[go: up one dir, main page]

JPH03287045A - Impact test method - Google Patents

Impact test method

Info

Publication number
JPH03287045A
JPH03287045A JP8984490A JP8984490A JPH03287045A JP H03287045 A JPH03287045 A JP H03287045A JP 8984490 A JP8984490 A JP 8984490A JP 8984490 A JP8984490 A JP 8984490A JP H03287045 A JPH03287045 A JP H03287045A
Authority
JP
Japan
Prior art keywords
impact
plate
waveform
test method
impact test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8984490A
Other languages
Japanese (ja)
Inventor
Takashi Ikeda
孝 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8984490A priority Critical patent/JPH03287045A/en
Publication of JPH03287045A publication Critical patent/JPH03287045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 E産業上の利用分野] この発明は、電子機器の衝撃試験法に関するものである
[Detailed Description of the Invention] E-Industrial Application Field] This invention relates to an impact testing method for electronic equipment.

F従来の技術] 第3図に従来の衝撃試験法の例を示す。(1)はプレー
ト、(2)はアイボルトでプレート(1)に結合されて
いる。(3)は吊り下げ点、(4)はスリングでアイボ
ルト(2)を介してプレート(1)を吊り下げ点(3)
と結合している。(5)は電子機器で、(6)はノ・ン
マ、(7)は加速度センサー、(8)は解析装置、(9
)はローノイズケーブルであり、加速度センサー(7)
と解析装置(8)とを接続している。
F. Prior Art] FIG. 3 shows an example of a conventional impact test method. (1) is a plate, and (2) is connected to the plate (1) with an eye bolt. (3) is the hanging point, and (4) is the hanging point (3) of the plate (1) via the eye bolt (2) with a sling.
is combined with (5) is an electronic device, (6) is a computer, (7) is an acceleration sensor, (8) is an analysis device, (9)
) is a low noise cable, and the acceleration sensor (7)
and an analysis device (8).

次に動作について説明する。ハンマ(6)によってプレ
ート(1)に打撃を与え、その時に生じる衝撃波かプレ
ート(1)を伝播して、電子機器(5)に負荷される。
Next, the operation will be explained. The plate (1) is struck by the hammer (6), and the shock wave generated at that time propagates through the plate (1) and is loaded on the electronic device (5).

電子機器(5)に負荷された衝撃力はプレー)(+)と
電子機器(5)とのインターフェイス点に取付けられた
加速度センサー(7)によって取り込んだ加速度データ
を解析装置(8)によって解析したSR3波形で評価さ
れる。プレートに与える打撃力を調整することによって
、規定のSR3波形を有する衝撃入力を負荷していた。
The impact force applied to the electronic device (5) was measured by the acceleration sensor (7) installed at the interface point between the play (+) and the electronic device (5), and the acceleration data was analyzed by the analyzer (8). Evaluated with SR3 waveform. By adjusting the impact force applied to the plate, an impact input having a prescribed SR3 waveform was applied.

[発明が解決しようとする課題] 従来の衝撃試験装置は以上のようになっているので、電
子機器に負荷される衝撃力はハンマによる打撃力、プレ
ートの特性によって決まってしまっていた。従って、規
定のS[iS波形を実現するためには、プレートの特性
、ハンマの特性、打撃力をパラメータとして変えなけれ
ばならず、数多くのプレート、ハンマを用意する必要が
あり、 SR8の全周波数において加速度レベルを上げ
たり下げたりすることはできるが、特定の周波数帯に限
って加速度レベルを調整することによってSRSの波形
を変えることが困難なため、規定のSR3波形が達成で
きないという課題があった。この発明は上記のような課
題を解消するためになされたもので、任意のSR5波形
を有する衝撃入力を実現することを目的としている。
[Problems to be Solved by the Invention] Since the conventional impact testing apparatus is configured as described above, the impact force applied to the electronic device is determined by the impact force by the hammer and the characteristics of the plate. Therefore, in order to achieve the specified S [iS waveform, the characteristics of the plate, the characteristics of the hammer, and the striking force must be changed as parameters, and it is necessary to prepare a large number of plates and hammers. Although it is possible to raise or lower the acceleration level in a specific frequency band, it is difficult to change the SRS waveform by adjusting the acceleration level only in a specific frequency band, so there is a problem that the specified SR3 waveform cannot be achieved. Ta. This invention was made to solve the above-mentioned problems, and aims to realize an impact input having an arbitrary SR5 waveform.

[課題を解決するための手段] この発明に係わる衝撃試験装置は、固有振動数を調整で
きる。ウェイトとバネからなる振動系をプレートに付加
することにより、打撃後のプレートに自由振動を残すも
のである。
[Means for Solving the Problems] The impact testing device according to the present invention can adjust the natural frequency. By adding a vibration system consisting of weights and springs to the plate, free vibrations remain in the plate after impact.

[作用コ この発明においては、ウェイトとバネからなる振動系の
固有振動数を変えることによって、)\ンマによる打撃
の後にプレートに残る自由振動の振動数を調整し2任意
のSR3波形を有する衝撃人力を供試体に負荷すること
が可能となる。
[Operation] In this invention, by changing the natural frequency of the vibration system consisting of a weight and a spring, the frequency of the free vibrations remaining on the plate after being hit by the hammer is adjusted, and the shock having an arbitrary SR3 waveform is produced. It becomes possible to apply human power to the specimen.

J実施例] 第1間及び第2図はこの発明の一実施例を示す図である
J Embodiment] Figures 1 and 2 are diagrams showing an embodiment of the present invention.

第1図はこの発明に係る衝撃試験装置の構成を示す図で
あり、第2図は衝撃試験装置の見取り図である。各図に
おいて、(])〜(9)はl−、記従宋の試験装置と全
く同じものである。(1o)はバネであり第2図に示す
ように板バネになっている。(11)はウェイトであり
、バネ(10)を介してプレート(1)に結合されてい
る。
FIG. 1 is a diagram showing the configuration of an impact testing device according to the present invention, and FIG. 2 is a sketch of the impact testing device. In each figure, (]) to (9) are exactly the same as the test equipment of l-, Ji Cong and Song Dynasty. (1o) is a spring, and as shown in FIG. 2, it is a leaf spring. (11) is a weight, which is connected to the plate (1) via a spring (10).

上記のように構成された衝撃試験装置は7 ブレー )
 (1)とバネ(]】)及びウェイト(1o)か1目出
度の振動系を構成するため、その振動系の固有振動数に
相当する自由振動がプレート(1)に残る。従って、加
速度センサー(7)によって計測される加速度のS!?
S波形は前記振動系の固有振動数に相当する周波数にお
ける加速度レベルを上げることがてきる。このバネ及び
ウェイトを調整することによって振動系の固有振動数を
加速度レベルを上げる必要のある周波数に設定すること
か可能である。
The impact test apparatus configured as above is 7 Brays)
(1), the spring (]]) and the weight (1o) constitute a vibration system with a degree of 1, so free vibrations corresponding to the natural frequency of the vibration system remain in the plate (1). Therefore, S! of the acceleration measured by the acceleration sensor (7)! ?
The S waveform can increase the acceleration level at a frequency corresponding to the natural frequency of the vibration system. By adjusting these springs and weights, it is possible to set the natural frequency of the vibration system to a frequency that is necessary to increase the acceleration level.

また1以上の説明はl自由度の振動系を構成する場合で
あるが、多自由度の系にすれば、−度にいくつもの周波
数でのSR5の調整が可能となり、調整能力はさらに拡
大する。
In addition, the explanation above is for the case where a vibration system with l degrees of freedom is constructed, but if it is made into a system with multiple degrees of freedom, it becomes possible to adjust SR5 at several frequencies in − degrees, and the adjustment ability is further expanded. .

[発明の効果] この発明は以上説明したとおり、打撃伝播型の衝撃試験
において、任意のSR8波形を有する衝撃人力の負荷が
実現できるため、電子機器に対する打撃伝播型衝撃試験
法の適用範囲が拡大する効果がある。
[Effects of the Invention] As explained above, the present invention can realize a human impact load having an arbitrary SR8 waveform in the impact propagation type impact test, and thus expands the scope of application of the impact propagation type impact testing method to electronic devices. It has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図2第2図は見
取り図、第3図は従来の衝撃試験法を示す構成図である
。 図において、(1)はプレート、(2)はアイボルト(
3)は吊り下げ点、(4)はスリング、(5)は電子R
器〈6)はハンマ、(7)は加速度センサー、(8)は
解析装置、(9)はローノイズケーブル、(10)はバ
ネ、  (11)はウェイトである。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention; FIG. 2 is a schematic diagram; and FIG. 3 is a block diagram showing a conventional impact test method. In the figure, (1) is the plate, (2) is the eye bolt (
3) is the hanging point, (4) is the sling, and (5) is the electronic R.
The device (6) is a hammer, (7) is an acceleration sensor, (8) is an analysis device, (9) is a low noise cable, (10) is a spring, and (11) is a weight. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 電子機器を搭載したプレートに打撃を加え、規定の衝撃
レベルを負荷する衝撃試験において、プレートに生じる
残留振動の固有振動数を変化させることによって、任意
のSRS(Shock Response Spect
rum)の波形を有する衝撃入力の負荷を可能にしたこ
とを特徴とする衝撃試験法。
In a shock test in which a plate carrying electronic equipment is struck and subjected to a specified shock level, by changing the natural frequency of the residual vibration that occurs in the plate, it is possible to create an arbitrary SRS (Shock Response Spectrum).
An impact test method characterized in that it enables loading of an impact input having a waveform of .rum).
JP8984490A 1990-04-04 1990-04-04 Impact test method Pending JPH03287045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8984490A JPH03287045A (en) 1990-04-04 1990-04-04 Impact test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8984490A JPH03287045A (en) 1990-04-04 1990-04-04 Impact test method

Publications (1)

Publication Number Publication Date
JPH03287045A true JPH03287045A (en) 1991-12-17

Family

ID=13982075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8984490A Pending JPH03287045A (en) 1990-04-04 1990-04-04 Impact test method

Country Status (1)

Country Link
JP (1) JPH03287045A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577748U (en) * 1992-03-26 1993-10-22 豊田工機株式会社 Bracket for measuring device characteristics
WO2007069336A1 (en) * 2005-12-16 2007-06-21 Fujitsu Limited Impact test device
JP2016061702A (en) * 2014-09-19 2016-04-25 日本電気株式会社 Vibration analysis device and vibration analysis method
JP2016173337A (en) * 2015-03-18 2016-09-29 日本電気株式会社 Impact testing machine and impact testing method
WO2020049675A1 (en) * 2018-09-06 2020-03-12 神栄テクノロジー株式会社 Horizontal shock testing device
DE102024201565A1 (en) * 2024-02-21 2025-08-21 Robert Bosch Gesellschaft mit beschränkter Haftung Shock test device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577748U (en) * 1992-03-26 1993-10-22 豊田工機株式会社 Bracket for measuring device characteristics
WO2007069336A1 (en) * 2005-12-16 2007-06-21 Fujitsu Limited Impact test device
JPWO2007069336A1 (en) * 2005-12-16 2009-05-21 富士通株式会社 Impact test equipment
US7596985B2 (en) 2005-12-16 2009-10-06 Fujitsu Limited Impact test apparatus
JP2016061702A (en) * 2014-09-19 2016-04-25 日本電気株式会社 Vibration analysis device and vibration analysis method
JP2016173337A (en) * 2015-03-18 2016-09-29 日本電気株式会社 Impact testing machine and impact testing method
WO2020049675A1 (en) * 2018-09-06 2020-03-12 神栄テクノロジー株式会社 Horizontal shock testing device
DE102024201565A1 (en) * 2024-02-21 2025-08-21 Robert Bosch Gesellschaft mit beschränkter Haftung Shock test device

Similar Documents

Publication Publication Date Title
CN113748325B (en) High intensity vibration testing using empirically modified reference specifications and methods therefor
Harris et al. Harris' shock and vibration handbook
US20040216524A1 (en) Method for determining a vibratory excitation spectrum tailored to physical characteristics of a structure
Çakar Mass and stiffness modifications without changing any specified natural frequency of a structure
US3229021A (en) Electronic musical instrument
Cella et al. Seismic attenuation performance of the first prototype of a geometric anti-spring filter
JPH03287045A (en) Impact test method
Varoto et al. Interaction between a vibration exciter and the structure under test
Hundley et al. Factors contributing to the multiple rate of piano tone decay
JP2002303570A (en) Pile rapid loading test device and pile rapid loading test method
Sung et al. Active control of structurally radiated sound from plates
RU2234690C2 (en) Instruments and equipment shock test method
Garcia Tarrago et al. Viscoelastic models for rubber mounts: influence on the dynamic behaviour of an elastomeric isolated system
Painter et al. ON AN ELECTRODYNAMIC SHAKER
Kiryenko et al. ESA/ESTEC shock bench presentation
Rossing et al. Acoustics of a tamtam
RU2794872C1 (en) Method for testing tools and equipment for high-intensity shocks
Blake The need to control the output impedance of vibration and shock machines
US3420098A (en) Transient synthesizing system
Dean et al. A 10 kN portable electromagnetic vibrator for near-surface studies
Mandke et al. Numerical prediction and verification of noise radiation characteristics of diesel engine block
RU2787813C1 (en) Method for testing for high-intensity impact of instruments and equipment
Waser et al. Noise reduction of hermetic refrigeration compressors by changes of hermetic shell characteristics
RU2745342C1 (en) Method of testing for high-intensity shock effects of devices and equipment
Schweickert The Dornier shock table-a new facility for shock testing of components