JPH03274407A - Instrument for inspecting surface condition of molded product - Google Patents
Instrument for inspecting surface condition of molded productInfo
- Publication number
- JPH03274407A JPH03274407A JP7351490A JP7351490A JPH03274407A JP H03274407 A JPH03274407 A JP H03274407A JP 7351490 A JP7351490 A JP 7351490A JP 7351490 A JP7351490 A JP 7351490A JP H03274407 A JPH03274407 A JP H03274407A
- Authority
- JP
- Japan
- Prior art keywords
- molded product
- light
- light intensity
- pattern
- value width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 238000000465 moulding Methods 0.000 description 6
- 230000002950 deficient Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は成形品、特に射出成形品の表面状態。[Detailed description of the invention] (Industrial application field) The present invention relates to the surface condition of molded products, particularly injection molded products.
例えば表面の粗さの程度、ひげの有無等を検査する装置
に関する。For example, the present invention relates to an apparatus for inspecting the degree of surface roughness, the presence or absence of whiskers, etc.
(従来の技術)
射出成形品の外観品質、すなわち表面状態を低下させる
不良要因として1転写不良、ひけ、そり等がある。従来
、これらの不良要因の台無の検査は 目視で行われてい
るのか普通であり、検査結果に個人差を生ずることは避
けられない。(Prior Art) Improper transfer, sink marks, warpage, etc. are factors that degrade the appearance quality, that is, the surface condition, of injection molded products. Conventionally, these defective factors have been inspected visually, and individual differences in inspection results are unavoidable.
(発明が解決しようとする課8)
ところで この種の表面状態の検査は、単に不良品を発
見して除外するためたけてなく、射出成形機の成形条件
を最適にするための一助にすることが望ましい。特に、
精密成形の場合9表面状態の検査結果を成形条件にフィ
ードバックすることか品質向上の点から重要になると思
われる。しかしなから 検査結果をフィ・−ドパツクす
るためには、検査結果を定量化することか必要となる。(Question 8 to be solved by the invention) By the way, this type of surface condition inspection is not only used to discover and eliminate defective products, but also to help optimize the molding conditions of an injection molding machine. is desirable. especially,
In the case of precision molding, feeding back the inspection results of surface conditions to the molding conditions seems to be important from the point of view of quality improvement. However, in order to feed-pack test results, it is necessary to quantify the test results.
本発明の課題は、成形品表面の粗さ、ひけ等の表面状態
を自動検査する装置を提供することにある。An object of the present invention is to provide an apparatus for automatically inspecting surface conditions such as roughness and sink marks on the surface of a molded product.
本発明はまた。成形品の表面状態の検査結果を定量化し
て出力できるようにして成形機の成形条件をフィードバ
ック制御するのに適した表面状態検査装置を提供しよう
とするものである。The present invention also includes: It is an object of the present invention to provide a surface condition inspection device that is capable of quantifying and outputting inspection results of the surface condition of a molded product and is suitable for feedback controlling the molding conditions of a molding machine.
(課題を解決するための手段)
本発明による表面状態検査装置は、成形品表面にレーザ
スポット光を照射する手段と、前記レーザスポット光の
反射光を受光して光強度のパターンを検出する光強度パ
ターン検出手段と2該光強度パターン検出手段で検出さ
れたパターンからあらかじめ定められた特徴量を抽出し
該特徴量から前記成形品表面の粗さ2ひけ等の表面状態
を判定する手段とを有する。(Means for Solving the Problems) A surface condition inspection device according to the present invention includes a means for irradiating a laser spot light onto the surface of a molded product, and a light beam for detecting a pattern of light intensity by receiving reflected light of the laser spot light. intensity pattern detection means; and means for extracting predetermined feature quantities from the pattern detected by the light intensity pattern detection means and determining surface conditions such as roughness and sink marks of the surface of the molded product from the feature quantities. have
前記特徴量としては、光強度の半値幅、1/3値幅、2
/3値幅等を抽出するのか望ましい。The feature amounts include the half-width of light intensity, 1/3 width, and 2
It is desirable to extract the /3 value range etc.
(作用)
本発明による表面状態検査装置は、レーザスポット光を
成形品表面に照射して得られる正反射方向の光強度パタ
ーンから半値幅あるいは1/3値幅及び2/3値幅等の
特徴量を抽出し、その特徴量からしきい値処理あるいは
ファジィ推論を行うことにより表面の粗さの程度、ひげ
の有無を定量的に判定する。(Function) The surface condition inspection device according to the present invention detects characteristic quantities such as half width, 1/3 width, and 2/3 width from a light intensity pattern in the specular reflection direction obtained by irradiating a laser spot light onto the surface of a molded product. The degree of surface roughness and the presence or absence of whiskers are quantitatively determined by extracting the features and performing threshold processing or fuzzy inference from the feature values.
(実施例) 以下1本発明の好ましい実施例について説明する。(Example) A preferred embodiment of the present invention will be described below.
第1図において1本発明による表面状態検査装置は射出
成形品11にレーザスポット光を照射するためのレーザ
光源12.射出成形品11からの正反射光を受光して光
強度のパターンを検出するパターン検出センサ13.こ
のパターン検出センサ13で検出されたパターンから特
徴量を抽出して成形品の表面状態の定量的判定を行う判
定装置14、及びこの判定装置14からの光強度パター
ンや判定結果を表示するため表示装置15を含む。In FIG. 1, a surface condition inspection apparatus according to the present invention includes a laser light source 12 for irradiating an injection molded product 11 with a laser spot light. A pattern detection sensor 13 that receives specularly reflected light from the injection molded product 11 and detects a pattern of light intensity. A determination device 14 that extracts feature amounts from the pattern detected by the pattern detection sensor 13 and quantitatively determines the surface condition of the molded product, and a display for displaying the light intensity pattern and determination results from this determination device 14. It includes a device 15.
パターン検出センサ13は、CCDアレイやその他の受
光素子アレイで構成され、成形品表面の粗さや傾きの程
度により反射光の光強度パターンか変化するので、成形
品全体の画像から空間周波数の成分を抽出して表面状態
を検査する場合に比べて判定のための処理を高速にでき
る。The pattern detection sensor 13 is composed of a CCD array or other light-receiving element array, and since the light intensity pattern of reflected light changes depending on the degree of roughness and inclination of the molded product surface, it detects spatial frequency components from the image of the entire molded product. Compared to the case where the surface condition is extracted and inspected, the processing for determination can be made faster.
第2図には、射出成形品11の表面にレーザスポット光
を射出した時の反射光の強度の分布状態を示す。FIG. 2 shows the intensity distribution of reflected light when a laser spot light is emitted onto the surface of the injection molded product 11.
第3図は、第2図に示された状態での入射光反射光の光
強度パターンの一例を示す。入射光は。FIG. 3 shows an example of a light intensity pattern of incident light and reflected light in the state shown in FIG. The incident light is.
スポット光であるので第3図(a)のように光軸位置に
鋭いピークを持つが、入射光か射出成形品の粗い表面で
散乱されると第3図(b)のようになだらかな正規分布
となり1表面粗さが改善されるにつれて第3図(a)の
分布状態に近づく。Since it is spot light, it has a sharp peak at the optical axis position as shown in Figure 3 (a), but when the incident light is scattered by the rough surface of the injection molded product, it becomes a gentle regular peak as shown in Figure 3 (b). As the surface roughness improves, the distribution approaches the state shown in FIG. 3(a).
このような観点から、第4図に示すように、光強度の最
大値pにもとづいて光強度p / 2の半値幅rを定義
することにより、射出成形品表面の粗さを定量化するこ
とかできる。半値幅rか小さいほど鏡面に近くなり、粗
さか増加するにつれて半値幅rも増加する。したがって
、半値幅rをある区間で区切ることにより、成形品表面
の転写不良状態、すなわち粗さを創]定することができ
る。From this point of view, as shown in Figure 4, the roughness of the surface of an injection molded product can be quantified by defining the half width r of the light intensity p/2 based on the maximum value p of the light intensity. I can do it. The smaller the half-width r is, the closer it becomes to a mirror surface, and as the roughness increases, the half-width r also increases. Therefore, by dividing the half-width r into certain sections, it is possible to create a poor transfer state, that is, roughness, on the surface of the molded product.
次に、射出成形品の表面には厚肉、薄肉部の境界でひげ
を生ずることか多いが、ひげかある場合の反射光の光強
度パターンは第5図(b)のようになる。ところか、第
5図(b)のようなパターンは、半値幅「たけては第5
図(a)のようなひげの無いパターンと区別できない。Next, whiskers often occur on the surface of injection molded products at the boundaries between thick and thin parts, and when there are whiskers, the light intensity pattern of the reflected light is as shown in FIG. 5(b). However, the pattern shown in Figure 5(b) has a half-width of 5
It cannot be distinguished from the pattern without whiskers as shown in Figure (a).
そこで、第6図に示したように、光強度p/3で規定さ
れる1/3値幅「1 (w幅)、光強度2p/3て規定
される2/3値幅r2 (n幅)を新たに定義する。Therefore, as shown in Figure 6, the 1/3 value width ``1 (w width) defined by the light intensity p/3, and the 2/3 value width r2 (n width) defined by the light intensity 2p/3. Define a new one.
成形品表面にひけか無く粗さかある場合にはr、>r2
となるか、ひけを生じている場合には「1とr2とはほ
とんど差か無くなる。If the molded product surface has roughness without sinkage, r, > r2
Or, if sinking occurs, there is almost no difference between 1 and r2.
このような観点から1判定装置14においてパターン検
出センサ13からの光強度パターンに対して半値幅r、
1/3値幅rユ、2/3値幅r2の3つの値を特徴量と
して抽出し、これらの容置にヰj出成形品に応してあら
かじめ設定されたしきい値と比較することにより、半値
幅rにより表面状態の粗さを判定し、]/3値幅r、、
2/3値幅r2によりひけの有無1程度を判定すること
かできる。From this point of view, in the first determination device 14, the half width r,
By extracting the three values of 1/3 value width r and 2/3 value width r2 as feature quantities, and comparing these values with thresholds set in advance according to the extruded molded product, The roughness of the surface condition is determined by the half-value width r, ]/3-value width r,,
The presence or absence of a sink mark can be determined based on the 2/3 value range r2.
以上のようなしきい値にもとづく判定装置14の判定ア
ルゴリズムの具体例を以下に説明する。A specific example of the determination algorithm of the determination device 14 based on the threshold value as described above will be described below.
なお1粗さしきい値−a、ひけしきい値−すとして説明
する。Note that the description will be made assuming that 1 is the roughness threshold value -a and the sinkage threshold value is 1.
■粗さ判定 a)0≦r≦aなら 粗さ小 b)r>aなら 粗さ大 なお粗さ度g、(、>0)は g、−(r−a)/aで表わされる。■Roughness judgment a) If 0≦r≦a, the roughness is small b) If r>a, the roughness is large Note that the roughness degree g, (, > 0) is g, −(ra)/a.
■ひけ判定
a)r2/r+≦bなら ひけ無し
b)1≧r2/rl>bなら ひけ有りなお、ひけ度g
hは、1≧gh >Qという条件のもとてgh ”’
(r2/r+−b)/ (1−b)で表わされ、1に近
づくほどひげの度合か高くなる。■ Sink judgment a) If r2/r+≦b, there is no sink b) If 1≧r2/rl>b, there is sink, but the sink level is g
h is gh ``' under the condition 1≧gh >Q
It is expressed as (r2/r+-b)/(1-b), and the closer it gets to 1, the higher the degree of whiskers.
■総合判定
a)0≦r≦aかツr 2 / r r ≦bの時 良
品b)a)以外の時
不良品(粗さgel ひけ度gh)
以上の説明は、半値幅r、1/3値幅r、 2/3
値幅r2とこれらに対応するしきい値とから判定を決定
論的に行う場合であるが、ファジィ推論を利用して判定
を行なっても良い。すなわち射出成形品の総合的な検査
には、検査者の感覚的な判断が含まれていると考えられ
るか、ファジィ推論の手法を利用することにより検査者
の感覚に近い判定か可能となる。この場合、射出成形品
の種別に応じてメンパーンツブ関数か設定される。■Comprehensive judgment a) When 0≦r≦a or r 2 / r r ≦b Good product b) When other than a) Defective product (roughness gel, sinkage gh) The above explanation is based on the half width r, 1/ 3 value width r, 2/3
This is a case where the determination is made deterministically from the value range r2 and the corresponding threshold value, but the determination may also be made using fuzzy inference. In other words, comprehensive inspection of injection molded products can be considered to include the inspector's intuitive judgment, or by using fuzzy inference techniques, it is possible to make judgments that are close to the inspector's intuitive judgment. In this case, the member part function is set depending on the type of injection molded product.
以下にこの判定のアルゴリズムについて説明する。The algorithm for this determination will be explained below.
但し、粗さr T −r / 4 aとする。ここでr
z4aの時はr−4aとすると 0≦「、≦1となる。However, the roughness is r T −r / 4 a. Here r
When z4a is r-4a, 0≦“,≦1.
また ひけr7は
rh=1 3 (1rz / r+ ) /4 (1b
)とする。但し、0≦rh ≦1である。Also, Hike r7 is rh=1 3 (1rz / r+ ) /4 (1b
). However, 0≦rh≦1.
■良否判定則は次の通りである。■The pass/fail judgment rule is as follows.
以下余白
■粗さrl、ひけrhのメンバーシップ関数は第7図の
ようになる。Below, the membership functions of the margin ■Roughness rl and lineage rh are as shown in Figure 7.
■出力メンバーシップ関数は第8図のようになる。■The output membership function is as shown in Figure 8.
■総合判定
■1■、■のような判定則及びメンバーシップ関数にも
とづいてファジィ推論を行うことにより0〜1に規格化
された評価値gを得ることができる。その結果。■ Comprehensive Judgment ■ 1 An evaluation value g standardized to 0 to 1 can be obtained by performing fuzzy inference based on the judgment rules and membership functions such as (1) and (2). the result.
0≦g≦0.25良品 g>0.25不良品とする。0≦g≦0.25 Good product If g>0.25, the product is considered defective.
判定装置14は以上のような判定則にもとづいて射出成
形品の表面状態の良否判定を行うとともに、粗さ度g1
.ひけ度g b等の定量化データを表示装置15に出力
して表示させたり、他の機器。The determination device 14 determines the quality of the surface condition of the injection molded product based on the above-described determination rule, and also determines the roughness degree g1.
.. Quantified data such as the degree of shrinkage gb is output to the display device 15 for display, or other equipment.
例えば射出成形機の成形条件設定器にフィードバックし
てフィードバック制御を行わしめるようにする。For example, it is fed back to a molding condition setting device of an injection molding machine to perform feedback control.
なお 本発明の実施例を2種類の判定則にもとづいて説
明してきたが1本発明はこれらの判定則に制限されるも
のではない。Although the embodiments of the present invention have been described based on two types of decision rules, the present invention is not limited to these decision rules.
(発明の効果)
本発明によれば射出成形品の表面状態の検査を自動化で
きるようにしたことにより大幅な省力化を実現でき、定
量化された検査結果データか得られるのて 本装置メー
カとユーザとの間で共通の基準を設定することができる
。(Effects of the Invention) According to the present invention, by automating the inspection of the surface condition of injection molded products, significant labor savings can be achieved, and quantified inspection result data can be obtained. Common standards can be set with users.
第1図は本発明の一実施例の概略構成を説明するだめの
ブロック図 第2図は射出成形品の表面こレーザスポッ
ト光を射出1−た時の反射光の強度分布状態を示した図
、第3図は第2図の状態での入射光1反射光の光強度パ
ターンの例を示した図第4図は射出成形品の表面粗さの
判定動作を説明するために光強度パターンの一例を示し
た図、第5図、第6図は射出成形品のひげの判定動作を
説明するために光強度パターンの例を示した図、第7図
、第8図は射出成形品の表面状態の判定をファジィ推論
により行う場合のメンバーシップ関数の例を示した図。
図中、ニド・・射出成形品、12・・・レーザ光源。
13・・・パターン検出センサ、14・・・判定装置、
15・・・表示装置。Fig. 1 is a block diagram for explaining the schematic configuration of an embodiment of the present invention. Fig. 2 is a diagram showing the intensity distribution of reflected light when laser spot light is emitted from the surface of an injection molded product. , Fig. 3 shows an example of the light intensity pattern of the incident light 1 reflected light in the state shown in Fig. 2. Fig. 4 shows the light intensity pattern of the light intensity pattern to explain the operation of determining the surface roughness of an injection molded product. Figures 5 and 6 are diagrams showing examples of light intensity patterns to explain the operation of determining whiskers on injection molded products. Figures 7 and 8 are diagrams showing the surface of injection molded products. The figure which showed the example of the membership function when a state is determined by fuzzy inference. In the figure, Ni: injection molded product, 12: laser light source. 13... pattern detection sensor, 14... determination device,
15...Display device.
Claims (1)
前記レーザスポット光の反射光を受光して光強度のパタ
ーンを検出する光強度パターン検出手段と、該光強度パ
ターン検出手段で検出されたパターンからあらかじめ定
められた特徴量を抽出し該特徴量から前記成形品表面の
粗さ、ひけ等の表面状態を判定する手段とを有する成形
品の表面状態検査装置。 2)前記特徴量として、光強度の半値幅、1/3値幅、
2/3値幅等を抽出することを特徴とする請求項1記載
の表面状態検査装置。[Claims] 1) means for irradiating the surface of the molded product with laser spot light;
a light intensity pattern detection means for detecting a light intensity pattern by receiving the reflected light of the laser spot light; and a light intensity pattern detection means for extracting a predetermined feature quantity from the pattern detected by the light intensity pattern detection means; A surface condition inspection device for a molded article, comprising means for determining surface conditions such as roughness and sink marks on the surface of the molded article. 2) As the feature quantity, the half-width of light intensity, the 1/3-width,
2. The surface condition inspection apparatus according to claim 1, wherein a 2/3 value width or the like is extracted.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7351490A JP2873601B2 (en) | 1990-03-26 | 1990-03-26 | Surface inspection equipment for molded products |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP7351490A JP2873601B2 (en) | 1990-03-26 | 1990-03-26 | Surface inspection equipment for molded products |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH03274407A true JPH03274407A (en) | 1991-12-05 |
| JP2873601B2 JP2873601B2 (en) | 1999-03-24 |
Family
ID=13520432
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP7351490A Expired - Fee Related JP2873601B2 (en) | 1990-03-26 | 1990-03-26 | Surface inspection equipment for molded products |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2873601B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018168451A1 (en) * | 2017-03-14 | 2018-09-20 | 株式会社サイオクス | Semiconductor structure production method, semiconductor structure inspection method, and semiconductor structure |
-
1990
- 1990-03-26 JP JP7351490A patent/JP2873601B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018168451A1 (en) * | 2017-03-14 | 2018-09-20 | 株式会社サイオクス | Semiconductor structure production method, semiconductor structure inspection method, and semiconductor structure |
| JP2018151321A (en) * | 2017-03-14 | 2018-09-27 | 株式会社サイオクス | Semiconductor structure manufacturing method, inspection method, and semiconductor structure |
| US11473907B2 (en) | 2017-03-14 | 2022-10-18 | Sciocs Company Limited | Method for manufacturing semiconductor structure, inspection method, and semiconductor structure |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2873601B2 (en) | 1999-03-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5333739A (en) | Method and apparatus for sorting bulk material | |
| JP3652558B2 (en) | Coin discrimination device | |
| JPS62500959A (en) | Paper leaf condition detection device | |
| Anderson et al. | Repeatability and reproducibility of TEM soot primary particle size measurements and comparison of automated methods | |
| US4544268A (en) | Method and apparatus for detecting flaw on threads of male screw | |
| US6396576B1 (en) | Method for determining shadowline location on a photosensitive array and critical angle refractometer employing the method | |
| US5995212A (en) | System and method for inspecting an optical fiber including an epoxy area surrounding the optical fiber | |
| US6501086B1 (en) | Method and device for evaluating defects in flat textile structures | |
| JPH04315907A (en) | Solder wetting form examining method | |
| JPH03274407A (en) | Instrument for inspecting surface condition of molded product | |
| Joshi et al. | Effect of illumination systems on statistical texture parameters based clustering and discrimination of machined surfaces using machine vision | |
| Radovan et al. | An approach for automated inspection of wood boards | |
| CN117030662A (en) | Defect detection system, adjustment method and image processing method based on diffraction effect | |
| Trakulwaranont et al. | Automobile cluster pointer defect detection system using adaptive intensity adjustment | |
| US6768544B1 (en) | Method and a system for detecting impurities in a transparent material | |
| Kline et al. | Evaluation of an automated hardwood lumber grading system | |
| EP1177430A1 (en) | System and method to quantify appearance defects in molded plastic parts | |
| JPH06222015A (en) | Device and method for detecting defects in material conveyed by a conveyor | |
| Xu et al. | Industrial web inspection for manufacturing process understanding and control | |
| KR0181993B1 (en) | Apparatus and method for measuring visual size of material | |
| Charette et al. | Development and integration of a microcomputer based image analysis system for automatic PCB inspection | |
| JP2625723B2 (en) | Image binarization processing device | |
| KR100287069B1 (en) | Method of detecting a protuberance using the shadow | |
| Jolma et al. | The detection of knots in wood materials using the tracheid effect | |
| USRE38559E1 (en) | Automatic visual inspection system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |