JPH03258925A - Compressed air storage tank in compressed air storage power generating system - Google Patents
Compressed air storage tank in compressed air storage power generating systemInfo
- Publication number
- JPH03258925A JPH03258925A JP30116689A JP30116689A JPH03258925A JP H03258925 A JPH03258925 A JP H03258925A JP 30116689 A JP30116689 A JP 30116689A JP 30116689 A JP30116689 A JP 30116689A JP H03258925 A JPH03258925 A JP H03258925A
- Authority
- JP
- Japan
- Prior art keywords
- compressed air
- air storage
- pipe
- tank
- piles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
この考案は、余剰電力を利用する圧縮空気貯蔵発電シス
テムに用いる圧縮空気貯蔵槽に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a compressed air storage tank used in a compressed air storage power generation system that utilizes surplus electric power.
[従来の技術]
電力需要は昼間は夜間より遥かに大きい、従って夜間の
余剰電力を何等かの形態で貯蓄し、これを昼間に供給す
ることとすれぽ、電力供給能力を差程大きくしなくても
すむし、またその能力を充分に活用することができる。[Conventional technology] Electricity demand is much greater during the day than at night. Therefore, by storing surplus electricity during the night in some form and supplying it during the day, it is possible to avoid increasing the electricity supply capacity by a significant amount. You can also use that ability to your fullest.
そこで、従来上記夜間の電力を貯える為に幾つかの方策
が提案され、あるいは実施されている。Therefore, several measures have been proposed or implemented in order to store the above-mentioned nighttime power.
例えば上記の余剰電力で圧縮空気を作り、これを貯蔵し
て昼間の再発電に備える方式で、添付図面の第2図に示
されている様なものが知られている。第2図において、
夜間の余剰電力を受けて電動機51が圧縮機52を駆動
し、圧縮空気を貯気′N53に貯えておく、かかる貯気
槽53内の圧縮空気を電力の消費の多い昼間に取り出し
て燃焼器54に導いて、ここで得られる燃焼ガスによっ
て、ガスタービン55を駆動して発電機56にて電力を
得ている。かくして夜間の余剰電力を昼間に利用してい
る。For example, a system as shown in FIG. 2 of the accompanying drawings is known in which compressed air is produced using the above-mentioned surplus power and stored to prepare for regeneration during the day. In Figure 2,
The electric motor 51 drives the compressor 52 in response to surplus power at night, and compressed air is stored in the storage tank 53. The compressed air in the storage tank 53 is taken out during the day when power consumption is high and is used in the combustor. The combustion gas obtained here drives a gas turbine 55 and generates electric power from a generator 56. In this way, surplus electricity during the night is used during the day.
ここにおいて、上記貯気槽53の構想として従来は、第
3図に示されている様なものが提案されている。即ち地
上型圧縮空気槽61.半地下型圧縮空気槽62.地下浅
部型圧縮空気槽63.大深痩地下型圧縮空気槽64.海
底設置型圧縮空気槽65等が提案されている。これら従
来の圧縮空気槽は圧力タンク式、地下空洞に貯える方式
、海底に構造物を設置して貯える方式等が考えられてV
)るが、いずれも圧力が高い事及び容積が大きし)事か
ら壁厚が厚くて大型となる0図中、66はガスタービン
発電所、67は海上浮体型ガスタービン発電所、68は
貯水池である。Here, as a concept for the air storage tank 53, a concept as shown in FIG. 3 has been proposed. That is, an above-ground compressed air tank 61. Semi-underground compressed air tank 62. Shallow underground compressed air tank 63. Large deep underground compressed air tank 64. A seabed installed compressed air tank 65 and the like have been proposed. These conventional compressed air tanks include pressure tank types, storage methods in underground cavities, storage methods installed in structures on the seabed, etc.
), but all of them have thick walls and are large due to their high pressure and large volume.In the figure, 66 is a gas turbine power plant, 67 is an offshore floating gas turbine power plant, and 68 is a reservoir. It is.
