギャップ空間12A、 
12Bは互いに等しいので、例えば磁性体5aのN極か
らギヤツブ空間Q、A、磁路片10a、アウターリング
8を経てホール素子13に至る磁界HAと、磁性体5a
のN極からギヤツブ空間ρ8.磁路片10b、アウター
リング8を経てホール素子13に至る磁界H6との強さ
は等しい強さとなり、互いに相殺し合ってトルクは検出
されない。
Next, the operation of this embodiment will be explained. That is, in a steady state where no torque is applied, the gap space 12A,
Since 12B are equal to each other, for example, the magnetic field HA that reaches from the N pole of the magnetic body 5a to the Hall element 13 via the gear space Q, A, the magnetic path piece 10a, and the outer ring 8, and the magnetic body 5a
From the N pole of gear gear space ρ8. The strength of the magnetic field H6 reaching the Hall element 13 via the magnetic path piece 10b and the outer ring 8 is equal in strength, canceling each other out, and no torque is detected.

一方、回転力が例えば第4図に示すように円周方向Aの
向きに加わったときは磁性体5aから磁路片]、 Oa
までのギヤツブ空間ムと磁性体5bから磁路片10bま
でのギヤ・ノブ空間ムは何れも大きくなり、逆に磁性体
5aから磁路片10bまでのギャップ空間QBと磁性体
5bか磁路片10aまでのギャップ空間QBとは何れも
小さ(なる。したがって、これに伴って一方の磁界HB
が他方磁界HAよりも大きくなってゆき、その程度はA
方向に加わる捩れ角の大きさに比例する。例えばA方向
の回転力によりホール素子13に印加する磁界の向きを
正方向とし、その出力電圧がプラスの値となるようにホ
ール素子13の出力を設定すれば、発生トルクの大きさ
及び方向そして静止トルりを適切に検出することができ
る。また、回転力が円周方向Bの同きに加わったときは
一方の磁界H。
On the other hand, when a rotational force is applied in the circumferential direction A as shown in FIG.
The gear knob space from the magnetic body 5b to the magnetic path piece 10b becomes larger, and conversely, the gap space QB from the magnetic body 5a to the magnetic path piece 10b and the gear knob space from the magnetic body 5b to the magnetic path piece 10b become larger. The gap space QB up to 10a is small. Therefore, along with this, one of the magnetic fields HB
on the other hand, becomes larger than the magnetic field HA, and its degree is A
It is proportional to the magnitude of the twist angle applied in the direction. For example, if the direction of the magnetic field applied to the Hall element 13 by the rotational force in the A direction is in the positive direction, and the output of the Hall element 13 is set so that the output voltage is a positive value, the magnitude and direction of the generated torque and Static torque can be appropriately detected. Also, when rotational force is applied in the same circumferential direction B, one magnetic field H is generated.

が他方の磁界HBよりも大きくなり、上記の場合とは逆
向きのトルクを検出することかできる。
becomes larger than the other magnetic field HB, and it is possible to detect torque in the opposite direction to that in the above case.

また、ここで例えば第1ピックアップ路IIを通る磁束
流、つまり磁路片10aからアウターリング8を経て各
ホール素子13.14に至る磁束流は、アウターリング
8の密部Xを粗部Yの各磁束が集磁部材16.17の集
磁部16b、17bによって捕集されてそのまま基部1
6a、17aに集合して各ホール素子13.14に流入
する。
In addition, here, for example, the magnetic flux flow passing through the first pickup path II, that is, the magnetic flux flow from the magnetic path piece 10a to each Hall element 13. Each magnetic flux is collected by the magnetic collecting parts 16b and 17b of the magnetic collecting members 16 and 17, and then the base 1
6a, 17a and flow into each Hall element 13, 14.

