JPH03252318A - Production of nickel hydroxide - Google Patents
Production of nickel hydroxideInfo
- Publication number
- JPH03252318A JPH03252318A JP2048028A JP4802890A JPH03252318A JP H03252318 A JPH03252318 A JP H03252318A JP 2048028 A JP2048028 A JP 2048028A JP 4802890 A JP4802890 A JP 4802890A JP H03252318 A JPH03252318 A JP H03252318A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- aqueous solution
- nickel hydroxide
- nickel
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、球状の水酸化ニッケル粒子またはコバルトお
よびカドミウムを含む球状の水酸化ニッケル粒子の新規
な製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a novel method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium.
なお、以下においては、特に断らない限り、“水酸化ニ
ッケル粒子或いは粉末”とあるのは、“コバルトおよび
カドミウムを含む水酸化ニッケル粒子或いは粉末”をも
包含するものとする。In the following, unless otherwise specified, "nickel hydroxide particles or powder" includes "nickel hydroxide particles or powder containing cobalt and cadmium."
従来技術とその問題点
アルカリ電池用の非焼結タイプのニッケル正極に使用さ
れる水酸化ニッケル粉末には、粒子形状が球形で且つ嵩
密度が高いことが求められている。Prior art and its problems Nickel hydroxide powder used in non-sintered nickel positive electrodes for alkaline batteries is required to have a spherical particle shape and a high bulk density.
これは、(イ)この様な水酸化ニッケル粉末をニッケル
正極の活物質として金属性ポケットなどに充填する場合
には、密に充填することが出来る、(ロ)活物質として
、導電剤と混合してペースト状で使用する場合には、流
動性などのペーストの性状が安定するので、充填性、充
填率などが改善される、(ハ)したがって、(イ)、(
ロ)のいずれの場合にも、活物質の利用率が向上し、性
能の優れた電極が得られる、などの理由によるものであ
る。This is because (a) when such nickel hydroxide powder is used as an active material for a nickel positive electrode and is filled into a metallic pocket, it can be densely packed, and (b) when it is mixed with a conductive agent as an active material. When used in paste form, the properties of the paste such as fluidity are stabilized, so filling properties, filling rate, etc. are improved. (C) Therefore, (B), (
In both cases of b), the utilization rate of the active material is improved and an electrode with excellent performance can be obtained.
しかしながら、従来の水酸化ニッケルの製造方法におい
ては、上記の様な特性を備えた粉末を得ることは、困難
であった。However, in conventional methods for producing nickel hydroxide, it has been difficult to obtain powder with the above characteristics.
本願発明者の一人は、この様な技術の現状に鑑みて鋭意
研究を重ねた結果、[(イ)ニッケル塩水溶液、(ロ)
アルカリ金属水酸化物水溶液および(ハ)アンモニウム
イオン供給体を反応させて水酸化ニッケルを製造するに
当り、上記(イ)、(ロ)及び(ハ)の三者を連続して
同時的に反応系に供給し、反応系の温度を20〜80℃
の範囲の一定値に且つpHを9〜12の範囲の一定値に
保持しつつ反応を進行せしめて平均粒径2〜50μmの
球形水酸化ニッケル粒子を生成せしめ、これを連続的に
取出すことを特徴とする水酸化二、ソケルの製造法」を
完成し、本願出願人により特許出願済みである(特開平
2−6340号公報;以下この方法を先願発明という)
。One of the inventors of this application, as a result of intensive research in view of the current state of technology, found that [(a) nickel salt aqueous solution, (b)
In producing nickel hydroxide by reacting an aqueous alkali metal hydroxide solution and (c) an ammonium ion donor, the above three (a), (b) and (c) are reacted simultaneously and consecutively. the temperature of the reaction system from 20 to 80°C.
The reaction is allowed to proceed while maintaining the pH at a constant value in the range of 9 to 12 to produce spherical nickel hydroxide particles with an average particle size of 2 to 50 μm, which are continuously taken out. The applicant has completed a patent application for the "method for producing di-soquel hydroxide characterized by its characteristics" (Japanese Patent Application Laid-open No. 2-6340; hereinafter, this method will be referred to as the prior invention).
.
この先願発明は、上記従来技術に比べれば、優れた方法
ではあるが、反応の進行に伴い水酸化ニッケル粒子が全
体的に成長するに従って、微小粒子の数が不足する。従
って、ニッケル正極の活物質として金属性ポケットなど
に充填する際に、空隙率の大きい、すなわちタッピング
密度のかさばる製品となる傾向がある。タッピング密度
の増大は、アルカリ電池の正極としては、利用率の低下
につながるので、この点の改善が望まれるところである
。Although this prior invention is an excellent method compared to the prior art described above, as the nickel hydroxide particles grow overall as the reaction progresses, the number of microparticles becomes insufficient. Therefore, when filling a metallic pocket or the like as an active material of a nickel positive electrode, the product tends to have a large porosity, that is, a bulky product with a tapping density. An increase in tapping density leads to a decrease in the utilization rate as a positive electrode for an alkaline battery, so improvement in this point is desired.
問題点を解決するための手段
本発明者は、上記の如き技術の現状に鑑みてさらに研究
を重ねた結果、先願発明による水酸化ニッケルの連続的
製造過程において、所望の粒子径まで水酸化ニッケル粒
子の成長が進んだ時点で周期的に反応系のpHを変動さ
せるか或いはアンモニウムイオン供給体の供給を停止乃
至減少させる場合には、反応系内に水酸化ニッケル粒子
の核となる微小粒子が形成されるので、反応系のpHを
再び当初の値に戻すことにより、粒子の成長と粒子核の
発生とからなるサイクルが繰り返され、その結果、安定
したタッピング密度を有する水酸化ニッケルが得られる
ことを見出した。Means for Solving the Problems As a result of further research in view of the current state of the technology as described above, the present inventor has discovered that nickel hydroxide can be hydrated to a desired particle size in the continuous production process of nickel hydroxide according to the prior invention. When the pH of the reaction system is periodically varied or the supply of ammonium ion donor is stopped or reduced when the growth of nickel particles has progressed, microparticles that become the core of nickel hydroxide particles are added to the reaction system. is formed, and by returning the pH of the reaction system to its initial value, a cycle consisting of particle growth and generation of particle nuclei is repeated, and as a result, nickel hydroxide with a stable tapping density is obtained. I found out that it can be done.
また、複数の反応系において異なる条件下に上記と同様
にして粒子の成長と粒子核の発生とからなるサイクルを
繰り返させた後、得られた粒子径の異なる粒子群を混合
することにより、所定の粒度分布をより正確に制御した
水酸化ニッケル混合粒子が容易に得られることをも見出
した。In addition, by repeating the cycle consisting of particle growth and generation of particle nuclei in the same manner as above under different conditions in multiple reaction systems, and then mixing the obtained particle groups with different particle sizes, a predetermined It has also been found that mixed nickel hydroxide particles with a more precisely controlled particle size distribution can be easily obtained.
即ち、本発明は、下記の水酸化ニッケルの製造方法を提
供するものである:
■(イ)ニッケル塩水溶液またはニッケル塩、コバルト
塩およびカドミウム塩を含む水溶液、(ロ)アルカリ金
属水酸化物水溶液および(ハ)アンモニウムイオン供給
体を連続的に反応系に供給し、反応系の温度を20〜8
0℃の範囲内の一定値に且つpHを9〜12の範囲内の
一定値に保持しつつ反応を進行させて水酸化ニッケル粒
子またはコバルトおよびカドミウムを含む水酸化ニッケ
ル粒子を生成させ、該生成物を連続的に取出す方法にお
いて、間欠的に一定の時間にわたりアルカリ金属水酸化
物水溶液の供給量を増加させて反応系のpHを調整する
ことにより、核となる水酸化ニッケル微粒子を生成させ
ることを特徴とする球状の水酸化ニッケル粒子またはコ
バルトおよびカドミウムを含む球状の水酸化ニッケル粒
子の製造方法。That is, the present invention provides the following method for producing nickel hydroxide: (a) nickel salt aqueous solution or an aqueous solution containing nickel salt, cobalt salt and cadmium salt, (b) alkali metal hydroxide aqueous solution and (iii) ammonium ion donor is continuously supplied to the reaction system, and the temperature of the reaction system is maintained at 20 to 8
Proceeding the reaction while maintaining the pH at a constant value within the range of 0 ° C. and at a constant value within the range of 9 to 12 to generate nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium, and generate nickel hydroxide particles containing cobalt and cadmium. In a method of continuously taking out a substance, the pH of the reaction system is adjusted by increasing the amount of alkali metal hydroxide aqueous solution supplied intermittently over a certain period of time, thereby generating fine nickel hydroxide particles that serve as the nucleus. A method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium, characterized by:
■(イ)ニッケル塩水溶液またはニッケル塩、コバルト
塩およびカドミウム塩を含む水溶液、(ロ)アルカリ金
属水酸化物水溶液および(ハ)アンモニウムイオン供給
体を連続的に反応系に供給し、反応系の温度を20〜8
0 ’Cの範囲内の一定値に且つpHを9〜12の範囲
の一定値に保持しつつ反応を進行させて水酸化ニッケル
粒子またはコバルトおよびカドミウムを含む水酸化ニッ
ケル粒子を生成させ、該生成物を連続的に取出す方法に
おいて、間欠的に一定の時間にわたり反応系へのアンモ
ニウムイオン供給体の供給を停止するか或いはその供給
量を減少させることにより、核となる水酸化ニッケル微
粒子を生成させることを特徴とする球状の水酸化ニッケ
ル粒子またはコバルトおよびカドミウムを含む球状の水
酸化ニッケル粒子の製造方法。■ Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, cobalt salt, and cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system. Temperature 20-8
Proceeding the reaction while maintaining the pH at a constant value within the range of 0'C and at a constant value within the range of 9 to 12 to generate nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium, and In a method of continuously taking out a substance, fine particles of nickel hydroxide, which serve as cores, are generated by stopping the supply of ammonium ion donor to the reaction system intermittently for a certain period of time, or reducing the supply amount. A method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium, characterized by:
■(イ)ニッケル塩水溶液またはニッケル塩、コバルト
塩およびカドミウム塩を含む水溶液、(ロ)アルカリ金
属水酸化物水溶液および(ハ)アンモニウムイオン供給
体を連続的に反応系に供給し、反応系の温度を20〜8
0℃の範囲内の一定値に且つpHを9〜12の範囲内の
一定値に保持しつつ反応を進行させて水酸化ニッケル粒
子またはコバルトおよびカドミウムを含む水酸化ニッケ
ル粒子を生成させ、該生成物を連続的に取出す方法にお
いて、複数の反応系において異なる条件下に反応を行な
わせて粒子径の異なる粒子群を形成させ、各反応系にお
いて間欠的に一定の時間にわたりアルカリ金属水酸化物
水溶液の供給量を増加させて反応系のpHを調整するこ
とにより、核となる水酸化ニッケル微粒子を生成させ、
上記で得られた粒子径の異なる粒子群を混合することに
より、所定の粒度分布を有する混合粒子を得ることを特
徴とする球状の水酸化ニッケル粒子またはコバルトおよ
びカドミウムを含む球状の水酸化ニッケル粒子の製造方
法。■ Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, cobalt salt, and cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system. Temperature 20-8
Proceeding the reaction while maintaining the pH at a constant value within the range of 0 ° C. and at a constant value within the range of 9 to 12 to generate nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium, and generate nickel hydroxide particles containing cobalt and cadmium. In a method for continuously extracting substances, reactions are carried out under different conditions in multiple reaction systems to form particle groups with different particle sizes, and an aqueous alkali metal hydroxide solution is intermittently added to each reaction system over a certain period of time. By increasing the supply amount of nickel hydroxide and adjusting the pH of the reaction system, nickel hydroxide fine particles that serve as the core are generated,
Spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium characterized in that mixed particles having a predetermined particle size distribution are obtained by mixing the particle groups with different particle sizes obtained above. manufacturing method.
■(イ)ニッケル塩水溶液またはニッケル塩、コバルト
塩およびカドミウム塩を含む水溶液、(ロ)アルカリ金
属水酸化物水溶液および(ハ)アンモニウムイオン供給
体を連続的に反応系に供給し、反応系の温度を20〜8
0℃の範囲内の一定値に且つpHを9〜12の範囲内に
保持しつつ反応を進行させて水酸化ニッケル粒子または
コバルトおよびカドミウムを含む水酸化ニッケル粒子を
生成させ、該生成物を連続的に取出す方法において、複
数の反応系において異なる条件下に反応を行なわせて粒
子径の異なる粒子群を形成させるとともに、各反応系に
おいて間欠的に一定の時間にわたり反応系へのアンモニ
ウムイオン供給体の供給を停止するか或いはその供給量
を減少させることにより、核となる水酸化ニッケル微粒
子を生成させ、上記で得られた粒子径の異なる粒子群を
混合することにより、所定の粒度分布を有する混合粒子
を得ることを特徴とする球状の水酸化ニッケル粒子また
はコバルトおよびカドミウムを含む球状の水酸化ニッケ
ル粒子の製造方法。■ Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, cobalt salt, and cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system. Temperature 20-8
The reaction is allowed to proceed while maintaining a constant value within the range of 0°C and the pH within the range of 9 to 12 to produce nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium, and the product is continuously In this method, reactions are carried out under different conditions in multiple reaction systems to form particle groups with different particle sizes, and in each reaction system, an ammonium ion donor is intermittently supplied to the reaction system for a certain period of time. By stopping the supply of nickel hydroxide or reducing its supply amount, fine nickel hydroxide particles are generated as a core, and by mixing the particle groups with different particle sizes obtained above, a predetermined particle size distribution is obtained. A method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium, the method comprising obtaining mixed particles.
以下においては、本願特許請求の範囲第1項に記載の発
明を本願第一発明とし、本願特許請求の範囲第2項に記
載の発明を本願第二発明とし、本願特許請求の範囲第3
項に記載の発明を本願第三発明とし、本願特許請求の範
囲第4項に記載の発明を本願第四発明とする。また、各
発明を特に区別しない場合には、全体を総括して単に本
発明というものとする。In the following, the invention set forth in claim 1 of the present application will be referred to as the first invention of the present application, the invention set forth in claim 2 of the present application will be referred to as the second invention of the present application, and the invention set forth in claim 2 of the present application will be referred to as the third invention of the present application.
The invention set forth in claim 1 is the third invention of the present application, and the invention set forth in claim 4 of the present application is the fourth invention of the present application. In addition, unless there is a particular distinction between each invention, the invention as a whole will simply be referred to as the present invention.
本発明方法において使用する(イ)ニッケル塩水溶液を
形成する塩としては、硝酸ニッケル、硫酸ニッケル、塩
化ニッケルなどの水溶性ニッケル塩が挙げられる。ニッ
ケル塩水溶液の濃度は、通常0. 5〜3.5モル/Q
程度である。水溶液中にニッケル塩とともにコバルト塩
およびカドミウム塩を含有させる場合には、硫酸コバル
ト、硝酸コバルト、°塩化コバルトなどの水溶性コバル
ト塩および硫酸カドミウム、硝酸カドミウム、塩化カド
ミウムなどの水溶性カドミウム塩が使用される。Examples of the salt forming the (a) nickel salt aqueous solution used in the method of the present invention include water-soluble nickel salts such as nickel nitrate, nickel sulfate, and nickel chloride. The concentration of the nickel salt aqueous solution is usually 0. 5-3.5 mol/Q
That's about it. When containing cobalt salts and cadmium salts together with nickel salts in an aqueous solution, water-soluble cobalt salts such as cobalt sulfate, cobalt nitrate, and cobalt chloride, and water-soluble cadmium salts such as cadmium sulfate, cadmium nitrate, and cadmium chloride are used. be done.
水溶液中のコバルトの濃度は、コバルトイオンとして、
0.01〜0.5モル/Q程度であり、カドミウムの濃
度は、カドミウムイオンとして、0.01〜0.5モル
/Q程度である。The concentration of cobalt in an aqueous solution is as cobalt ion,
The concentration of cadmium is about 0.01 to 0.5 mol/Q, and the concentration of cadmium is about 0.01 to 0.5 mol/Q as cadmium ions.
本発明方法において使用する(口)アルカリ金属水酸化
物水溶液としては、水酸化ナトリウム、水酸化カリウム
などの水溶液が挙げられる。アルカリ金属水酸化物水溶
液の濃度は、通常1.25〜10モル/Q程度である。Examples of the alkali metal hydroxide aqueous solution used in the method of the present invention include aqueous solutions of sodium hydroxide, potassium hydroxide, and the like. The concentration of the aqueous alkali metal hydroxide solution is usually about 1.25 to 10 mol/Q.
本発明において使用する(ハ)アンモニウムイオン供給
体としては、硝酸アンモニウム、硫酸アンモニウム、塩
化アンモニウムなどのアンモニウム塩の水溶液(通常3
〜7゜5モル/Q程度)、アンモニア水(通常濃度10
〜28%程度)、アンモニアガスなどが挙げられる。(iii) The ammonium ion donor used in the present invention is an aqueous solution of ammonium salt such as ammonium nitrate, ammonium sulfate, ammonium chloride (usually
~7°5 mol/Q), ammonia water (normal concentration 10
~28%), ammonia gas, etc.
本発明方法においては、上記(イ)、(ロ)および(ハ
)の3種の原料(以下単に水溶液という)を連続的に反
応系に供給する。3種の水溶液の供給比は、(イ)中の
ニッケル塩1モルに対して、アルカリ金属水酸化物1.
8〜2.2モル程度、アンモニウムイオン供給体0.1
〜1. 5モ/147!。In the method of the present invention, the above three raw materials (a), (b) and (c) (hereinafter simply referred to as aqueous solutions) are continuously supplied to the reaction system. The feed ratio of the three types of aqueous solutions is 1.0 mol of the alkali metal hydroxide to 1 mol of the nickel salt in (a).
About 8 to 2.2 mol, ammonium ion donor 0.1
~1. 5mo/147! .
度の範囲内にある。これら3種の水溶液の反応系への供
給は、充分に攪拌しつつ行なう。これら水溶液の供給量
は、反応槽の容量および形状、各水溶液の濃度、水酸化
ニッケルの所望粒子径などにより異なるが、反応系内で
の滞留時間が通常1〜10時間程度となる様にすれば良
い。within the range of degrees. These three types of aqueous solutions are supplied to the reaction system while being sufficiently stirred. The amount of these aqueous solutions supplied varies depending on the capacity and shape of the reaction tank, the concentration of each aqueous solution, the desired particle size of nickel hydroxide, etc., but it should be such that the residence time in the reaction system is usually about 1 to 10 hours. Good.
以下に添付図面を参照しつつ、本願第一発明乃至本願第
四発明について詳細に説明する。The first to fourth inventions of the present application will be described in detail below with reference to the accompanying drawings.
■9本願第一発明および
■1本願第二発明
第1図は、本願第一発明および第二発明を実施するに際
し使用する反応装置の一例の概要を示す。(9) First invention of the present application and (1) Second invention of the present application Fig. 1 shows an outline of an example of a reaction apparatus used in carrying out the first invention and the second invention of the present application.
攪拌機(17)を備えた反応槽(1)には、ニッケル塩
水溶液がライン(3)から、アンモニウムイオン供給体
がライン(5)から、そしてアルカリ金属水酸化物水溶
液がライン(7)から定量ポンプ(9)を経て、それぞ
れ連続的に供給される。A reaction tank (1) equipped with a stirrer (17) is supplied with a nickel salt aqueous solution from a line (3), an ammonium ion donor from a line (5), and an alkali metal hydroxide aqueous solution from a line (7). Each is continuously supplied via a pump (9).
(11)は、p Hコントローラーであり、(13)は
、温度コントローラーである。生成した水酸化ニッケル
粒子を含む液は、ライン(15)から連続的に取り出さ
れる。この液は、公知の手段により濾過処理され、所望
の水酸化ニッケル粒子が得られる。(11) is a pH controller, and (13) is a temperature controller. The liquid containing the generated nickel hydroxide particles is continuously taken out from the line (15). This liquid is filtered by known means to obtain desired nickel hydroxide particles.
第1図に示す様な状況下に反応を行なうに際して、反応
系の他の条件を一定とすると、反応液のpnと反応液中
のアンモニウムイオン濃度との関連が、水酸化ニッケル
粒子の成長速度に大きな影響を及ぼす。すなわち、反応
液のpHが高くなるとともに、反応液中のアンモニウム
イオン濃度を高める必要がある。例えば、反応液のpH
が11.0の場合と11.5の場合とを比較すると、後
者の場合にはアンモニウムイオン濃度を約1.5倍とす
る必要がある。このpH域では、pH値と必要アンモニ
ウムイオン濃度との間には、比例関係がほぼ成立してい
る。この様な状況下に、アンモニウムイオン濃度を一定
とし且つ反応液のpHを一定(11,0)とした状態で
反応を継続することにより、水酸化ニッケル粒子の成長
を一定時間行なった後、反応液のpHを11.5に高め
たと仮定すると、さらに水酸化ニッケル粒子の成長をは
かるためには、高めた反応液のpH値に対応する様にア
ンモニウムイオンの濃度をも高める必要がある。この際
、仮に、反応液の当初のpH(11,0> に対応する
濃度でアンモニウムイオン供給体を供給し続けると、ア
ンモニウムイオンの量が不足して、これまでに生成した
水酸化ニッケル粒子の成長がほぼ停止し、その代わりに
新たな水酸化ニッケルの粒子核となる水酸化ニッケル微
粒子が発生することが見出された。When carrying out a reaction under the conditions shown in Figure 1, assuming that other conditions in the reaction system are constant, the relationship between the pn of the reaction solution and the ammonium ion concentration in the reaction solution is the growth rate of nickel hydroxide particles. has a major impact on That is, it is necessary to increase the ammonium ion concentration in the reaction solution as well as the pH of the reaction solution. For example, the pH of the reaction solution
Comparing the cases where 11.0 and 11.5, it is necessary to increase the ammonium ion concentration by about 1.5 times in the latter case. In this pH range, there is almost a proportional relationship between the pH value and the required ammonium ion concentration. Under these circumstances, by continuing the reaction with a constant ammonium ion concentration and a constant pH of the reaction solution (11,0), the reaction started after nickel hydroxide particles grew for a certain period of time. Assuming that the pH of the solution is increased to 11.5, in order to further increase the growth of nickel hydroxide particles, it is necessary to increase the concentration of ammonium ions to correspond to the increased pH value of the reaction solution. At this time, if the ammonium ion donor continues to be supplied at a concentration corresponding to the initial pH of the reaction solution (11,0>), the amount of ammonium ions will be insufficient and the nickel hydroxide particles generated so far will It was found that the growth almost stopped, and in its place, fine nickel hydroxide particles, which became new nickel hydroxide particle nuclei, were generated.
また、反応液のpHを一定とした状態で、アンモニウム
イオン供給体の供給を停止するか或いはその供給を大幅
に減少させる場合にも、アンモニウムイオンの量が不足
して、これまでに生成した水酸化ニッケル粒子の成長が
やはりほぼ停止し、その代わりに新たな水酸化ニッケル
の粒子核となる水酸化ニッケル微粒子が発生することが
見出された。Also, when the supply of ammonium ion donor is stopped or significantly reduced while the pH of the reaction solution is kept constant, the amount of ammonium ions becomes insufficient and the water produced so far is It was found that the growth of nickel oxide particles almost stopped, and in their place, nickel hydroxide fine particles that became new nickel hydroxide particle nuclei were generated.
本願第一発明および第二発明は、反応液のpHと反応液
中のアンモニウムイオン濃度との相互関連に関するこの
様な知見に基いて完成されたものである。The first and second inventions of the present application were completed based on such knowledge regarding the interrelationship between the pH of the reaction solution and the ammonium ion concentration in the reaction solution.
本願第一発明は、例えば、以下の様にして実施される。The first invention of the present application is implemented, for example, as follows.
まず、反応系へのニッケル塩水溶液およびアンモニウム
イオン供給体の供給量、反応系の温度などの条件を一定
に維持しつつ定常状態で反応を行った後、間欠的にアル
カリ金属水酸化物水溶液の供給量を増加することにより
、反応系のpHを急激に高め、その状態に一定時間保持
した後、アルカリ金属水酸化物水溶液の供給量を定常量
に減少させて、再び当初のpHに戻す操作を行なう。例
えば、第2図に示す、様に、反応系のpHを11.0と
してX時間反応を行なった後、A点でアルカリ金属水酸
化物水溶液の供給量を急激に増加させて反応系のpHを
11.5に高め、この状態をB点まで7時間継続させる
。この場合、A点で水酸化ニッケル粒子の平均粒子径が
最大値を示し、A点からB点にかけて水酸化ニッケル微
粒子の量が次第に増加して、B点で水酸化ニッケル微粒
子の量が最大値を示す。引き続いてB点から0点を経て
D点に至るまで反応系のpHを再び11.0としてX時
間反応を行なった後、D点でアルカリ金属水酸化物水溶
液溶液の供給量を急激に増加させて反応系のpHを11
.5に高め、以下同様の操作を繰り返す。反応系の温度
、定常pH値、pHの定常状態保持時間(X)、上昇p
H値、pH上昇時間(Y)などは、(イ)、(ロ)およ
び(ハ)の3種の水溶液の濃度、所望の水酸化ニッケル
の平均粒子径および粒度分布などにより変わり得るが、
通常温度=20〜80℃の範囲内の一定値、定常pH値
および上昇pH値−9〜12の範囲内の一定値、X=5
〜30時間程度、Y=0.5〜3時間程度である。かく
して、一定の粒度分布を有し、平均粒子径が2〜50μ
m程度であり、水酸化ニッケルの粒子のほぼ全てが、球
状乃至球状に近似する製品が得られる。First, the reaction is carried out in a steady state while maintaining constant conditions such as the amount of nickel salt aqueous solution and ammonium ion donor supplied to the reaction system and the temperature of the reaction system, and then an aqueous alkali metal hydroxide solution is intermittently added to the reaction system. An operation in which the pH of the reaction system is rapidly raised by increasing the supply amount, maintained at that state for a certain period of time, and then the supply amount of the alkali metal hydroxide aqueous solution is reduced to a steady amount to return the initial pH again. Do the following. For example, as shown in Figure 2, after the reaction is carried out for X hours with the pH of the reaction system set to 11.0, the amount of alkali metal hydroxide aqueous solution supplied is rapidly increased at point A to raise the pH of the reaction system. is increased to 11.5 and this state is continued for 7 hours until point B. In this case, the average particle diameter of nickel hydroxide particles reaches its maximum value at point A, the amount of nickel hydroxide particles gradually increases from point A to point B, and the amount of nickel hydroxide particles reaches its maximum value at point B. shows. Subsequently, the pH of the reaction system was set to 11.0 again from point B to point D, and the reaction was carried out for X hours, and then at point D, the amount of aqueous alkali metal hydroxide solution supplied was rapidly increased. to adjust the pH of the reaction system to 11.
.. Increase it to 5 and repeat the same operation. Temperature of reaction system, steady pH value, pH steady state holding time (X), increase p
The H value, pH rise time (Y), etc. may vary depending on the concentration of the three types of aqueous solutions (a), (b) and (c), the desired average particle size and particle size distribution of nickel hydroxide, etc.
Normal temperature = constant value within the range of 20 to 80°C, steady pH value and rising pH value - constant value within the range of -9 to 12, X = 5
~30 hours, Y=0.5~3 hours. Thus, it has a constant particle size distribution, with an average particle size of 2 to 50 μm.
m, and a product in which almost all of the nickel hydroxide particles are spherical or approximately spherical can be obtained.
本願第二発明においては、反応系へのニッケル塩水溶液
およびアルカリ金属水酸化物水溶液水溶液の供給■、反
応系のpHおよび温度などの条件を一定に維持しつつ、
間欠的にアンモニウムイオン供給体の供給を停止乃至供
給量を大幅に減少させることにより、反応系のアンモニ
ウムイオン濃度を急激に低下させ、その状態に一定時間
保持した後、アンモニウムイオン供給体の供給量を定常
量に戻す操作を行なう。例えば、第3図に示す様に、反
応系へのアンモニウムイオン供給体の定常供給をX°時
間反応を行なった後、A°点でアンモニウムイオン供給
体の供給を停止乃至供給量を大幅に減少させ、この状態
をB°点までY’時間継続させる。この場合、A°点で
水酸化ニッケル粒子の平均粒子径が最大値を示し、A″
点からB°点にかけて水酸化ニッケル微粒子の量が次第
に増加して、B°点で水酸化ニッケル微粒子の且が最大
値を示す。引き続いてB″点からC°点を経てD°点に
至るまで反応系へのアンモニウムイオン供給体の定常供
給をX°時間行なった後、D′点でアンモニウムイオン
供給体の供給を再び停止乃至供給量を大幅に減少させ、
以下同様の操作を繰り返す。反応系の温度、pH値、ア
ンモニウムイオン供給体の定常量供給時間(X”) 、
アンモニウムイオン供給体の供給停止乃至供給減少時間
(Yo)などは、(イ)、(ロ)および(ハ)の3種の
水溶液の濃度、所望の水酸化ニッケルの平均粒子径およ
び粒度分布などにより変わり得るが、通常温度−20〜
80℃の範囲内の一定値、pH値=9〜12の範囲内の
一定値、X゛=5〜30時間程度、Y’ =0.5〜3
時間程度である。In the second invention of the present application, while supplying the aqueous nickel salt solution and the aqueous alkali metal hydroxide solution to the reaction system, and maintaining constant conditions such as the pH and temperature of the reaction system,
By intermittently stopping the supply of the ammonium ion donor or significantly reducing the supply amount, the ammonium ion concentration in the reaction system is rapidly decreased, and after maintaining this state for a certain period of time, the supply amount of the ammonium ion donor is reduced. Perform an operation to return the amount to a steady level. For example, as shown in Figure 3, after the reaction is carried out for X degrees by steadily supplying the ammonium ion donor to the reaction system, at point A, the supply of the ammonium ion donor is stopped or the supply amount is significantly reduced. This state is continued for Y' time up to point B°. In this case, the average particle diameter of nickel hydroxide particles reaches its maximum value at point A°, and A″
The amount of nickel hydroxide fine particles gradually increases from point B° to point B, and the amount of nickel hydroxide fine particles reaches a maximum value at point B°. Subsequently, after steadily supplying the ammonium ion donor to the reaction system from point B'' through point C to point D for X degrees, the supply of ammonium ion donor was stopped again at point D'. significantly reducing supply,
Repeat the same operation below. Temperature of the reaction system, pH value, constant amount supply time of ammonium ion donor (X”),
The supply stop or supply reduction time (Yo) of the ammonium ion donor depends on the concentration of the three types of aqueous solutions (a), (b), and (c), the desired average particle size and particle size distribution of nickel hydroxide, etc. Although it can vary, the normal temperature is -20~
Constant value within the range of 80°C, pH value = constant value within the range of 9 to 12, X' = about 5 to 30 hours, Y' = 0.5 to 3
It takes about an hour.
