JPH03267829A - Distributed optical information transmission network - Google Patents
Distributed optical information transmission networkInfo
- Publication number
- JPH03267829A JPH03267829A JP2066291A JP6629190A JPH03267829A JP H03267829 A JPH03267829 A JP H03267829A JP 2066291 A JP2066291 A JP 2066291A JP 6629190 A JP6629190 A JP 6629190A JP H03267829 A JPH03267829 A JP H03267829A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- signal
- transmission network
- information transmission
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、光ファイバを用いて、単一の信号源の情報
を複数の受信器に高感度に分配する分配形光情報伝送網
に関するものである。[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a distributed optical information transmission network that uses optical fibers to distribute information from a single signal source to multiple receivers with high sensitivity. It is.
[従来の技術]
第4図は、蔵本らによって″ファイバ増幅器を用いた長
スパンギガビット/秒光伝送システムの検討″(電子情
報通信学会技術研究報告0CS89−3)に示された分
配形光情報伝送網の構成例である。CΔT■等の放送形
情報網では分配形伝送網が多用され、また、扱う情報量
の増加に伴い、媒体として光を使う例が多くなっている
。[Prior art] Figure 4 shows distributed optical information disclosed in ``Study of long span gigabit/second optical transmission system using fiber amplifier'' (IEICE technical research report 0CS89-3) by Kuramoto et al. This is an example of a transmission network configuration. Broadcast information networks such as CΔT■ often use distributed transmission networks, and as the amount of information handled increases, light is increasingly used as a medium.
第4図はこのような用途に用いられる伝送網である。送
信機1から送出される光信号は、光分岐2で分割された
後に受信器3に入力されるが、分割によって受信光電力
が低下し、受信器3における信号対雑音比が劣化するこ
とを防ぐために、ブースタアンプ4によって光信号・が
分割前に増幅される。FIG. 4 shows a transmission network used for such purposes. The optical signal sent from the transmitter 1 is input to the receiver 3 after being split by the optical branch 2, but it is important to note that the splitting reduces the received optical power and degrades the signal-to-noise ratio in the receiver 3. In order to prevent this, the optical signal is amplified by the booster amplifier 4 before being divided.
光増幅器としては種々の方式のものが提案されているが
、現状においては、低雑音性、光ファイバとの整合性等
の点で希土類をドープしたファイバを用いる方法が優れ
ているとされている。この光増幅器は、エルビウム等の
希土類をドープした光ファイバに励起光を入射すること
によりエルビウムイオンを励起し、その誘導放出を利用
して別に入射する信号光を増幅するものである。Various types of optical amplifiers have been proposed, but at present, methods using rare earth-doped fibers are considered to be superior in terms of low noise and compatibility with optical fibers. . This optical amplifier excites erbium ions by injecting excitation light into an optical fiber doped with a rare earth element such as erbium, and uses the stimulated emission to amplify an incoming signal light.
第5図は、前述の萩木らの資料に示された。希土類ドー
プ光フアイバ形光増幅器の利得飽和特性の測定値である
。増幅器の出力できる電力は一般に有限の値以下に限ら
れており、この値は飽和出力と呼ばれる。第5図におけ
る飽和光出力は約−5dBmであり、この値に近い光出
力を得ようとすると増幅器の利得は大きく低下する。第
4図に示されたような、光を分割する前に増幅する構成
においては、光増幅器は大きな光信号を増幅する必要が
あり、上述の利得飽和特性のために分割数や受信器3へ
の受信光電力が制限を受ける。FIG. 5 is shown in the material by Hagiki et al. mentioned above. This is a measured value of the gain saturation characteristic of a rare earth-doped optical fiber type optical amplifier. The power that an amplifier can output is generally limited to a finite value or less, and this value is called the saturated output. The saturated optical output in FIG. 5 is approximately -5 dBm, and if an attempt is made to obtain an optical output close to this value, the gain of the amplifier will be significantly reduced. In the configuration shown in Figure 4, in which the light is amplified before being split, the optical amplifier must amplify a large optical signal, and due to the gain saturation characteristic described above, the number of splits and the The received optical power is limited.