このように、アウターリング8に流入した磁束は、集磁
部材16.17によって捕集されて密度が平均化補正さ
れ、密部Xと粗部Yによる計測誤差を可及的に小さくで
きる。したがって、各ホール素子13.14によるトル
ク測定精度が向上することは勿論のこと、従来のように
平均化補正用の磁気検出素子を用いずに、単に各ホール
素子13゜14に集磁部材16.17を設けるだけであ
るから、磁束回路が簡素化されると共に、製造作業や保
守管理が容易になる。また、集磁部材16,17は、ホ
ール素子よりも低価格であるため、製造コストの低廉化
が図れる。
In this way, the magnetic flux that has flowed into the outer ring 8 is collected by the magnetic collecting members 16, 17, and the density is averaged and corrected, so that measurement errors due to the dense portions X and coarse portions Y can be made as small as possible. Therefore, not only the accuracy of torque measurement by each Hall element 13, 14 is improved, but also the magnetism collecting member 16 is simply attached to each Hall element 13, 14 without using a magnetic detection element for averaging correction as in the past. Since only .17 is provided, the magnetic flux circuit is simplified, and manufacturing work and maintenance management become easier. Furthermore, since the magnetic flux collecting members 16 and 17 are cheaper than the Hall elements, manufacturing costs can be reduced.

第2図は本発明の第2実施例を示し、この実施例では、
集磁部材18を平面略クランク状に屈曲形成したもので
あって、基部18aの両端部に有する各集磁部18b、
18bはアウターリング8及びイン−リング9の磁束流
の密部Xと粗部Yを被う形で互い違いに周方向に延設さ
れている。
FIG. 2 shows a second embodiment of the invention, in which:
Each magnetic flux collecting part 18b is formed by bending the magnetic flux collecting member 18 into a planar substantially crank shape, and has magnetic flux collecting parts 18b at both ends of the base 18a.
The portions 18b extend alternately in the circumferential direction so as to cover the dense portions X and rough portions Y of the magnetic flux flow of the outer ring 8 and the inner ring 9.

したがって、本実施例においても、集磁部材18か各ピ
ックアップ路11.12を通った磁束を捕集してホール
素子13.14へ集中的に流入させるため、前記第1実
施例と同様な効果が得られると共に、集磁部材18の構
造が比較的単純であるため、製造作業が容易となる。
Therefore, in this embodiment as well, the magnetic flux that has passed through the magnetic flux collecting member 18 or each pickup path 11.12 is collected and intensively flows into the Hall element 13.14, so that the same effect as in the first embodiment can be obtained. In addition, since the structure of the magnetic flux collecting member 18 is relatively simple, manufacturing work becomes easy.

第3図は本発明の第3実施例を示し、この実施例では各
リング8,9の半径方向に沿って設けられたホール素子
13に、周方向に沿ってクランク状に屈曲形成された集
磁部材19が固定されている。即ち、集磁部材19は、
基部19aがホール素子13に対して周方向に沿って固
定され、該基部19aの両側部に有する各集磁部19b
、1.9bがアウターリング8とイン−リング9の各密
部Xと粗部Yに跨って連続的に配置されている。
FIG. 3 shows a third embodiment of the present invention, in which the Hall elements 13 provided along the radial direction of each ring 8, 9 are bent in a crank shape along the circumferential direction. A magnetic member 19 is fixed. That is, the magnetic flux collecting member 19 is
The base 19a is fixed to the Hall element 13 along the circumferential direction, and magnetic flux collectors 19b are provided on both sides of the base 19a.
, 1.9b are continuously arranged across the dense portions X and coarse portions Y of the outer ring 8 and the inner ring 9.

したがって、この実施例も第1.第2実施例と同様な作
用効果が得られると共に、集磁部材19の構造か一層簡
素化され、製造作業性がさらに良好となる。
Therefore, this embodiment also applies to the first example. The same effects as in the second embodiment can be obtained, and the structure of the magnetic flux collecting member 19 is further simplified, resulting in even better manufacturing workability.

また、各実施例とも、集磁部材16,17,18.19
を設けることによって、アウターリング8とイン−リン
グ9間のエアギャップを大きく設定することが可能とな
る。このため、この大きなエアギャップによりホール素
子13.14以外での磁束のリークが防止され、その分
、集磁部材16.17による捕集効率が向上し、ホール
素子13.14への磁束の集中化が促進され、トルク測
定精度が一層向上する。
In addition, in each embodiment, magnetic flux collecting members 16, 17, 18, 19
By providing this, it becomes possible to set a large air gap between the outer ring 8 and the inner ring 9. Therefore, this large air gap prevents magnetic flux from leaking outside the Hall element 13.14, and the collection efficiency by the magnetic collecting member 16.17 improves accordingly, allowing the concentration of magnetic flux to the Hall element 13.14. This will further improve torque measurement accuracy.