かくして、一定の粒度分布を有し、平均粒径が2〜50
μm程度であり、水酸化ニッケルの粒子のほぼ全てが、
球状乃至球状に近似する製品が得られる。Thus, it has a constant particle size distribution, with an average particle size of 2 to 50
approximately μm in size, and almost all of the nickel hydroxide particles are
A spherical or approximately spherical product is obtained.
■0本願第三発明および
■1本願第四発明
第4図は、本願第三発明及び第四発明を実施するに際し
使用する装置の一例の概要を示す。この装置は、基本的
には、第1図に示す反応装置を2基組み合わせるととも
に、さらに混合装置を1基付加した構造となっている。■0 Third invention of the present application and ■1 Fourth invention of the present application Fig. 4 shows an outline of an example of the apparatus used when carrying out the third invention and the fourth invention of the present application. This device basically has a structure in which two reaction devices shown in FIG. 1 are combined, and one mixing device is added.
第4図において、左上方に示す反応装置の各エレメント
を100台の数字で示し、右上方に示す反応装置の各エ
レメントを200台の数字で示す。例えば、(101)
および(201”)は、ともに第1図における反応槽(
1)と同様の機能を有する反応槽を示す。In FIG. 4, each element of the reactor shown in the upper left is indicated by a number in the 100s, and each element of the reactor shown in the upper right is indicated by a number in the 200s. For example, (101)
and (201”) are both the reaction tank (
This shows a reaction tank with the same function as 1).
本願第三発明及び第四発明においては、反応槽(101
)と反応槽(201)とでは、異なる反応条件下に水酸
化ニッケル粒子の製造を行なうことにより、それぞれの
槽において平均粒子径および粒度分布の異なる製品を得
ることが出来る。即ち、2つの反応槽において、pH変
化により水酸化ニッケルの核を形成させても良く、或い
はアンモニウムイオン供給体の供給停止乃至供給減少に
より水酸化ニッケルの核を形成させても良く、或いは更
に一方の反応槽においてpH変化により水酸化ニッケル
の核を形成させ且つ他方の反応槽においてアンモニウム
イオン供給体の供給停止乃至供給減少により水酸化ニッ
ケルの核を形成させても良い。この様にして得られた2
種の水酸化ニッケル粒子含有液は、それぞれの製品取り
出しライン(115)および(215)から混合槽(S
ol )に送られ、攪拌機(303)により均一に攪拌
された後、最終製品取り出しライン(305)から取り
出される。得られた水酸化ニッケル粒子含有液は、常法
に従って、濾過処理に供され、所望の水酸化ニッケル粒
子が得られる。In the third and fourth inventions of the present application, the reaction tank (101
) and the reaction tank (201), by producing nickel hydroxide particles under different reaction conditions, products with different average particle diameters and particle size distributions can be obtained in each tank. That is, in the two reaction vessels, the nuclei of nickel hydroxide may be formed by changing the pH, or the nuclei of nickel hydroxide may be formed by stopping or decreasing the supply of the ammonium ion donor, or in addition, one of the reactors may be caused to form nuclei of nickel hydroxide. The nuclei of nickel hydroxide may be formed in one reaction tank by changing the pH, and the nuclei of nickel hydroxide may be formed in the other reaction tank by stopping or decreasing the supply of the ammonium ion donor. 2 obtained in this way
The seed nickel hydroxide particle-containing liquid is transferred from the respective product take-out lines (115) and (215) to the mixing tank (S
After being uniformly stirred by a stirrer (303), it is taken out from the final product take-out line (305). The obtained nickel hydroxide particle-containing liquid is subjected to a filtration treatment according to a conventional method to obtain desired nickel hydroxide particles.
本願第三発明および第四発明によれば、反応槽(101
)と反応槽(201)における反応条件を別個に調整す
ることにより、平均粒子径2〜50μm程度の範囲内で
任意の平均粒径および粒度分布を有する球状乃至球状に
近似する水酸化ニッケル粒子を製造することが可能であ
る。According to the third and fourth inventions of the present application, the reaction tank (101
) and the reaction tank (201), it is possible to produce nickel hydroxide particles that are spherical or approximately spherical and have an arbitrary average particle size and particle size distribution within the range of about 2 to 50 μm. It is possible to manufacture.
なお、第4図には、2個の反応槽を使用する実施態様を
示したが、本願第三発明および第四発明においては、3
個以上の反応槽を使用して平均粒径及び粒度分布のそれ
ぞれ異なる粒子を製造し、これらを混合することにより
、水酸化ニッケル粒子の平均粒子径および粒度分布をよ
り精密に制御することも、可能である。Although FIG. 4 shows an embodiment using two reaction vessels, in the third and fourth inventions of the present application, three reaction vessels are used.
It is also possible to more precisely control the average particle size and particle size distribution of nickel hydroxide particles by producing particles with different average particle sizes and particle size distributions using multiple reaction vessels and mixing them. It is possible.
本発明方法により得られた水酸化ニッケル粒子は、アル
カリ電池用の非焼結タイプのニッケル正極材料、鋼板の
表面処理用材料、ニッケルメッキ用材料などとして、有
用である。The nickel hydroxide particles obtained by the method of the present invention are useful as non-sintered nickel positive electrode materials for alkaline batteries, materials for surface treatment of steel plates, materials for nickel plating, and the like.
また、特にコバルトおよびカドミウムを含有する水酸化
ニッケル粒子は、アルカリ電池用の非焼結タイプのニッ
ケル正極材料として、アルカリニ次電池の自己放電の抑
制、アルカリニ次電池の充電効率の向上などの効果を発
揮する。In addition, nickel hydroxide particles containing especially cobalt and cadmium are used as non-sintered nickel positive electrode materials for alkaline batteries, and have effects such as suppressing self-discharge in alkaline secondary batteries and improving charging efficiency of alkaline secondary batteries. Demonstrate.
発明の効果
本発明方法によれば、下記の様な顕著な効果が達成され
る。Effects of the Invention According to the method of the present invention, the following remarkable effects can be achieved.
(a)球状乃至球状に近似する水酸化二・ンケル粒子が
得られる。(a) Di-Nkel hydroxide particles having a spherical shape or an approximately spherical shape are obtained.
(b)得られた水酸化ニッケル粒子は、球状乃至はぼ球
状であることから、製造時の濾過性に優れ、製造時の不
純物除去が容易であり、粉体としての取扱いが容易で、
タッピング密度が高い。(b) Since the obtained nickel hydroxide particles are spherical or spherical, they have excellent filtration properties during production, are easy to remove impurities during production, and are easy to handle as a powder.
High tapping density.
(C)水酸化ニッケル粒子の平均粒子径および粒度分布
の制御が容易である。(C) The average particle size and particle size distribution of nickel hydroxide particles can be easily controlled.
実施例
以下に実施例を示し、本発明の特徴とするところをより
一層明確にする。EXAMPLES Examples will be shown below to further clarify the features of the present invention.
実施例1
第1図に示す形式の反応装置を使用して、攪拌下に水酸
化ニッケル粒子の連続的製造を行なった。Example 1 A reactor of the type shown in FIG. 1 was used to continuously produce nickel hydroxide particles under stirring.
使用した各水溶液、反応条件などは、下記の通りである
。なお、反応槽(1)の客足は、100Qであった。The aqueous solutions used, reaction conditions, etc. are as follows. Note that the number of customers in reaction tank (1) was 100Q.
(イ)ニッケル塩水溶液:
濃度・・・硫酸ニッケル2.2モル/Q供給1it=1
5. 9Q/h r
(ロ)アルカリ金属水酸化物水溶液:
濃度・・・水酸化ナトリウム6.0モル/Q供給量・・
・定常状態の反応系のpHを11.0に維持する■(平
均供給伍(1/hr)
(ハ)アンモニウムイオン供給体:
濃度・・・25%アンモニア水
供給量・・・1.7R/hr
(ニ)定常状態時の反応槽内条件:
pH・・・11.0
温度・・・50℃
反応が安定状態に到達するまでの20時間分の初期生成
物を除外し、さらに同一条件で14時間反応を続行した
後(第2図において、X=14時間)、水酸化ナトリウ
ム水溶液の供給量を増大させて反応系のpHのみを11
.5に変更し、この条件下に1時間反応を行なった(第
2図において、Y=1時間)。次いで、反応系のpHを
再び11.0に戻し、14時間定常状態で反応を行ない
、以後同様のサイクルで反応を繰り返した。(a) Nickel salt aqueous solution: Concentration...nickel sulfate 2.2 mol/Q supply 1it=1
5. 9Q/hr (b) Alkali metal hydroxide aqueous solution: Concentration...sodium hydroxide 6.0 mol/Q supply amount...