更に、既に稼働している圧縮空気貯蔵発電システムとし
て西ドイツHuntorf発電所がある(電力中央研究
所報告U37094昭和63年7月)、ここでは290
MWの容量を有し、強固な岩塩層に大深度地下型圧縮空
気槽を設けている。Furthermore, there is the Huntorf power plant in West Germany as a compressed air storage power generation system that is already in operation (Central Institute of Electric Power Industry Report U37094 July 1986), here 290
It has a capacity of MW and has a deep underground compressed air tank located in a strong rock salt layer.
先に、本件の考案者等によって、特願平1−18591
4号において圧縮空気貯蔵発電システムに係る提案がな
されているが、圧縮空気貯蔵槽に間する構想は第3図に
示されている範囲を出るものではない。First, the creator of this case filed a patent application No. 1-18591.
No. 4 proposes a compressed air storage power generation system, but the concept for the compressed air storage tank does not go beyond the range shown in FIG.
[考案が解決しようとする課題]
わが国の首部周辺は第4図に示されている地質によって
構成されているので、岩盤を利用する事が困難である。[Problems to be solved by the invention] The area around the neck of our country is composed of the geology shown in Figure 4, so it is difficult to use bedrock.
上記の通り従来の圧縮空気槽は壁厚が厚くて大型となる
ために、建造時間が長く、建設費も高く、建設の際大重
量物をハンドリングしなければならず、設置場所も制約
されるので、建設が容易な大容積の高圧の圧縮空気槽の
提供が要望されていた。As mentioned above, conventional compressed air tanks have thick walls and are large, so construction time is long, construction costs are high, heavy objects must be handled during construction, and installation locations are also restricted. Therefore, there has been a demand for a large-volume, high-pressure compressed air tank that is easy to construct.
[課題を解決するための手段]
この考案に係る、圧縮空気貯蔵槽は、圧縮空気貯蔵発電
システムの空気貯蔵槽であって、該槽が建造物のパイプ
パイルからなり、該パイプパイルの端面が気密構造を有
することを特徴とする。[Means for Solving the Problems] The compressed air storage tank according to this invention is an air storage tank for a compressed air storage power generation system, and the tank is made of a pipe pile of a building, and the end face of the pipe pile is It is characterized by having an airtight structure.
[作用]
この考案は上記の様に構成されているので、建造時間が
短く、建設の際大重量物をハンドリングする必要がない
。[Function] Since this invention is constructed as described above, the construction time is short and there is no need to handle heavy objects during construction.
[実施例]
以下にこの考案を図によって説明する。第1図(1)は
この考案の一実施例のパイプパイルを示す、プラント建
設時に打ち込むバイブノ<イルを内径1mとし、通常の
パイプパイルよりやや大径とし、長さは約100m〜1
50mとし通常のツマイブパイルよりやや深くまで打ち
込む、このノくイブパイルの中に圧縮空気を貯蔵する槽
を設ける。なおこの実施例のパイプパイルの肉厚は27
mmである。このパイプパイルをプラント基礎用のパイ
プパイルと兼用とする0図において、1はノ<イブパイ
ル、2は圧縮空気を貯蔵する槽、3は地面である。[Example] This invention will be explained below using figures. Figure 1 (1) shows a pipe pile according to an embodiment of this invention.The vibrator installed during plant construction has an inner diameter of 1 m, a slightly larger diameter than a normal pipe pile, and a length of approximately 100 m to 1 m.
A tank for storing compressed air is installed inside this nokuib pile, which is 50 m long and is driven a little deeper than a normal tsumaib pile. The wall thickness of the pipe pile in this example is 27
It is mm. In Figure 0, where this pipe pile is also used as a pipe pile for a plant foundation, 1 is a nob pile, 2 is a tank for storing compressed air, and 3 is the ground.
第1図(2〉及び第1図(3)はこの考案の上記実施例
のパイプパイルの一施工方法の状況を詳細に示す、第1
図(2〉はパイプパイル21を打込む際の状況を示す0
図において23は打込用ウニ・ンブである。打込用ヘッ
ド管24を打込用ウニ・ンブ23に当接する位置までパ
イプパイル21の内面に挿入し打込ハンマーの衝撃によ
って、上面フランジ22が変形することを避ける。パイ
プパイル21の下端には円錐杭先25が取り付けられて
いる。第1図(3)に示す様にバイブパイル21の打込
みが完了すると、打込用ヘッド管24は収り除かれてパ
イプパイル21の底に底部鏡板26を落とし込み気密構
造となるように、円周を完全に溶接する。その後上部鏡
板27をガスケット28を介して上面フランジ22の上
に取り付ける。上部鏡板27には圧縮空気供給管30が
取り付けられている。その後上部鏡板27と上面フラン
ジ22とは円環状のクランプ2つによって気密構造とな
るように締め付けられる。Figure 1 (2) and Figure 1 (3) show in detail the situation of one construction method for pipe piles according to the above embodiment of this invention.
Figure (2) shows the situation when driving the pipe pile 21.
In the figure, 23 is a driving unit. The driving head pipe 24 is inserted into the inner surface of the pipe pile 21 to the position where it abuts against the driving arm 23 to prevent the upper surface flange 22 from being deformed by the impact of the driving hammer. A conical pile tip 25 is attached to the lower end of the pipe pile 21. As shown in FIG. 1 (3), when the driving of the vibrator pile 21 is completed, the driving head pipe 24 is removed and the bottom mirror plate 26 is dropped into the bottom of the pipe pile 21, and the pipe is circularly inserted to create an airtight structure. Weld the circumference completely. Thereafter, the upper mirror plate 27 is attached to the upper surface flange 22 via the gasket 28. A compressed air supply pipe 30 is attached to the upper end plate 27. Thereafter, the upper end plate 27 and the upper surface flange 22 are tightened with two annular clamps to form an airtight structure.
第1図(4〉、第1図(5)及び第1図(6)はこの考
案の上記実施例のパイプパイルの他の施工方法の状況を
詳細に示す、第1図(4)はパイプパイル21を打込む
際の状況を示す0図において23は打込用ウェッブであ
る。打込用ヘッド管24を打込用ウェッブ23に当接す
る位置までパイプパイル21の内面に挿入し打込ハンマ
ーの衝撃によって、上面フランジ22が変形することを
避ける点は上述の例と同様である。パイプパイル21の
下端近くに底板32が取り付けられており、底板32の
中央にコンクリート圧送管31が取り付けられている0
次に第1図(5)に示す様にパイプパイル21の打込み
が完了すると、打込用ヘッド管24は取り除かれてコン
クリート圧送管31を通して生コンクリートが圧入され
る。生コンクリートは、パイプパイル21の下端を包ん
で固まりコンクリート塊35を形成する0次に第1図(
6〉に示す様にコンクリート圧送管31が取り除かれて
パイプパイル21の底に底部鏡板26を落とし込み気密
構造となるように、円周を完全に溶接する。その後上部
鏡板27をガスケット34を介して上面フランジ22の
上に取り付ける。上部鏡板27には圧縮空気供給管30
が取り付けられている。その後上部鏡板27と上面フラ
ンジ22とは締め付ボルドーナツト33によって気密構
造となるように締め付けられる。Figure 1 (4), Figure 1 (5) and Figure 1 (6) show in detail the situation of other construction methods for pipe piles according to the above embodiment of this invention. In Figure 0, which shows the situation when driving the pile 21, 23 is a driving web.The driving head pipe 24 is inserted into the inner surface of the pipe pile 21 until it contacts the driving web 23, and then the driving hammer is inserted. This is similar to the above example in that the top flange 22 is prevented from being deformed by the impact of 0
Next, when the pouring of the pipe pile 21 is completed as shown in FIG. The fresh concrete wraps around the lower end of the pipe pile 21 and solidifies to form a concrete mass 35 as shown in FIG.
As shown in 6>, the concrete pressure pipe 31 is removed, and the bottom end plate 26 is dropped into the bottom of the pipe pile 21, and the circumference is completely welded to create an airtight structure. Thereafter, the upper mirror plate 27 is attached onto the upper flange 22 via the gasket 34. A compressed air supply pipe 30 is provided on the upper end plate 27.
is installed. Thereafter, the upper end plate 27 and the upper surface flange 22 are tightened with a tightening bolt donut 33 to form an airtight structure.
第1図(3)及び第1図(6〉の状況においてパイプパ
イル21の内部は80kg/−程度の圧縮空気を貯蔵す
る槽となる。圧縮空気供給管30を通じて、圧縮空気は
供給されたり排出されたりする事によって、エネルギー
を貯蔵したり放出したりする。In the situations shown in Fig. 1 (3) and Fig. 1 (6), the inside of the pipe pile 21 becomes a tank that stores about 80 kg/- of compressed air. Compressed air is supplied and discharged through the compressed air supply pipe 30. It stores and releases energy depending on what happens.
第4図はわが国の首部周辺の地質が示されている0図に
おいて第四組層は軟弱であって、岩盤を利用する事が困
難であると共に大型のパイプパイルを通常のパイプパイ
ルよりやや深くまで打ち込む事は極めて容易である。Figure 4 shows the geology around the neck of Japan. In Figure 0, the fourth group layer is soft and it is difficult to use the bedrock, and large pipe piles are built a little deeper than normal pipe piles. It is extremely easy to type in.
[考案の効果コ
この考案の圧縮空気貯蔵発電システムにおける、圧縮空
気貯蔵槽は、プラント基礎用のパイプパイルと兼用とす
るので、設置場所も不要となり、建造時間が短く、建設
費も節約でる。[Effects of the invention] In the compressed air storage power generation system of this invention, the compressed air storage tank is also used as the pipe pile for the plant foundation, so no installation space is required, construction time is short, and construction costs are also saved.
第1図(1〉はこの考案の一実施例を示す縦断面図、第
1図(2)、第1図(3)、第1図(4〉、第1図(5
)及び第1図(6)はこの考案の一施工方法の状況を示
す縦断面図、第2図は圧縮空気貯蔵発電システムの流れ
を示す説明図、第3図は従来の圧縮空気貯蔵発電システ
ムにおける、圧縮空気貯蔵槽を示す説明図、第4図はわ
が国の首部周辺の地質が示されている説明図であ°る。
1 ・パイプパイル、2・・・槽、3・・・地盤、2ド
パイブパイル、22・・・上面フランジ、23・・・打
込用ウェッブ、24・・・打込用ヘッド管、25・・・
円錐杭先、26・・底部鏡板、27・・・上部鏡板、2
8・・ガスケット、2つ・・・クランプ、30・・・圧
縮空気供給管、31・・・コンクリート圧送管、32・
・・底板、33・・・締め付ボルドーナツト、34・・
・ガスケット、35・・・コンクリート塊、51・・・
電動機、52・・・圧縮機、53・・・貯気槽、54・
・・燃焼器、55・・・ガスタービン、56・・・発電
機、61・・・地上型圧縮空気槽、62・・半地下型圧
縮空気槽、63・・・地下浅部型圧縮空気槽、64・・
・大深度地下型圧縮空気槽、65・・・海底設置型圧縮
空気槽、66・・・ガスタービン発電所、67・・海上
浮体型ガスタービン発電所、68・・・貯水池。
第1図Figure 1 (1) is a vertical cross-sectional view showing one embodiment of this invention, Figure 1 (2), Figure 1 (3), Figure 1 (4), Figure 1 (5).
) and Figure 1 (6) are longitudinal cross-sectional views showing the construction method of this invention, Figure 2 is an explanatory diagram showing the flow of the compressed air storage power generation system, and Figure 3 is a conventional compressed air storage power generation system. Fig. 4 is an explanatory diagram showing the compressed air storage tank in Fig. 4, and Fig. 4 is an explanatory diagram showing the geology around the neck of Japan. 1 - Pipe pile, 2... Tank, 3... Ground, 2-doped pipe pile, 22... Top flange, 23... Web for driving, 24... Head pipe for driving, 25...
Conical pile tip, 26... Bottom mirror plate, 27... Upper mirror plate, 2
8... Gasket, 2... Clamp, 30... Compressed air supply pipe, 31... Concrete pressure feed pipe, 32...