尚、各実施例では集磁部材の各集磁部を、アウターリン
グ8側とイン−リング9側の双方に設けているが、いず
れか−刃側のリング8,9側にのみ設けることも可能で
ある。
In each of the embodiments, the magnetic collecting parts of the magnetic collecting member are provided on both the outer ring 8 side and the inner ring 9 side, but they may also be provided only on either the ring 8 or 9 side on the blade side. It is possible.

発明の効果 以上の説明で明らかなように、本発明に係るトルクセン
サによれば、とりわけ磁気検出素子に、第1ピックアッ
プ路及び第2ピックアップ路の双方あるいは一方側を流
れる磁束を捕集する集磁部材を設けたため、第1.第2
ピックアップ路からトルク検出用の磁気検出素子に流入
する磁束の集中化が可能となり、磁束密度の変化による
計測誤差を十分に減少させることができる。この結果、
磁気検出素子によるトルク測定精度が向上することは勿
論のこと、従来のように平均化補正用の磁気検出素子が
不要になるため、部品点数の削減と磁束回路の簡素化が
図れる。したがって、製造作業や保守管理が容易になる
と共に、コストの低廉化が図れる。
Effects of the Invention As is clear from the above description, according to the torque sensor according to the present invention, in particular, the magnetic detection element includes a collector that collects magnetic flux flowing through both or one side of the first pickup path and the second pickup path. Because the magnetic member was provided, the first. Second
It becomes possible to concentrate the magnetic flux flowing from the pickup path into the magnetic detection element for torque detection, and it is possible to sufficiently reduce measurement errors due to changes in magnetic flux density. As a result,
Not only does the accuracy of torque measurement by the magnetic detection element improve, but since the magnetic detection element for averaging correction as in the prior art is not required, the number of parts can be reduced and the magnetic flux circuit can be simplified. Therefore, manufacturing work and maintenance management become easier, and costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るトルクセンサの第1実施例を示す
要部拡大図、第2図は本発明の第2実施例を示す要部拡
大図、第3図は本発明の第3実施例を示す要部拡大図、
第4図は本発明のトルクセンサを示す分解斜視図、第5
図は従来のトルクセンサを示す要部拡大図、第6図は同
従来のトルクセンサにおける磁束流を示す説明図である
。 ■・・・第1シャフト、2・・小径部、3・・・第2シ
ャフト、5a、5b・−・磁性体、10a、10b・・
・磁路片、11・・・第1ピックアップ路、12・・・
第2ピックアップ路、1.3.14・・・ホール素子(
磁気検出素子)、16.17,18.19・・・集磁部
材。 第1ンマフト 騎、5b m、ノj・生・イ〉)S; 16.171B、19−−−− 果狙邦η 第2図 第3図 第5図 第6図
FIG. 1 is an enlarged view of main parts showing a first embodiment of the torque sensor according to the present invention, FIG. 2 is an enlarged view of main parts showing a second embodiment of the invention, and FIG. 3 is a third embodiment of the present invention. An enlarged view of the main part showing an example,
FIG. 4 is an exploded perspective view showing the torque sensor of the present invention, and FIG.
The figure is an enlarged view of a main part of a conventional torque sensor, and FIG. 6 is an explanatory diagram showing magnetic flux flow in the conventional torque sensor. ■...First shaft, 2...Small diameter portion, 3...Second shaft, 5a, 5b...Magnetic material, 10a, 10b...
-Magnetic path piece, 11...first pickup path, 12...
Second pickup path, 1.3.14...Hall element (
magnetic detection element), 16.17, 18.19...magnetic collecting member. 1st Numaft Horseman, 5b m, Noj, Nama, I〉)S; 16.171B, 19 ---- Fruit aiming country η Fig. 2 Fig. 3 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)相対捩れ変位可能に連結された第1シャフト及び
第2シャフトと、該一方のシャフトの外周に、極性が周
方向に交互に配列されるように取り付けられた所定数の
磁性体と、他方のシャフトに、隣接する前記磁性体の中
間位置から磁束を導くように取り付けられて一つの磁性
体から他の磁性体に至る磁路を形成する第1ピックアッ
プ路及び第2ピックアップ路と、この各磁路を流れる磁
束の変化を検出する磁気検出素子とを備えたトルクセン
サにおいて、前記磁気検出素子に、前記第1ピックアッ
プ路及び第2ピックアップ路の双方あるいは一方側を流
れる磁束を捕集する集磁部材を設けたことを特徴とする
トルクセンサ。
(1) a first shaft and a second shaft that are connected to allow relative torsional displacement; a predetermined number of magnetic bodies attached to the outer periphery of the one shaft so that the polarities are arranged alternately in the circumferential direction; a first pickup path and a second pickup path that are attached to the other shaft so as to guide magnetic flux from an intermediate position between the adjacent magnetic bodies to form a magnetic path from one magnetic body to another; In a torque sensor equipped with a magnetic detection element that detects a change in magnetic flux flowing through each magnetic path, the magnetic flux flowing through both or one side of the first pickup path and the second pickup path is collected in the magnetic detection element. A torque sensor characterized by being provided with a magnetism collecting member.
JP4774290A 1990-02-28 1990-02-28 torque sensor Pending JPH03249529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4774290A JPH03249529A (en) 1990-02-28 1990-02-28 torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4774290A JPH03249529A (en) 1990-02-28 1990-02-28 torque sensor

Publications (1)

Publication Number Publication Date
JPH03249529A true JPH03249529A (en) 1991-11-07

Family

ID=12783809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4774290A Pending JPH03249529A (en) 1990-02-28 1990-02-28 torque sensor

Country Status (1)

Country Link
JP (1) JPH03249529A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329523A (en) * 2002-03-07 2003-11-19 Denso Corp Torque sensor
JP2006201033A (en) * 2005-01-20 2006-08-03 Favess Co Ltd Torque detection device
US7191669B2 (en) 2002-11-14 2007-03-20 Denso Corporation Highly reliable torque sensor
JP2007093624A (en) * 2007-01-12 2007-04-12 Denso Corp Torque sensor
JP2009522569A (en) * 2006-01-06 2009-06-11 ムービング マグネット テクノロジーズ エム.エム.テ. Magnetic position sensor with a short stroke, especially for measuring the twist of the handle shaft
JP2010093940A (en) * 2008-10-07 2010-04-22 Denso Corp Power supply circuit and signal detection apparatus
JP2018105642A (en) * 2016-12-22 2018-07-05 株式会社Soken Torque detection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329523A (en) * 2002-03-07 2003-11-19 Denso Corp Torque sensor
US7191669B2 (en) 2002-11-14 2007-03-20 Denso Corporation Highly reliable torque sensor
JP2006201033A (en) * 2005-01-20 2006-08-03 Favess Co Ltd Torque detection device
JP2009522569A (en) * 2006-01-06 2009-06-11 ムービング マグネット テクノロジーズ エム.エム.テ. Magnetic position sensor with a short stroke, especially for measuring the twist of the handle shaft
JP2007093624A (en) * 2007-01-12 2007-04-12 Denso Corp Torque sensor
JP2010093940A (en) * 2008-10-07 2010-04-22 Denso Corp Power supply circuit and signal detection apparatus
US8053936B2 (en) 2008-10-07 2011-11-08 Denso Corporation Power supply circuit and signal detection apparatus
JP2018105642A (en) * 2016-12-22 2018-07-05 株式会社Soken Torque detection device

Similar Documents

Publication Publication Date Title
CN113518743B (en) Position sensor specifically designed to detect torsion in the steering column
US8519700B2 (en) Magnetic angular position sensor including an isotropic magnet
US7568400B2 (en) Torque detecting apparatus
JP2004020527A (en) Torque sensor
JP5128120B2 (en) Rotation sensor
JP4941707B2 (en) Angle detector
US20060267581A1 (en) Angle position sensor
WO2008075623A1 (en) Rotation angle detector
JPH03249529A (en) torque sensor
JP3532778B2 (en) Rotation detection sensor
JP2007093624A (en) Torque sensor
JP3609645B2 (en) Rotation detection sensor
WO2005111565A1 (en) Torque detector
JP3161962B2 (en) Rotation angle detector
JP4484033B2 (en) Moving body detection device
JP3094049B2 (en) Torque sensor
JP2009020064A (en) Torque detector and electric power steering device
JP2576070Y2 (en) Torque sensor
TW201510486A (en) Magnetic encoder and sensor device
JP2019120544A (en) Torque sensor
JP2001133210A (en) Non-contact type position sensor
JP2746684B2 (en) Torque sensor
JP2009128181A (en) Torque detector, electric power steering apparatus, and claw pole manufacturing method
JP4001849B2 (en) Magnetic rotary position sensor
JP3652908B2 (en) Rotation detection sensor