・Maintain the pH of the reaction system in steady state at 11.0 ■ (Average supply 5 (1/hr)) (c) Ammonium ion donor: Concentration: 25% Ammonia water supply amount: 1.7R/ hr (d) Conditions in the reaction tank during steady state: pH...11.0 Temperature...50°C Exclude the initial product for 20 hours until the reaction reaches a stable state, and then continue under the same conditions. After continuing the reaction for 14 hours (X = 14 hours in Figure 2), the amount of sodium hydroxide aqueous solution supplied was increased to bring the pH of the reaction system to 11.
.. 5 and the reaction was carried out for 1 hour under these conditions (Y=1 hour in FIG. 2). Next, the pH of the reaction system was returned to 11.0, and the reaction was carried out in a steady state for 14 hours, and thereafter the reaction was repeated in the same cycle.
第2図のA−Dに対応する各時点での水酸化ニッケル粒
子の走査型電子顕微鏡写真(約500倍)をそれぞれ第
5図乃至第8図として示す。Scanning electron micrographs (approximately 500 times magnification) of nickel hydroxide particles at each time point corresponding to A to D in FIG. 2 are shown in FIGS. 5 to 8, respectively.
まず、Aに対応する時点で得られた水酸化ニッケル粒子
(第5図)は、はぼ球形の粒子形状を有していることが
明らかである。First, it is clear that the nickel hydroxide particles obtained at the time point corresponding to A (FIG. 5) have a spherical particle shape.
また、Bに対応する時点で得られた水酸化ニッケル粒子
(第6図)には、そめ後の粒子成長の核となるべき微粒
子が含まれていることが明らかである。Furthermore, it is clear that the nickel hydroxide particles obtained at the time point corresponding to B (FIG. 6) contain fine particles that should become the nucleus for particle growth after boiling.
さらに、Cに対応する時点で得られた水酸化ニッケル粒
子(第7図)には、上記の微粒子が成長しつつあること
を示す中間粒径の粒子が認められる。Further, in the nickel hydroxide particles obtained at the time point corresponding to C (FIG. 7), particles with an intermediate particle size are observed, indicating that the above-mentioned fine particles are growing.
そして、Dに対応する時点で得られた水酸化ニッケル粒
子(第8図)は、Aに対応する時点で得られた水酸化ニ
ッケル粒子(第5図)と同様の粒子形状および粒度分布
を有していることが明らかである。The nickel hydroxide particles obtained at the time point corresponding to D (Fig. 8) have the same particle shape and particle size distribution as the nickel hydroxide particles obtained at the time point corresponding to A (Fig. 5). It is clear that
上記のAからDに至る反応の1サイクルに相当する15
時間の間に得られた水酸化ニッケル粒子を常法に従って
濾過し、水洗し、乾燥して得た製品の平均粒子径は、7
.1μmであり、タッピング密度は、2.02g/ml
であった。15, which corresponds to one cycle of the reaction from A to D above.
The average particle size of the product obtained by filtering the nickel hydroxide particles obtained during this period according to a conventional method, washing with water, and drying is 7.
.. 1 μm, and the tapping density is 2.02 g/ml
Met.
得られた水酸化ニッケル粒子は、球状乃至はぼ球状であ
ることから、濾過が容易であり、粉体としての取扱いも
容易であった。Since the obtained nickel hydroxide particles were spherical or spherical, they were easy to filter and easy to handle as a powder.
実施例2
実施例1で使用したニッケル塩水溶液に代えて下記の水
溶液を使用する以外は、実施例1と同様の操作を行なっ
て、コバルトおよびカドミウム含有水酸化ニッケル粒子
を得た。Example 2 Cobalt- and cadmium-containing nickel hydroxide particles were obtained in the same manner as in Example 1, except that the following aqueous solution was used in place of the nickel salt aqueous solution used in Example 1.
(イ°)コバルト・カドミウム含有ニッケル塩水溶液:
濃度・・・硫酸ニッケル2.1モル/Q硫酸コバルト0
.03モル/Q
硫酸カドミウム0.07モル/Q
第2図°のAからDに至る反応の1サイクルに相当する
15時間の間に得られたコバルト・カドミウム含有水酸
化ニッケル粒子を常法に従って濾過し、水洗し、乾燥し
て得た製品の平均粒子径は、6.8μmであり、タッピ
ング密度は、2.04g / mlであった。(a) Nickel salt aqueous solution containing cobalt and cadmium: Concentration: nickel sulfate 2.1 mol/Q cobalt sulfate 0
.. 03 mol/Q Cadmium sulfate 0.07 mol/Q Cobalt-cadmium-containing nickel hydroxide particles obtained during 15 hours corresponding to one cycle of the reaction from A to D in Figure 2° are filtered according to a conventional method. The average particle size of the product obtained by washing with water and drying was 6.8 μm, and the tapping density was 2.04 g/ml.
また、得られたコバルト・カドミウム含有水酸化ニッケ
ル粒子は、やはり球状乃至はぼ球状であって、濾過が容
易であり、粉体としての取扱いも容易であった。Further, the obtained cobalt-cadmium-containing nickel hydroxide particles were also spherical or spherical, and were easy to filter and handle as a powder.
実施例3
第1図に示す形式の反応装置を使用して、攪拌下に水酸
化ニッケル粒子の連続的製造を行なった。Example 3 A reactor of the type shown in FIG. 1 was used to continuously produce nickel hydroxide particles under stirring.
使用した各水溶液、反応条件などは、下記の通りである
。The aqueous solutions used, reaction conditions, etc. are as follows.
(イ)ニッケル塩水溶液:
濃度・・・硫酸ニッケル2.2モル/Q供給ffl・−
45,99/hr
(ロ)アルカリ金属水酸化物水溶液:
濃度・・・水酸化ナトリウム6.0モル/Q供給n・・
・反応系のpHを11.0に維持する量(平均供給量C
B)/hr)
(ハ)アンモニウムイオン供給体:
濃度・・・25%アンモニア水
供給量・・・1.7C/hr(定常状態)(ニ)定常状
態時の反応槽内条件:
pH・・・11.0
温度・・・50°C
反応が安定状態に到達するまでの20時間分の初期生成
物を除外し、さらに同一条件で14時間反応を続行した
後(第3図において、X’ =14時間)、pHを11
.0に保持した状態でアンモニウムイオン供給体の供給
を停止し、この条件下に1時間反応を行なった(第3図
において、Y”=1時間)。次いで、アンモニウムイオ
ン供給体の供給を再開し、14時間定常状憇で反応を行
ない、以後同様のサイクルで反応を繰り返した。(a) Nickel salt aqueous solution: Concentration: nickel sulfate 2.2 mol/Q supply ffl・-
45,99/hr (b) Alkali metal hydroxide aqueous solution: Concentration...sodium hydroxide 6.0 mol/Q supply n...
・Amount to maintain the pH of the reaction system at 11.0 (average supply amount C
B)/hr) (iii) Ammonium ion supplier: Concentration: 25% ammonia water supply amount: 1.7C/hr (steady state) (d) Conditions inside the reaction tank during steady state: pH...・11.0 Temperature: 50°C After excluding the initial product for 20 hours until the reaction reached a stable state, and continuing the reaction for another 14 hours under the same conditions (in Figure 3, X' = 14 hours), pH 11
.. The supply of the ammonium ion donor was stopped while the temperature was maintained at 0, and the reaction was carried out for 1 hour under these conditions (Y'' = 1 hour in Fig. 3).Then, the supply of the ammonium ion donor was restarted. The reaction was carried out in a steady state for 14 hours, and thereafter the reaction was repeated in the same cycle.
A’ (第3図)に対応する時点での反応液中のアン
モニウムイオンの濃度は、0.7%であり、B’ (
第3図)に対応する時点での反応液中のアンモニウムイ
オンの濃度は、0.40%であった。The concentration of ammonium ions in the reaction solution at the time point corresponding to A' (Figure 3) is 0.7%, and B' (
The concentration of ammonium ions in the reaction solution at the time point corresponding to FIG. 3) was 0.40%.
第3図のA’ B’ C“およびDoに対応する各
時点で得られた水酸化ニッケル粒子は、実施例1のA、
B、CおよびDに対応する各時点で得られた水酸化ニッ
ケル粒子とほぼ同様に球形乃至はぼ球形に近似するもの
であった。The nickel hydroxide particles obtained at each time point corresponding to A'B'C" and Do in FIG.
Almost the same as the nickel hydroxide particles obtained at each time point corresponding to B, C, and D, the shape was approximately spherical or almost spherical.
上記のAoからD“に至る反応の1サイクルに相当する
15時間の間に得られた水酸化ニッケル粒子を常法に従
って濾過し、水洗し、乾燥して得た製品の平均粒子径は
、5.8μmであり、タッピング密度は、2.03g/
mlであった。The average particle diameter of the product obtained by filtering the nickel hydroxide particles obtained during 15 hours corresponding to one cycle of the above reaction from Ao to D'' according to a conventional method, washing with water, and drying is 5. .8μm, and the tapping density is 2.03g/
It was ml.
得られた水酸化ニッケル粒子は、球状乃至はぼ球状であ
ることから、濾過が容易であり、粉体としての取扱いも
容易であった。Since the obtained nickel hydroxide particles were spherical or spherical, they were easy to filter and easy to handle as a powder.
実施例4
実施例3で使用したニッケル塩水溶液に代えて下記の水
溶液を使用する以外は、実施例3と同様の操作を行なっ
て、コバルトおよびカドミウム含有水酸化ニッケル粒子
を得た。Example 4 Cobalt and cadmium-containing nickel hydroxide particles were obtained in the same manner as in Example 3, except that the following aqueous solution was used in place of the nickel salt aqueous solution used in Example 3.