...Bottom plate, 33...Tightening bolt donut, 34...
・Gasket, 35... Concrete lump, 51...
Electric motor, 52... Compressor, 53... Air storage tank, 54.
...Combustor, 55... Gas turbine, 56... Generator, 61... Above ground compressed air tank, 62... Semi-underground compressed air tank, 63... Shallow underground compressed air tank , 64...
- Deep underground compressed air tank, 65... Seabed installed compressed air tank, 66... Gas turbine power plant, 67... Offshore floating gas turbine power plant, 68... Reservoir. Figure 1
Claims (1)
が建造物のパイプパイルからなり、該パイプパイルの端
面が気密構造を有することを特徴とする圧縮空気貯蔵槽
。1. An air storage tank for a compressed air storage power generation system, characterized in that the tank is made of a pipe pile of a building, and the end surface of the pipe pile has an airtight structure.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP30116689A JPH03258925A (en) | 1989-11-20 | 1989-11-20 | Compressed air storage tank in compressed air storage power generating system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP30116689A JPH03258925A (en) | 1989-11-20 | 1989-11-20 | Compressed air storage tank in compressed air storage power generating system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH03258925A true JPH03258925A (en) | 1991-11-19 |
Family
ID=17893587
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP30116689A Pending JPH03258925A (en) | 1989-11-20 | 1989-11-20 | Compressed air storage tank in compressed air storage power generating system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH03258925A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009114205A3 (en) * | 2008-03-14 | 2010-02-04 | Energy Compression Llc | Adsorption-enhanced compressed air energy storage |
| US8621857B2 (en) | 2008-03-14 | 2014-01-07 | Energy Compression Inc. | Adsorption-enhanced compressed air energy storage |
-
1989
- 1989-11-20 JP JP30116689A patent/JPH03258925A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009114205A3 (en) * | 2008-03-14 | 2010-02-04 | Energy Compression Llc | Adsorption-enhanced compressed air energy storage |
| GB2470337A (en) * | 2008-03-14 | 2010-11-17 | Energy Compression Llc | Adsorption-enchanced compressed air energy storage |
| US8621857B2 (en) | 2008-03-14 | 2014-01-07 | Energy Compression Inc. | Adsorption-enhanced compressed air energy storage |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101550737B1 (en) | Method for constructing reservoir in underground for the storage of highly pressured fluid | |
| US6347910B1 (en) | Submarine power storage system | |
| US20200347815A1 (en) | Subsea Energy Storage | |
| JPH03258925A (en) | Compressed air storage tank in compressed air storage power generating system | |
| JPS58214608A (en) | Energy storage device | |
| JPH0275730A (en) | Underground storage method for compressed air and device thereof | |
| JPS6312834A (en) | Underwater tank | |
| JP7198632B2 (en) | wind power system | |
| JPS63239319A (en) | Underwater energy storage device | |
| JP2010180684A (en) | Pier of three-dimensional rigid frame structure and construction method | |
| JPS63239320A (en) | Underwater energy storage device | |
| CN110616725A (en) | Combined water-resisting device | |
| JPS63270999A (en) | Ocean storage device for compressed air and its manufacture | |
| JPS63115997A (en) | Gas tank device installed underground | |
| JP3199164B2 (en) | Construction method of underground diaphragm wall | |
| CN221461130U (en) | Vertical seabed pressure-bearing reservoir for seabed energy storage system | |
| CN110145327A (en) | Antidetonation system for underground neutron energy power station | |
| CN219733469U (en) | Ultra-deep rock salt cavity making device capable of realizing forward and reverse circulation rotational flow injection | |
| CN217520348U (en) | A CO2 deflagration ram cylinder group | |
| JP3125502B2 (en) | Sealing test method for rubber seams | |
| JPH0271053A (en) | compressed air energy storage system | |
| JPH11124082A (en) | Device for assembling at sea compressed air storage equipment | |
| JPS62132097A (en) | Storage tank for compressed air | |
| JPH0275729A (en) | Underground storage method for compressed air and device thereof | |
| JPS63106495A (en) | Compressed air storage tank |