第6図は、上述の問題を避けるための分配形光情報伝送
網の構成例である。送信器1から送出された光信号は、
光分岐2で分割された後にプリアンプ5で増幅され、受
信器3に入力される。第6図の構成においては、プリア
ンプ5は分割された後の光信号を増幅するため、前述の
利得飽和の現象は起きず、分割数が多い場合においても
受信器3に十分な光電力を入力させることができる。FIG. 6 shows an example of the configuration of a distributed optical information transmission network to avoid the above-mentioned problems. The optical signal sent from the transmitter 1 is
After being split by the optical branch 2, it is amplified by the preamplifier 5 and input to the receiver 3. In the configuration shown in FIG. 6, since the preamplifier 5 amplifies the optical signal after being divided, the above-mentioned gain saturation phenomenon does not occur, and even when the number of divisions is large, sufficient optical power is input to the receiver 3. can be done.
次に、誘導放出を利用した光増幅器における信号対雑音
比について述べる。Next, we will discuss the signal-to-noise ratio in an optical amplifier using stimulated emission.
’/、Yamamotoによって、“No1se an
d ErrorRate Performance
of Sem1conductor l、ase
rAmplifiers in PCM−IM 0pL
ical TransmjssjonSystems”
(IEET< Journal of Quantum
Elcctronicsvol 、QE16.no、
10.pp1073−1081)に示された関係式によ
ると、誘導放出を用いた光増幅器において、入力の単位
時間当り平均光子数を<n、>。'/, by Yamamoto, “No1se an
dErrorRatePerformance
of Sem1conductor l, ase
rAmplifiers in PCM-IM 0pL
ical Transmjssjon Systems”
(IEEE< Journal of Quantum
Elcctronicsvol, QE16. no,
10. According to the relational expression shown in pp. 1073-1081), in an optical amplifier using stimulated emission, the average number of input photons per unit time is <n,>.
利得をG2反転分布の度合いをr、自然放出光のモード
数をmL、自然放出光のスペクトル幅をΔfとすると、
光増幅器出力の信号対雑音比(S/N)。1は次式で表
わせる。If the gain is the degree of G2 population inversion is r, the number of modes of spontaneous emission light is mL, and the spectral width of spontaneous emission light is Δf, then
Signal-to-noise ratio (S/N) of optical amplifier output. 1 can be expressed by the following formula.
(S/N)。。、=
・・・・・・+11
信号対雑音比を大きくするために、利得と反転分布を十
分に大きく、かつ自然放出光スペクトル幅を十分に狭く
できるとすれば、G)1.r=1゜Δf(1を第(])
式に代入して、
(S/N) ouL =<rz >/2 −−−−
−−+21を得る。第6図に示す系において、送信器1
から送出される平均光子数を〈n。〉9分割数をmとし
たとき、プリアンプ5人力の平均光子数〈■1〉は。(S/N). . , = ......+11 In order to increase the signal-to-noise ratio, if the gain and population inversion can be made sufficiently large and the spontaneous emission spectrum width can be made sufficiently narrow, then G) 1. r=1゜Δf (1 is the th (])
Substitute into the formula, (S/N) ouL =<rz>/2 -----
---+21 is obtained. In the system shown in FIG.
Let the average number of photons emitted from 〈n. 〉When the number of 9 divisions is m, the average number of photons for 5 preamplifiers is 〈■1〉.
< n t >=< n 0 >/ rn
・・・・・131であ
るから、受信器3における信号対雑音比の量子雑音限界
(S/N)、は第(2)式、第(3)式より、(S /
N) 、 ”< n、 >/ 2 m −−−
A41となる。<nt>=<n0>/rn
...131, so the quantum noise limit (S/N) of the signal-to-noise ratio in the receiver 3 is (S/N) from equations (2) and (3).
N), ”< n, >/ 2 m ---
It becomes A41.
従って、第6図に示す構成の場合、分割数mが大きい場
合には量子雑音限界により受信器3出力の信号対雑音比
は劣化する。Therefore, in the case of the configuration shown in FIG. 6, when the number of divisions m is large, the signal-to-noise ratio of the output of the receiver 3 deteriorates due to the quantum noise limit.
[発明が解決しようとする課題]
従来の分配形光情報伝送網は以上のように構成されてい
たので、光増幅器の利得飽和特性もしくは量子雑音限界
のために多くの受信器から十分な信号対雑音比を有する
出力を得ることが困難であった。[Problems to be Solved by the Invention] Conventional distributed optical information transmission networks have been configured as described above, but due to gain saturation characteristics of optical amplifiers or quantum noise limitations, it is difficult to receive sufficient signal pairs from many receivers. It was difficult to obtain an output with a noise-to-noise ratio.
この発明は上記のような問題点を解消するためになされ
たもので、多くの受信器から十分な信号対雑音比を有す
る出力を得ることができる分配形光情報伝送網を9!)
ることをfJ的とする。This invention was made in order to solve the above-mentioned problems, and it is a distributed optical information transmission network that can obtain outputs with a sufficient signal-to-noise ratio from many receivers. )
It is considered fJ-like.
[課題を解決するための手段]
この発明に係る分配形光情報伝送網は、光分岐として光
信号を二分割する光分岐を用いるとともに、二分割され
た各光信号を増幅する光増幅器を備え、上記光分岐と光
増幅器を交互に設けたものである。[Means for Solving the Problems] A distributed optical information transmission network according to the present invention uses an optical branch that splits an optical signal into two as an optical branch, and includes an optical amplifier that amplifies each of the split optical signals. , the above-mentioned optical branches and optical amplifiers are provided alternately.
「作用コ
以」−のように構成された分配形光情報伝送網では、光
増幅器に要求される光出力は低いため、利得飽和による
分割数の制限は生じない。また、平均光子数が大きく減
少しないので、量子雑音限界による出力のイ、j号対雑
音比の劣化も生じない。In a distributed optical information transmission network configured as described above, the optical output required of the optical amplifier is low, so there is no restriction on the number of divisions due to gain saturation. Furthermore, since the average number of photons does not decrease significantly, the output A and J noise ratios do not deteriorate due to the quantum noise limit.
[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例を示す構成図である。図中
、1,3は従来例と同様の送信器と受信器、68〜6c
は光信号を二分割する光分岐として設けられた二人カニ
出力のX分岐、7a〜7fは上記各X分岐68〜6cの
各二出力に接続された希土類ドープファイバ、8a〜8
dは各受信器3の入力側にあって信号光成分のみを透過
するフィルタ、9a〜9cは各X分岐6a〜6cの二人
力のうち一方に接続された励起光源であり、初段のX分
岐6aの他方の入力には送信器1が接続され、その二出
力が希土類ドープファイバ7a。FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 and 3 are transmitters and receivers similar to the conventional example, and 68 to 6c.
7a to 7f are rare earth doped fibers connected to each of the two outputs of each of the X branches 68 to 6c, 8a to 8
d is a filter located on the input side of each receiver 3 and transmits only the signal light component; 9a to 9c are excitation light sources connected to one of the two X branches 6a to 6c; A transmitter 1 is connected to the other input of the fiber 6a, and its two outputs are a rare earth doped fiber 7a.
7bを介して次段のX分岐6b、6cの他方の入力に接
続されており、それぞれの二出力は希土類ドープファイ
バ70〜7f、フィルタ88〜8dを介して受信器3に
接続されている。なお、上記希土類ドープファイバ78
〜7f及びその励起光源98〜9cにより本願の光増幅
器が構成されている。7b to the other inputs of the next-stage X branches 6b and 6c, and the two outputs of each are connected to the receiver 3 via rare earth doped fibers 70 to 7f and filters 88 to 8d. Note that the rare earth doped fiber 78
7f and their excitation light sources 98 to 9c constitute the optical amplifier of the present application.
上記のように構成された分配形光情報伝送網においては
、励起光源9aから出力される励起光がX分岐6aによ
って二分割され、希土類ドープファイバ7a、7bを励
起する。一方、送信器1から送出される信号光もX分岐
6aによって二分割された後、それぞれ希土類ドープフ
ァイバ7a、7bに入射する。希土類ドープファイバ7
a、7bは上述のように励起されているため、信号光に
対して利得を有するが、その利得の大きさは、X分岐6
aによる分配損失をほぼ補う値となるよう予め励起光源
9aの出力が調整されている。すなわち、希土類ドープ
ファイバ7a、7bの出力における信号光の大きさは、
送信器1の出力光強度にほぼ等しい。励起光源9b、X
分岐6b、希土類ドープファイバ7c、7dの組合わせ
、及び励起光源9c、X分岐6c、希土類ドープファイ
バ7e、7fの組合わせも上述の励起光源9a、X分岐
6a、希土類ドープファイバ7a、7bの組合わせと同
様の機能を有し、また、それぞれの希土類ドープファイ
バ70〜7fにおける信号光に対する利得も、X分岐G
b、6cにおける分配損失を補うように励起光源9b、
9cの出力が調整されている。フィルタ8a〜8dは、
希土類ドープファイバ70〜7fの出力のうち、励起光
成分を遮断し、信号光成分を透過するような特性を有す
るよう設定されている。In the distributed optical information transmission network configured as described above, the pumping light output from the pumping light source 9a is split into two by the X branch 6a and pumps the rare earth doped fibers 7a and 7b. On the other hand, the signal light transmitted from the transmitter 1 is also split into two by the X branch 6a, and then enters the rare earth doped fibers 7a and 7b, respectively. Rare earth doped fiber 7
Since a and 7b are excited as described above, they have a gain with respect to the signal light, but the magnitude of the gain is different from that of the X branch 6.
The output of the excitation light source 9a is adjusted in advance so as to have a value that almost compensates for the distribution loss caused by a. That is, the magnitude of the signal light at the output of the rare earth doped fibers 7a and 7b is:
Almost equal to the output light intensity of the transmitter 1. Excitation light source 9b, X
The combination of branch 6b, rare earth doped fibers 7c and 7d, and the combination of excitation light source 9c, It has the same function as the X branch G
excitation light source 9b, so as to compensate for the distribution loss in b, 6c;
The output of 9c has been adjusted. The filters 8a to 8d are
Among the outputs of the rare earth doped fibers 70 to 7f, the fibers are set to have a characteristic of blocking the excitation light component and transmitting the signal light component.
第1図に示された分配形光情報伝送網は上述のように機
能するよう調整されているので、受信器3に入力される
信号光成分の大きさは、送信器1の出力と同程度となり
、十分に大きい。また、光の分割及び増幅に起因する信
号対雑音比は以下のようになる5
今、典型的な状態として、X分岐68〜6cが信号光を
等配分し、希土類ドープファイバ78〜7fの利得はこ
の分配損失を補うために2に設定されていることを考え
る。また、フィルタ8a〜8dの通過帯域幅が十分に狭
くでき、また、希土類ドープファイバ78〜7fの励起
が七分に大きく行われているとすると、G=2.Δf(
1゜r=1を前記第(11式に代入することにより、(
S/ N) 。−L = 2< n t >/ 3
−・−−−−(51を得る。初段の光増幅器においては
、
< n r >=< n 0>/ 2 ・
・団・(6)であるので、その出力の信号対雑音比(S
/N)。i+tlは第(5)式、第(6)式より、
(S / N) 。、、t+= < n o> / 3
−−−−−−(71を得る。また、N段目の増幅
器出力の信号対雑音比(S/N)。uLNが
(S / N ) 。−N= < n。>/ 3 N
・−・−181となることは容易に導かれる。第1
図に示した構成のように、送信器1に近いX分岐の出力
には全てX分岐を接続し、分岐数を順々に増す場合には
、
m = 2 ” ・旧・
・(9)となる。第(4)式で示される従来の系におけ
る信号対雑音比と、第(8)式で示される本発明に係る
系における信号対雑音比を第(9)式の関係を用いて比
較した場合、N>1の場合、すなオ〕ちm > 2の場
合はいずれも本発明に係る系の場合の方が信号対雑音比
が大きく、かつNが大きいほどその差は大きくなる。Since the distributed optical information transmission network shown in FIG. , which is sufficiently large. In addition, the signal-to-noise ratio caused by splitting and amplifying the light is as follows.5 Now, in a typical state, the X branches 68 to 6c equally distribute the signal light, and the gain of the rare earth doped fibers 78 to 7f Consider that is set to 2 to compensate for this distribution loss. Further, assuming that the passband widths of the filters 8a to 8d can be made sufficiently narrow and the excitation of the rare earth doped fibers 78 to 7f is performed seven times larger, then G=2. Δf(
By substituting 1°r=1 into the above equation (11), (
S/N). -L = 2<nt>/3
-・---(51 is obtained. In the first stage optical amplifier, <n r >=<n 0>/2 ・
・Group・Since (6), the signal-to-noise ratio (S
/N). From equations (5) and (6), i+tl is (S/N). ,,t+=<no>/3
------- (obtain 71. Also, the signal-to-noise ratio (S/N) of the Nth stage amplifier output. uLN is (S / N ). -N = < n. > / 3 N
. . . -181 is easily derived. 1st
As in the configuration shown in the figure, if all X branches are connected to the outputs of the X branches near transmitter 1 and the number of branches is gradually increased, then m = 2''
・It becomes (9). When comparing the signal-to-noise ratio in the conventional system shown by equation (4) and the signal-to-noise ratio in the system according to the present invention shown by equation (8) using the relationship shown in equation (9) , N>1, that is, m>2, the system according to the present invention has a larger signal-to-noise ratio, and the larger N is, the larger the difference becomes.
分配形光情報伝送網においては、受信器3の総数が第(
9)式で表わされるように2のべき乗でない場合も多い
、第2図は、受イ3器の総数が2のべき乗でない場合の
2本発明に係る分配形光情報伝送網の構成例である。本
実施例の場合は、第1図における受信器3の直前の−っ
のX分岐6cがなくなり、受信器3cは一段上流のX分
岐6aと直接接続されており、受信器の総数は3となっ
ている。第2図における信号対雑音比は、第(8)式よ
り、受信器3a、3bがくn。〉/6、受信器3cが(
n、>/3であり、第(4)式に示される従来の系の場
合の値<n、>/6と同じ、あるいは大きい。受信器の
総数が2以上の場合の信号対雑音比を同様にして求めた
結果を第3図に示す。同図に示されるように、本発明に
係る分配形光情報伝送網では、最悪の受信器においても
、従来の場合と同程度以上の信号対雑音比が期待できる
。In a distributed optical information transmission network, the total number of receivers 3 is
As shown in equation 9), in many cases it is not a power of 2. FIG. 2 shows an example of the configuration of a distributed optical information transmission network according to the present invention when the total number of receivers is not a power of 2. . In the case of this embodiment, the X branch 6c immediately before the receiver 3 in FIG. 1 is eliminated, and the receiver 3c is directly connected to the X branch 6a one step upstream, making the total number of receivers 3. It has become. From equation (8), the signal-to-noise ratio in FIG. 2 is calculated by the receivers 3a and 3b. 〉/6, the receiver 3c is (
n,>/3, which is the same as or larger than the value <n,>/6 in the conventional system shown in equation (4). FIG. 3 shows the results of similarly determining the signal-to-noise ratio when the total number of receivers is two or more. As shown in the figure, in the distributed optical information transmission network according to the present invention, even in the worst-case receiver, a signal-to-noise ratio comparable to or higher than that in the conventional case can be expected.
[発明の効果]
以上のように、この発明に係る分配形光情報伝送網では
、信号光を二分割する光分岐と光増幅器を交互に設ける
ことにより、光増幅器に要求される光出力が低くなるた
めに利得飽和に起因する分割数の制限が発生せず、また
、平均光子数が太きく減少しないために景子雑音限界に
よる出力の信号対雑音比の劣化も生じない。従って、多
くの受信器から1−分な信号対雑音比を有する出力を得
ることができる。[Effects of the Invention] As described above, in the distributed optical information transmission network according to the present invention, by alternately providing optical branches that split signal light into two and optical amplifiers, the optical output required for the optical amplifiers can be reduced. Therefore, there is no restriction on the number of divisions due to gain saturation, and since the average number of photons does not decrease sharply, there is no deterioration of the output signal-to-noise ratio due to the Keiko noise limit. Therefore, outputs with a signal-to-noise ratio of 1-minute can be obtained from many receivers.
第1図は本発明に係る分配形光情報伝送網の構成例を示
すブロック図、第2図は受信器の総数が2のべき乗でな
い場合の本発明に係る分配形光情報伝送網の構成例を示
すブロック図、第3図は受信器の数に対する信号対雑音
比を従来例と本発明に係る構成例とで比較した図、第4
図は光分岐の前に光増幅器を設けた従来例を示すブロッ
ク図、第5図は増幅器の利得飽和特性を示す図、第6図
は光分岐の後に光増幅器を設けた従来例を示すブロック
図である。
■は送信器、3,38〜3cは受信器、6a〜6cはX
分岐、7a〜7fと9a〜9cは希土類ドープファイバ
と励起光源(光増幅器)、88〜8dはフィルタ。FIG. 1 is a block diagram showing a configuration example of a distributed optical information transmission network according to the present invention, and FIG. 2 is a configuration example of a distributed optical information transmission network according to the present invention when the total number of receivers is not a power of 2. FIG. 3 is a block diagram showing a comparison of the signal-to-noise ratio with respect to the number of receivers between the conventional example and the configuration example according to the present invention.
The figure is a block diagram showing a conventional example in which an optical amplifier is provided before an optical branch, Figure 5 is a diagram showing the gain saturation characteristics of the amplifier, and Figure 6 is a block diagram showing a conventional example in which an optical amplifier is provided after an optical branch. It is a diagram. ■ is the transmitter, 3, 38-3c is the receiver, 6a-6c is X
Branches 7a to 7f and 9a to 9c are rare earth doped fibers and excitation light sources (optical amplifiers), and 88 to 8d are filters.
Claims (1)
岐によって分割し、複数の受信器に入力させる分配形光
情報伝送網において、 光分岐として光信号を二分割する光分岐を用いるととも
に、二分割された各光信号を増幅する光増幅器を備え、
上記光分岐と光増幅器を交互に設けたこと特徴とする分
配形光情報伝送網。[Claims] In a distributed optical information transmission network in which an optical signal sent from a single transmitter to an optical fiber is split by an optical branch and inputted to a plurality of receivers, the optical signal is split into two as the optical branch. In addition to using optical branching to
A distributed optical information transmission network characterized in that the above-mentioned optical branches and optical amplifiers are provided alternately.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2066291A JPH03267829A (en) | 1990-03-16 | 1990-03-16 | Distributed optical information transmission network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2066291A JPH03267829A (en) | 1990-03-16 | 1990-03-16 | Distributed optical information transmission network |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH03267829A true JPH03267829A (en) | 1991-11-28 |
Family
ID=13311575
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2066291A Pending JPH03267829A (en) | 1990-03-16 | 1990-03-16 | Distributed optical information transmission network |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH03267829A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6266169B1 (en) | 1992-04-08 | 2001-07-24 | Hitachi, Ltd. | Optical transmission equipment which transmits an amplified optical data signal and an optical surveillance signal |
| JP2008060780A (en) * | 2006-08-30 | 2008-03-13 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission system and optical demultiplexer |
-
1990
- 1990-03-16 JP JP2066291A patent/JPH03267829A/en active Pending
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6266169B1 (en) | 1992-04-08 | 2001-07-24 | Hitachi, Ltd. | Optical transmission equipment which transmits an amplified optical data signal and an optical surveillance signal |
| US6728489B2 (en) | 1992-04-08 | 2004-04-27 | Hitachi, Ltd. | Optical transmission system constructing method and system |
| US7167652B2 (en) | 1992-04-08 | 2007-01-23 | Hitachi, Ltd | Optical transmission system constructing method and system |
| US7292785B2 (en) | 1992-04-08 | 2007-11-06 | Hitachi, Ltd. | Optical transmission system constructing method and system |
| JP2008060780A (en) * | 2006-08-30 | 2008-03-13 | Nippon Telegr & Teleph Corp <Ntt> | Optical transmission system and optical demultiplexer |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6577439B2 (en) | Optical amplifier | |
| US5506723A (en) | Multistage fiber-optic amplifier | |
| AU679098B2 (en) | High power, high gain, two-stage optical amplifiers | |
| JP3025210B2 (en) | Apparatus including optical fiber Raman amplifier | |
| US5822113A (en) | Optical amplifier using optical circulator and fiber amplifier | |
| WO2002075936B1 (en) | System and method for wide band raman amplification | |
| US5177634A (en) | High gain limiting erbium-doped fiber amplifier with wide dynamic range | |
| EP1073166A2 (en) | L-band optical fiber amplifier using feedback loop | |
| JP3217037B2 (en) | Multi-stage optical fiber amplifier | |
| KR100277352B1 (en) | 3-stage WDM-EDFA | |
| JP2021190691A (en) | Gain equalization in C + L erbium-added fiber optic amplifier | |
| EP0782225A2 (en) | Low tilt, high gain fiber amplifier | |
| EP0459685A2 (en) | Multi-stage optical amplifier | |
| Willner et al. | Star couplers with gain using multiple erbium-doped fibers pumped with a single laser | |
| US6952308B2 (en) | Multi-stage bidirectional optical amplifier | |
| JP2746776B2 (en) | Optical preamplifier | |
| JPH03267829A (en) | Distributed optical information transmission network | |
| US7068425B2 (en) | Wideband optical fiber amplifier | |
| US6621622B2 (en) | Optical amplifier and optical amplifier arrangement with reduced cross phase modulation | |
| US6144488A (en) | Optically amplifying device with gain equalizing function | |
| JP2619096B2 (en) | Optical amplifier | |
| US6212002B1 (en) | Optical amplifier | |
| JPH0389644A (en) | Transmission method for wavelength multiplex optical signal | |
| US20040100683A1 (en) | Raman amplifier | |
| Delavaux et al. | Multistage EDFA-circulator-based designs |