(イ°)コバルト・カドミウム含有ニッケル塩水溶液:
濃度・・・硫酸ニッケル2.1モル/Q硫酸コバルト0
.03モル/Q
硫酸カドミウム0.07モル/Q
第3図のAoからDoに至る反応の1サイクルに相当す
る15時間の間に得られたコバルト・カドミウム含有水
酸化ニッケル粒子を常法に従って濾過し、水洗し、乾燥
して得た製品の平均粒子径は、6.0μmであり、タッ
ピング密度は、2.04g/mlであった。(a) Nickel salt aqueous solution containing cobalt and cadmium: Concentration: nickel sulfate 2.1 mol/Q cobalt sulfate 0
.. 03 mol/Q Cadmium sulfate 0.07 mol/Q Cobalt-cadmium-containing nickel hydroxide particles obtained during 15 hours corresponding to one cycle of the reaction from Ao to Do in Figure 3 were filtered according to a conventional method. The average particle diameter of the product obtained by washing with water and drying was 6.0 μm, and the tapping density was 2.04 g/ml.
また、得られたコバルト・カドミウム含有水酸化ニッケ
ル粒子は、やはり球状乃至はぼ球状であって、濾過が容
易であり、粉体としての取扱いも容易であった。Further, the obtained cobalt-cadmium-containing nickel hydroxide particles were also spherical or spherical, and were easy to filter and handle as a powder.
実施例5
第4図に示す示す形式の反応装置を使用して、攪拌下に
水酸化ニッケル粒子の連続的製造を行なった。Example 5 Using a reaction apparatus of the type shown in FIG. 4, nickel hydroxide particles were continuously produced under stirring.
A1反応槽(101)における反応:
使用した各水溶液、反応条件などは、下記の通りである
。反応槽容量は、100Qであった。Reaction in A1 reaction tank (101): The aqueous solutions used, reaction conditions, etc. are as follows. The reactor capacity was 100Q.
(イ)ニッケル塩水溶液:
濃度・・・硫酸ニッケル2゜2モル/Q供給量・・・8
.CH!/hr
(ロ)アルカリ金属水酸化物水溶液:
濃度・・・水酸化ナトリウL、6.0モル/Q供給位・
・・定常反応時の反応系のpHを11.0に維持する量
(平均供給量4.512/hr)(ハ)アンモニウムイ
オン供給体:
濃度・・・25%アンモニア水
供給量・・・0゜9Q/hr (定常状態)(ニ)定常
状態時の反応槽内条件:
pH・・・11.0
温度・・・50℃
反応が安定状態に到達するまでの20時間分の初期生成
物を除外し、さらに同一条件で15時間反応を続行した
後(第2図において、X=15時間)、水酸化ナトリウ
ム水溶液の供給量を増大させて反応系のpHのみを11
.5に変更し、この条件下に1時間反応を行なった(第
2図において、Y=1時間)。次いで、反応系のpHを
再び11.0に戻し、15時間定常状態で反応を行ない
、以後同様のサイクルで反応を繰り返した。(a) Nickel salt aqueous solution: Concentration: nickel sulfate 2.2 mol/Q supply amount: 8
.. CH! /hr (b) Alkali metal hydroxide aqueous solution: Concentration: Sodium hydroxide L, 6.0 mol/Q supply level.
...Amount to maintain the pH of the reaction system at 11.0 during steady reaction (average supply amount 4.512/hr) (iii) Ammonium ion donor: Concentration...25% Ammonia water supply amount...0゜9Q/hr (Steady state) (d) Conditions in the reaction tank during steady state: pH...11.0 Temperature...50°C Initial product for 20 hours until the reaction reaches a stable state After continuing the reaction for 15 hours under the same conditions (X = 15 hours in Figure 2), the amount of sodium hydroxide aqueous solution supplied was increased to bring the pH of the reaction system to 11.
.. 5 and the reaction was carried out for 1 hour under these conditions (Y=1 hour in FIG. 2). Next, the pH of the reaction system was returned to 11.0, and the reaction was carried out in a steady state for 15 hours, and thereafter the reaction was repeated in the same cycle.
B0反応槽(201)における反応:
使用した各水溶液、反応条件などは、下記の通りである
。反応槽容量は、50Qであった。Reaction in B0 reaction tank (201): Each aqueous solution used, reaction conditions, etc. are as follows. The reactor capacity was 50Q.
(イ)ニッケル塩水溶液:
濃度・・・硫酸ニッケル1.1モル/Q供給量・・・4
.OQ/hr
(ロ)アルカリ金属水酸化物水溶液:
濃度・・・水酸化ナトリウム3.0モル/Q供給量・・
・定常反応時の反応系のpHを11.0に維持する量(
平均供給量2.25Q/hr)(ハ)アンモニウムイオ
ン供給体:
濃度・・・12.5%アンモニア水
供給量・・・0.45Q/hr (定常状態)(ニ)定
常状態時の反応槽内条件:
pH・・・11.0
温度・・・50℃
反応が安定状態に到達するまでの20時間分の初期生成
物を除外し、さらに同一条件で15時間反応を続行した
後(第2図において、X=15時間)、水酸化ナトリウ
ム水溶液の供給量を増大させて反応系のpHのみを11
.5に変更し、この条件下に1時間反応を行なった(第
2図において、Y=1時間)。次いで、反応系のpHを
再び11.0に戻し、15時間定常状態で反応を行ない
、以後同様のサイクルで反応を繰り返した。(a) Nickel salt aqueous solution: Concentration...nickel sulfate 1.1 mol/Q supply amount...4
.. OQ/hr (b) Alkali metal hydroxide aqueous solution: Concentration...sodium hydroxide 3.0 mol/Q supply amount...
・Amount to maintain the pH of the reaction system at 11.0 during steady reaction (
Average supply amount: 2.25Q/hr) (c) Ammonium ion supplier: Concentration: 12.5% Ammonia water supply amount: 0.45Q/hr (steady state) (d) Reaction tank in steady state Internal conditions: pH...11.0 Temperature...50°C After excluding the initial product for 20 hours until the reaction reached a stable state, and continuing the reaction for another 15 hours under the same conditions (second In the figure, the pH of the reaction system was increased to 11 hours by increasing the amount of sodium hydroxide aqueous solution supplied (X = 15 hours).
.. 5 and the reaction was carried out for 1 hour under these conditions (Y=1 hour in FIG. 2). Next, the pH of the reaction system was returned to 11.0, and the reaction was carried out in a steady state for 15 hours, and thereafter the reaction was repeated in the same cycle.
C1混合槽(301)における混合操作:上記の反応層
(101)及び(201)でそれぞれ得られた水酸化ニ
ッケル粒子含有液を連続的にライン(115)及び(2
15)を経て混合槽(301)に送り、充分に混合した
後、常法に従って濾過し、水洗し、乾燥した。得られた
水酸化ニッケル粒子は、粒径の大小に関係なく、球状乃
至はぼ球状であり、濾過が容易で、粉体としての取扱い
も容易であった。また、その平均粒子径は、7.5μm
であり、タッピング密度は、2.12g/mlであった
。Mixing operation in the C1 mixing tank (301): The liquid containing nickel hydroxide particles obtained in the reaction layers (101) and (201), respectively, is continuously fed into the lines (115) and (2).
15) to a mixing tank (301), and after thorough mixing, it was filtered, washed with water, and dried according to a conventional method. The obtained nickel hydroxide particles were spherical or spherical regardless of the particle size, and were easy to filter and handle as a powder. In addition, the average particle diameter is 7.5 μm
The tapping density was 2.12 g/ml.
実施例6
(A)実施例5のA工程で使用したニッケル塩水溶液に
代えて下記の水溶液を使用する以外は、実施例5のA工
程と同様の操作を行なって、コバルトおよびカドミウム
含有水酸化ニッケル粒子を得た。Example 6 (A) Cobalt and cadmium-containing hydroxide was prepared in the same manner as in Step A of Example 5, except that the following aqueous solution was used in place of the nickel salt aqueous solution used in Step A of Example 5. Nickel particles were obtained.
濃度・・・硫酸ニッケル2.1モル/Q硫酸コバルト0
.03モル/Q
硫酸カドミウム0.07モル/g
(B)実施例5のB工程で使用したニッケル塩水溶液に
代えて下記の水溶液を使用する以外は、実施例5のB工
程と同様の操作を行なって、コバルトおよびカドミウム
含有水酸化ニッケル粒子を得た。Concentration...nickel sulfate 2.1 mol/Q cobalt sulfate 0
.. 03 mol/Q Cadmium sulfate 0.07 mol/g (B) The same operation as in Step B of Example 5 was performed except that the following aqueous solution was used in place of the nickel salt aqueous solution used in Step B of Example 5. As a result, cobalt and cadmium-containing nickel hydroxide particles were obtained.
濃度・・・硫酸ニッケル1.05モル/Q硫酸コバルト
0.015モル/Q
硫酸カドミウム0.035モル/Q
(C)上記(A)及び(B)工程で得た水酸化ニッケル
粒子含有液を連続的にライン(115)及び(215)
を経て混合槽(301’)に送り、充分に混合した後、
常法に従って濾過し、水洗し、乾燥した。Concentration: Nickel sulfate 1.05 mol/Q Cobalt sulfate 0.015 mol/Q Cadmium sulfate 0.035 mol/Q (C) The nickel hydroxide particle-containing liquid obtained in steps (A) and (B) above Continuously line (115) and (215)
After being sent to the mixing tank (301') and thoroughly mixed,
It was filtered, washed with water, and dried according to a conventional method.
得られた水酸化ニッケル粒子は、粒径の大小に関係なく
、球状乃至はぼ球状であり、濾過が容易で、粉体として
の取扱いも容易であった。また、水酸化ニッケル粒子の
粒子径及び粒度分布も、実絶倒5の場合とほぼ同様であ
った。The obtained nickel hydroxide particles were spherical or spherical regardless of the particle size, and were easy to filter and handle as a powder. In addition, the particle size and particle size distribution of the nickel hydroxide particles were also almost the same as in the case of Jitsutetsu 5.
第1図は、本発明方法を実施するに際し使用する反応装
置の一例を示すフローチャートである。
第2図は、本発明方法を実施するに際し行なうpH調整
の一例を示すダイヤグラムである。
第3図は、本発明方法を実施するに際し行なうアンモニ
ウムイオン供給体の添加調整の一例を示すダイヤグラム
である。
第4図は、本発明方法を実施するに際し使用する反応装
置の他の一例を示すフローチャートである。
第5図は、第2図のAに対応する対応する時点で得られ
た水酸化ニッケル粒子の走査型電子顕微鏡写真である。
第6図は、第2図のBに対応する対応する時点で得られ
た水酸化ニッケル粒子の走査型電子顕微鏡写真である。
第7図は、第2図のCに対応する対応する時点で得られ
た水酸化ニッケル粒子の走査型電子顕微鏡写真である。
第8図は、第2図のDに対応する対応する時点で得られ
た水酸化ニッケル粒子の走査型電子顕微鏡写真である。
(1)・・・反応槽
(3)・・・ニッケル塩水溶液供給ライン(5)・・・
アンモニウムイオン供給体供給ライン
(7)・・・アルカリ金属水酸化物水溶液供給ライン(
9)定量ポンプ
(11)・・・pHコントローラー
(13)・・・温度コントローラー
(15)・・・水酸化ニッケル粒子含有液取出しライン
(17)・・・撹拌機
(101”)・・・反応槽
(103)・・・ニッケル塩水溶液供給ライン(105
)・−・アンモニウムイオン供給体供給ライン(107
)・・・アルカリ金属水酸化物水溶液供給ライン
(109)定量ポンプ
(111)・・・pHコントローラー
(113)・・・温度コントローラー
(115)・・・水酸化ニッケル粒子含有液取出しライ
ン
(117)・・・撹拌機
(201)・・・反応槽
(203)・・・ニッケル塩水溶液供給ライン(205
’)・・・アンモニウムイオン供給体供給ライン(20
7>・・・アルカリ金属水酸化物水溶液供給ライン
(209>定量ポンプ
(211)・・・pHコントローラー
(213)・・・温度コントローラー
(215)・・・水酸化ニッケル粒子含有液取出しライ
(217)・・・撹拌機
(301)・・・混合槽
<303 )・・・撹拌機
(以 上)
3
第
図
第
図
反応・υ奇聞−一や
第
つ
函
ヂ
ア
ズ
1゛)ヤ゛
濱
[ぐ
手続十甫正書(自発)
事件の表示
平成2年特許願第48028号
発明の名称
水酸化ニッケルの製造方法
補正をする者
事件との関係 特許出願人
関西触媒化学株式会社FIG. 1 is a flowchart showing an example of a reaction apparatus used in carrying out the method of the present invention. FIG. 2 is a diagram showing an example of pH adjustment performed when carrying out the method of the present invention. FIG. 3 is a diagram showing an example of the addition adjustment of the ammonium ion donor performed when carrying out the method of the present invention. FIG. 4 is a flowchart showing another example of the reaction apparatus used in carrying out the method of the present invention. FIG. 5 is a scanning electron micrograph of nickel hydroxide particles obtained at the corresponding time point corresponding to A in FIG. FIG. 6 is a scanning electron micrograph of nickel hydroxide particles obtained at the corresponding time point corresponding to B in FIG. FIG. 7 is a scanning electron micrograph of nickel hydroxide particles obtained at the corresponding time point corresponding to C in FIG. FIG. 8 is a scanning electron micrograph of nickel hydroxide particles obtained at the corresponding time point corresponding to D in FIG. (1)...Reaction tank (3)...Nickel salt aqueous solution supply line (5)...
Ammonium ion supplier supply line (7)...alkali metal hydroxide aqueous solution supply line (
9) Metering pump (11)...pH controller (13)...temperature controller (15)...nickel hydroxide particle-containing liquid extraction line (17)...stirrer (101'')...reaction Tank (103)... Nickel salt aqueous solution supply line (105
)・-・Ammonium ion donor supply line (107
)... Alkali metal hydroxide aqueous solution supply line (109) Metering pump (111)... pH controller (113)... Temperature controller (115)... Nickel hydroxide particle-containing liquid take-out line (117) ... Stirrer (201) ... Reaction tank (203) ... Nickel salt aqueous solution supply line (205
)...Ammonium ion donor supply line (20
7>...Alkali metal hydroxide aqueous solution supply line (209>metering pump (211)...pH controller (213)...temperature controller (215)...nickel hydroxide particle-containing liquid extraction line (217 )...Stirrer (301)...Mixing tank <303)...Stirrer (and above) 3 Procedural Juho Seisho (spontaneous) Display of the case 1990 Patent Application No. 48028 Name of the invention Person who amends the manufacturing method of nickel hydroxide Relationship to the case Patent applicant Kansai Catalyst Chemical Co., Ltd.
Claims (4)
ルト塩およびカドミウム塩を含む水溶液、 (ロ)アルカリ金属水酸化物水溶液および (ハ)アンモニウムイオン供給体を連続的に反応系に供
給し、反応系の温度を20〜80℃の範囲内の一定値に
且つpHを9〜12の範囲内の一定値に保持しつつ反応
を進行させて水酸化ニッケル粒子またはコバルトおよび
カドミウムを含む水酸化ニッケル粒子を生成させ、該生
成物を連続的に取出す方法において、間欠的に一定の時
間にわたりアルカリ金属水酸化物水溶液の供給量を増加
させて反応系のpHを調節することにより、核となる水
酸化ニッケル微粒子を生成させることを特徴とする球状
の水酸化ニッケル粒子またはコバルトおよびカドミウム
を含む球状の水酸化ニッケル粒子の製造方法。(1) Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, a cobalt salt, and a cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system, and react. Nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium are produced by proceeding the reaction while maintaining the temperature of the system at a constant value within the range of 20 to 80°C and the pH at a constant value within the range of 9 to 12. In this method, the amount of aqueous alkali metal hydroxide solution is intermittently increased over a certain period of time to adjust the pH of the reaction system, thereby removing the core hydroxide. A method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium, the method comprising producing nickel fine particles.
ルト塩およびカドミウム塩を含む水溶液、 (ロ)アルカリ金属水酸化物水溶液および (ハ)アンモニウムイオン供給体を連続的に反応系に供
給し、反応系の温度を20〜80℃の範囲内の一定値に
且つpHを9〜12の範囲内の一定値に保持しつつ反応
を進行させて水酸化ニッケル粒子またはコバルトおよび
カドミウムを含む水酸化ニッケル粒子を生成させ、該生
成物を連続的に取出す方法において、間欠的に一定の時
間にわたり反応系へのアンモニウムイオン供給体の供給
を停止するか或いはその供給量を減少させることにより
、核となる水酸化ニッケル微粒子を生成させることを特
徴とする球状の水酸化ニッケル粒子またはコバルトおよ
びカドミウムを含む球状の水酸化ニッケル粒子の製造方
法。(2) Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, a cobalt salt, and a cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system, and react. Nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium are produced by proceeding the reaction while maintaining the temperature of the system at a constant value within the range of 20 to 80°C and the pH at a constant value within the range of 9 to 12. In the method of producing ammonium ion donor and continuously taking out the product, the core water is removed by intermittently stopping the supply of the ammonium ion donor to the reaction system for a certain period of time or reducing the supply amount. A method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium, the method comprising producing nickel oxide fine particles.
ルト塩およびカドミウム塩を含む水溶液、 (ロ)アルカリ金属水酸化物水溶液および (ハ)アンモニウムイオン供給体を連続的に反応系に供
給し、反応系の温度を20〜80℃の範囲内の一定値に
且つpHを9〜12の範囲内の一定値に保持しつつ反応
を進行させて水酸化ニッケル粒子またはコバルトおよび
カドミウムを含む水酸化ニッケル粒子を生成させ、該生
成物を連続的に取出す方法において、複数の反応系にお
いて異なる条件下に反応を行なわせて粒子径の異なる粒
子群を形成させ、各反応系において間欠的に一定の時間
にわたりアルカリ金属水酸化物水溶液の供給量を増加さ
せて反応系のpHを調整することにより、核となる水酸
化ニッケル微粒子を生成させ、上記で得られた粒子径の
異なる粒子群を混合することにより、所定の粒度分布を
有する混合粒子を得ることを特徴とする球状の水酸化ニ
ッケル粒子またはコバルトおよびカドミウムを含む球状
の水酸化ニッケル粒子の製造方法。(3) Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, a cobalt salt, and a cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system, and react. Nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium are produced by proceeding the reaction while maintaining the temperature of the system at a constant value within the range of 20 to 80°C and the pH at a constant value within the range of 9 to 12. In this method, the reaction is carried out under different conditions in multiple reaction systems to form particle groups with different particle sizes, and the reaction is carried out intermittently over a certain period of time in each reaction system. By increasing the supply amount of the alkali metal hydroxide aqueous solution and adjusting the pH of the reaction system, nickel hydroxide fine particles that serve as the core are generated, and by mixing the particle groups with different particle sizes obtained above. A method for producing spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium, the method comprising obtaining mixed particles having a predetermined particle size distribution.
ルト塩およびカドミウム塩を含む水溶液、 (ロ)アルカリ金属水酸化物水溶液および (ハ)アンモニウムイオン供給体を連続的に反応系に供
給し、反応系の温度を20〜80℃の範囲内の一定値に
且つpHを9〜12の範囲内の一定値に保持しつつ反応
を進行させて水酸化ニッケル粒子またはコバルトおよび
カドミウムを含む水酸化ニッケル粒子を生成させ、該生
成物を連続的に取出す方法において、複数の反応系にお
いて異なる条件下に反応を行なわせて粒子径の異なる粒
子群を形成させるとともに、各反応系において間欠的に
一定の時間にわたり反応系へのアンモニウムイオン供給
体の供給を停止するか或いはその供給量を減少させるこ
とにより、核となる水酸化ニッケル微粒子を生成させ、
上記で得られた粒子径の異なる粒子群を混合することに
より、所定の粒度分布を有する混合粒子を得ることを特
徴とする球状の水酸化ニッケル粒子またはコバルトおよ
びカドミウムを含む球状の水酸化ニッケル粒子の製造方
法。(4) Continuously supply (a) a nickel salt aqueous solution or an aqueous solution containing a nickel salt, a cobalt salt, and a cadmium salt, (b) an alkali metal hydroxide aqueous solution, and (c) an ammonium ion donor to the reaction system, and react. Nickel hydroxide particles or nickel hydroxide particles containing cobalt and cadmium are produced by proceeding the reaction while maintaining the temperature of the system at a constant value within the range of 20 to 80°C and the pH at a constant value within the range of 9 to 12. In this method, the reaction is carried out under different conditions in multiple reaction systems to form particle groups with different particle sizes, and the reaction is intermittently carried out for a certain period of time in each reaction system. By stopping the supply of the ammonium ion donor to the reaction system or reducing its supply amount, nickel hydroxide fine particles serving as the nucleus are generated,
Spherical nickel hydroxide particles or spherical nickel hydroxide particles containing cobalt and cadmium characterized in that mixed particles having a predetermined particle size distribution are obtained by mixing the particle groups with different particle sizes obtained above. manufacturing method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2048028A JP2805098B2 (en) | 1990-02-27 | 1990-02-27 | Method for producing nickel hydroxide |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2048028A JP2805098B2 (en) | 1990-02-27 | 1990-02-27 | Method for producing nickel hydroxide |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03252318A true JPH03252318A (en) | 1991-11-11 |
| JP2805098B2 JP2805098B2 (en) | 1998-09-30 |
Family
ID=12791855
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2048028A Expired - Fee Related JP2805098B2 (en) | 1990-02-27 | 1990-02-27 | Method for producing nickel hydroxide |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2805098B2 (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06127947A (en) * | 1992-06-15 | 1994-05-10 | Inco Ltd | Method for producing nickel hydroxide |
| EP0649818A1 (en) | 1993-10-20 | 1995-04-26 | Nikko Rica Co., Ltd. | Method for the preparation of nickel hydroxide particles |
| DE10245467A1 (en) * | 2002-09-28 | 2004-04-08 | Varta Automotive Systems Gmbh | Active nickel mixed hydroxide cathode material for alkaline batteries and process for its production |
| US7563431B2 (en) | 2001-07-06 | 2009-07-21 | H. C. Starck Gmbh | Nickel hydroxide and method for producing same |
| JP4840545B1 (en) * | 2011-03-31 | 2011-12-21 | 住友金属鉱山株式会社 | Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery |
| JP4894969B1 (en) * | 2011-06-07 | 2012-03-14 | 住友金属鉱山株式会社 | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
| WO2012164763A1 (en) * | 2011-06-01 | 2012-12-06 | 住友金属鉱山株式会社 | Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material |
| CN105271445A (en) * | 2015-11-13 | 2016-01-27 | 无锡清杨机械制造有限公司 | Spherical cobalt-doped nickel hydroxide continuous preparation method |
| CN105384198A (en) * | 2015-12-17 | 2016-03-09 | 宁波繁盛商业管理有限公司 | Method for preparation of alpha-phase nickel hydroxide microsphere |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58171451U (en) * | 1982-05-11 | 1983-11-16 | 日本鋼管株式会社 | Earthquake-resistant structure of buildings |
| JPS6389743A (en) * | 1986-09-30 | 1988-04-20 | 清水建設株式会社 | Flexibility and rigidity mixed structure of brace type equipped with earthquake energy absorbing function |
| JPH01203543A (en) * | 1988-02-05 | 1989-08-16 | Kajima Corp | elastoplastic damper |
| JPH01268933A (en) * | 1988-04-20 | 1989-10-26 | Kajima Corp | Elastic and plastic damper |
| JPH0262053U (en) * | 1988-10-31 | 1990-05-09 | ||
| JPH03199542A (en) * | 1989-12-28 | 1991-08-30 | Kawatetsu Steel Prod Corp | Diagonal bracing member for steel structure |
-
1990
- 1990-02-27 JP JP2048028A patent/JP2805098B2/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58171451U (en) * | 1982-05-11 | 1983-11-16 | 日本鋼管株式会社 | Earthquake-resistant structure of buildings |
| JPS6389743A (en) * | 1986-09-30 | 1988-04-20 | 清水建設株式会社 | Flexibility and rigidity mixed structure of brace type equipped with earthquake energy absorbing function |
| JPH01203543A (en) * | 1988-02-05 | 1989-08-16 | Kajima Corp | elastoplastic damper |
| JPH01268933A (en) * | 1988-04-20 | 1989-10-26 | Kajima Corp | Elastic and plastic damper |
| JPH0262053U (en) * | 1988-10-31 | 1990-05-09 | ||
| JPH03199542A (en) * | 1989-12-28 | 1991-08-30 | Kawatetsu Steel Prod Corp | Diagonal bracing member for steel structure |
Cited By (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH06127947A (en) * | 1992-06-15 | 1994-05-10 | Inco Ltd | Method for producing nickel hydroxide |
| EP0649818A1 (en) | 1993-10-20 | 1995-04-26 | Nikko Rica Co., Ltd. | Method for the preparation of nickel hydroxide particles |
| US7563431B2 (en) | 2001-07-06 | 2009-07-21 | H. C. Starck Gmbh | Nickel hydroxide and method for producing same |
| DE10245467A1 (en) * | 2002-09-28 | 2004-04-08 | Varta Automotive Systems Gmbh | Active nickel mixed hydroxide cathode material for alkaline batteries and process for its production |
| US9559351B2 (en) | 2011-03-31 | 2017-01-31 | Sumitomo Metal Mining Co., Ltd. | Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery |
| JP4840545B1 (en) * | 2011-03-31 | 2011-12-21 | 住友金属鉱山株式会社 | Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery |
| WO2012131779A1 (en) * | 2011-03-31 | 2012-10-04 | 住友金属鉱山株式会社 | Composite nickel hydroxide particles and nonaqueous electrolyte secondary battery |
| WO2012164763A1 (en) * | 2011-06-01 | 2012-12-06 | 住友金属鉱山株式会社 | Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material |
| US10236506B2 (en) | 2011-06-01 | 2019-03-19 | Sumitomo Metal Mining Co., Ltd. | Method of producing transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nanaqueous electrolye secondary batteries |
| JP2012252844A (en) * | 2011-06-01 | 2012-12-20 | Sumitomo Metal Mining Co Ltd | Transition metal complex hydroxide suitable for precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the positive electrode active material |
| US10038189B2 (en) | 2011-06-01 | 2018-07-31 | Sumitomo Metal Mining Co., Ltd. | Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries |
| US10038190B2 (en) | 2011-06-01 | 2018-07-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using positive electrode active material |
| JP4894969B1 (en) * | 2011-06-07 | 2012-03-14 | 住友金属鉱山株式会社 | Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery |
| US9318739B2 (en) | 2011-06-07 | 2016-04-19 | Sumitomo Metal Mining Co., Ltd. | Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery |
| CN102884659A (en) * | 2011-06-07 | 2013-01-16 | 住友金属矿山株式会社 | Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery |
| US10044025B2 (en) | 2011-06-07 | 2018-08-07 | Sumitomo Metal Mining Co., Ltd. | Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery |
| WO2012169083A1 (en) * | 2011-06-07 | 2012-12-13 | 住友金属鉱山株式会社 | Nickel-manganese composite hydroxide particles, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing said positive electrode active material, and nonaqueous electrolyte secondary battery |
| US10396356B2 (en) | 2011-06-07 | 2019-08-27 | Sumitomo Metal Mining Co., Ltd | Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery |
| CN105271445A (en) * | 2015-11-13 | 2016-01-27 | 无锡清杨机械制造有限公司 | Spherical cobalt-doped nickel hydroxide continuous preparation method |
| CN105384198A (en) * | 2015-12-17 | 2016-03-09 | 宁波繁盛商业管理有限公司 | Method for preparation of alpha-phase nickel hydroxide microsphere |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2805098B2 (en) | 1998-09-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH09139206A (en) | Method of manufacturing high dense nickel hydroxide that is used for rechargeable alkali storage battery | |
| KR100855509B1 (en) | Method for preparing spherical powder cobalt hydroxide | |
| EP1689682B1 (en) | Process for making nickel hydroxide | |
| JPH03252318A (en) | Production of nickel hydroxide | |
| JP5359080B2 (en) | Method for producing aluminum hydroxide coated nickel cobalt composite hydroxide | |
| JPH1025117A (en) | Production of nickel hydroxide | |
| KR20230107534A (en) | Apparatus for Manufacturing Multi-component Metal Hydroxide | |
| CN116161711B (en) | A sodium ion battery ternary precursor and preparation method thereof | |
| KR20050073456A (en) | Cathode active material based on mixed nickel hydroxide for alkaline batteries and a process for the production thereof | |
| JPH026340A (en) | Production of nickel hydroxide | |
| JP2000077070A (en) | Nickel hydroxide powder and method for producing the same | |
| JPH1160245A (en) | Production of double structured nickel hydroxide | |
| JP3356628B2 (en) | Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same | |
| CN107251284B (en) | Nickel hydroxide cathode for alkaline rechargeable batteries | |
| JPH1167200A (en) | Method for producing high-density nickel hydroxide active material | |
| JP3463337B2 (en) | Method for producing nickel hydroxide for positive electrode material | |
| JP3367152B2 (en) | Method for producing nickel hydroxide powder coated with cobalt hydroxide | |
| JP3594322B2 (en) | Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same | |
| JP7345729B2 (en) | Method for producing transition metal composite hydroxide | |
| JPH08119636A (en) | Production of nickel hydroxide particles | |
| KR102816576B1 (en) | A PROCESS FOR PREPARING Ni-Co-Mn COMPOSITE PRECURSOR HAVING IMPROVED PROPERTIES THROUGH MULTISTEP CONTROL | |
| JP3609196B2 (en) | Method for producing cobalt-nickel hydroxide for Li-ion secondary battery | |
| JPH10125319A (en) | Nickel hydroxide for positive electrode material and method for producing the same | |
| JP3407983B2 (en) | Method for producing non-sintered positive electrode for alkaline storage battery | |
| JP2911758B2 (en) | High density nickel hydroxide co-precipitated with boron and method for producing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |