[go: up one dir, main page]

JPH0346586A - Ultrasonic distance measuring device - Google Patents

Ultrasonic distance measuring device

Info

Publication number
JPH0346586A
JPH0346586A JP1181400A JP18140089A JPH0346586A JP H0346586 A JPH0346586 A JP H0346586A JP 1181400 A JP1181400 A JP 1181400A JP 18140089 A JP18140089 A JP 18140089A JP H0346586 A JPH0346586 A JP H0346586A
Authority
JP
Japan
Prior art keywords
pulse
reflected
ultrasonic
time
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1181400A
Other languages
Japanese (ja)
Inventor
Masahiko Tanisaki
谷先 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakura Sokki KK
Original Assignee
Sakura Sokki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakura Sokki KK filed Critical Sakura Sokki KK
Priority to JP1181400A priority Critical patent/JPH0346586A/en
Publication of JPH0346586A publication Critical patent/JPH0346586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To eliminate the generation of an error caused by an interference from other reflected pulse by measuring the time extending from the transmitting time of an ultrasonic transmitting intermittent pulse to the receiving time of a reflected receiving intermittent pulse signal. CONSTITUTION:A frequency signal from an AC voltage generator 4 is supplied to an ultrasonic transmitter/receiver 8, an ultrasonic transmitting intermittent pulse whose frequency is varied with a prescribed frequency range in a prescribed period is generated with a prescribed continued time at every prescribed time, and an ultra sonic reflected receiving intermittent pulse reflected by a measuring object is received by the transmitter/receiver 8, amplified 9 and detected 10. Subsequently, among the reflected receiving intermittent pulse signals, the pulse signal whose continued time is within a prescribed time range is extracted by an under-pulse comparator 11, an over-pulse comparator 12 and a gate circuit 14, and by using the extracted reflected receiving intermittent pulse signal, the time extending from the transmitting time of the ultrasonic transmitting intermittent pulse to the receiving time of the reflected receiving intermittent pulse is measured. In such a way, an error of a measuring distance caused by an interference from other reflected pulse of the ultrasonic reflected receiving pulse can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、容器内に収容された粉体、液体専の面の高さ
を測定するのに使用して好適な超音波式距離測定装置の
改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an ultrasonic distance measuring device suitable for use in measuring the height of a surface exclusively for powder or liquid contained in a container. Regarding improvements.

〔従来の技術〕[Conventional technology]

以下に、第6図を参照して、従来の超音波式距離測定装
置について説明する。(8)は超音波送受器を示す。(
18)は周波数発振器を示し、これは基準タイマ(1)
によって制御されて、所定期間(例えば、150m5e
C〜l5eC1ここでは333m5ec )毎に、所定
継続時間(例えば1.2mSeC)を以て、所定周波数
(例えば、33kHz)の間欠送信パルス信号を発生し
、これが電力増幅器(7)を通して、送受器(8)に供
給され、それに応じた超音波送信間欠パルス〔但し、送
受器(8)の送信器に設けられた、圧電振動子に固着さ
れ、機械的インピーダンスが空気と圧電素子との間にあ
る弾性体層の存在により、その継続時間は例えば1゜1
5m5ecと戊る)が、送受器(8)から送信される。
A conventional ultrasonic distance measuring device will be described below with reference to FIG. (8) indicates an ultrasonic transceiver. (
18) shows the frequency oscillator, which is the reference timer (1)
for a predetermined period (e.g. 150m5e
An intermittent transmission pulse signal of a predetermined frequency (for example, 33 kHz) is generated with a predetermined duration (for example, 1.2 mSeC) every 333 m5ec (in this case), and this is transmitted through the power amplifier (7) to the handset (8). [However, an elastic body provided in the transmitter of the transceiver (8) that is fixed to the piezoelectric vibrator and whose mechanical impedance is between the air and the piezoelectric element] Due to the presence of the layer, its duration is e.g. 1°1
5m5ec) is transmitted from the handset (8).

又、この超音波送信パルスは、測定対象で反射し、その
超音波反射受信間欠パルスが送受器(8)によって受信
され、その受信間欠パルス信号が増幅器(9)によって
増幅された後、検波器(10)に供給されて検波される
Further, this ultrasonic transmission pulse is reflected by the measurement target, and the ultrasonic reflected reception intermittent pulse is received by the transceiver (8), and after the reception intermittent pulse signal is amplified by the amplifier (9), it is sent to the detector. (10) and detected.

ところで、音波の減衰特性は、第7図に示す如く、その
周波数に依存し、周波数が高い程減衰し易く、又、低い
程減衰し難い特性を有している。
Incidentally, as shown in FIG. 7, the attenuation characteristics of a sound wave depend on its frequency, and the higher the frequency, the easier it is to attenuate, and the lower the frequency, the more difficult it is to attenuate.

一方、送信される音波の指向特性は、第8図A、Bに示
す如く、その周波数が低い程鈍り、高い程鋭く戒る。そ
こで、超音波送受器(8)として、超音波送信周波数の
異なるものをいくつか用意して置き、比較的広い空間で
の比較的長い距離の測定には、超音波周波数の比較的低
い送受器を採用し、比較的狭い空間での比較的短い距離
の測定には、超音波周波数の比較的高い送受器を選択す
ることに成る。
On the other hand, as shown in FIGS. 8A and 8B, the directional characteristics of the transmitted sound waves become duller as the frequency is lower and sharper as the frequency is higher. Therefore, several ultrasonic transceivers (8) with different ultrasonic transmission frequencies are prepared, and when measuring a relatively long distance in a relatively wide space, a transceiver with a relatively low ultrasonic frequency is used. For measurements over relatively short distances in relatively narrow spaces, a transceiver with a relatively high ultrasonic frequency is selected.

検波器(10)は、PLL回路を用いた周波数/電圧変
換器を備え、第9図に示す如く、受信パルス信号(同図
A)をその周波数が高い程しヘルが大と戒り、周波数が
低い程しヘルが小と成る受信電圧パルス信号(同図B)
に変換する。この場合、受信パルス信号の周波数は、周
波数発振器(18)からの送信パルス信号の周波数と等
しく威る筈であるから、第10図に示す如く、その送信
パルス信号の周波数に対応する電圧を検出電圧Vdとし
て、この検出電圧Vdの前後の所定範囲内に入る電圧の
電圧パルス信号を抽出し、矩形波信号として出力する回
路を、この検波器(10)に設けて、周波数が例えば、
28kHz、30kHzの雑音に対応する電圧パルス信
号を排除するようにしている。
The detector (10) is equipped with a frequency/voltage converter using a PLL circuit, and as shown in FIG. The lower the voltage, the smaller the received voltage pulse signal (B in the same figure)
Convert to In this case, the frequency of the received pulse signal should be equal to the frequency of the transmitted pulse signal from the frequency oscillator (18), so as shown in Figure 10, the voltage corresponding to the frequency of the transmitted pulse signal is detected. The detector (10) is provided with a circuit that extracts, as the voltage Vd, a voltage pulse signal having a voltage within a predetermined range before and after the detected voltage Vd, and outputs it as a rectangular wave signal.
The voltage pulse signals corresponding to noise at 28 kHz and 30 kHz are excluded.

この検波器(10)からの受信電圧パルス信号は、増幅
度制御器(13)及び時間/電圧変換器(15)に供給
される。
The received voltage pulse signal from this detector (10) is supplied to an amplification controller (13) and a time/voltage converter (15).

増幅度制御器(13)は、検波器(10)からの出力を
受けて、検波器(10)から受信電圧パルス信号が得ら
れないか又はそのレベルが可なり小さいときは、ある程
度以上のレベルの受信パルス信号が得られるように、増
幅器(9)の増幅度を大きくするように、増幅器(9)
の増幅度を制御している。これによって、第11図に示
す如く、波高値の小さな受信パルス信号が増幅されてか
ら、検波器(10)に供給されるので、送信パルス信号
の開始時点から、検波器(10)における受信電圧パル
ス信号の検出電圧Vdとの比較によって得られた矩形波
信号の、前縁までの時間t2の正しい時間t1 に対す
る誤差Δtをを0にすることができる。
An amplification controller (13) receives the output from the detector (10), and when the received voltage pulse signal is not obtained from the detector (10) or its level is quite low, the amplification controller (13) adjusts the level to a certain level or higher. The amplifier (9) increases the amplification degree of the amplifier (9) so that a received pulse signal of
The degree of amplification is controlled. As a result, as shown in FIG. 11, the received pulse signal with a small peak value is amplified and then supplied to the detector (10), so that the received pulse signal at the detector (10) is increased from the start of the transmitted pulse signal. The error Δt of the time t2 to the leading edge of the rectangular wave signal obtained by comparing the pulse signal with the detection voltage Vd relative to the correct time t1 can be made zero.

更に、検波器(10)では、第12図に示す如く、同図
B、Dに示す受信電圧パルス信号(入力パルス)のパル
ス幅Piを、同図A−Cに示す基準パルスの基準パルス
幅POと比較し、同図Bに示す如く、入力パルスのパル
ス幅Piが基準パルスのパルス幅Poより狭いときは、
これは雑音であると判断して出力せず、同図りに示す如
く、基準パルス幅Poより広いときはこれを出力するよ
うにしている。
Furthermore, as shown in FIG. 12, the detector (10) converts the pulse width Pi of the received voltage pulse signal (input pulse) shown in B and D in the same figure to the reference pulse width of the reference pulse shown in A to C in the same figure. Compared with PO, as shown in Figure B, when the pulse width Pi of the input pulse is narrower than the pulse width Po of the reference pulse,
This is determined to be noise and is not output, but as shown in the figure, when it is wider than the reference pulse width Po, it is output.

時間/電圧変換器(15)では、基準タイマ(1)から
のタイミング信号に基づいて、検波器(10)からの受
信電圧パルス信号(矩形波信号〉の前縁のタイミングの
、基準タイマ(1)によってその発生が制御される送信
パルス信号の前縁のタイミングからの時間を測定し、そ
の時間と超音波の伝播速度との積から、送受器(8)よ
り測定対象までの距離に応じた電圧(例えば、10mの
ときOV、2mのとき5V)の距離電圧出力を出力し、
これを出力回路(16)を通じて指示計(17)に供給
して、その距離を示す数字を、単位を付して表示するよ
うにしている。
In the time/voltage converter (15), based on the timing signal from the reference timer (1), the timing of the leading edge of the received voltage pulse signal (rectangular wave signal) from the detector (10) is determined by the reference timer (1). ) The time from the timing of the leading edge of the transmitted pulse signal, the generation of which is controlled by Outputs a distance voltage output of voltage (for example, OV at 10 m, 5 V at 2 m),
This is supplied to an indicator (17) through an output circuit (16), and a number indicating the distance is displayed along with a unit.

(2)は温度感知素子で、これよりの温度感知信号が温
度変換器(3)に供給されて、所定の温度検出信号に変
換され、この温度検出信号が、周波数発振器(18)及
び時間/電圧変換器(15)に供給される。
(2) is a temperature sensing element, and a temperature sensing signal from this element is supplied to a temperature converter (3) and converted into a predetermined temperature detection signal, and this temperature detection signal is sent to a frequency oscillator (18) and a time/time/temperature detection signal. It is supplied to a voltage converter (15).

そして、周波数発振器(18)では、超音波送受器(8
)の送信器から放射される超音波送信パルスの波長の1
74の長さが常にその送信器に設けられた弾性体層の厚
さに等しく戊って、超音波の放射効率が高く威るように
、温度に応して、周波数発振器(18)の発振周波数を
制御するようにしている。
In the frequency oscillator (18), the ultrasonic transceiver (8)
) of the wavelength of the ultrasonic transmission pulse emitted from the transmitter
The frequency oscillator (18) oscillates according to the temperature so that the length of the transmitter 74 is always equal to the thickness of the elastic layer provided in the transmitter, so that the radiation efficiency of the ultrasonic wave is high. I try to control the frequency.

又、時間/電圧変換器(15)では、温度によって音速
が変動するので、温度に応じて、音速の値を変更するよ
うにしている。
Further, in the time/voltage converter (15), since the speed of sound changes depending on the temperature, the value of the speed of sound is changed depending on the temperature.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる従来の超音波式距離測定装置には、次のような欠
点がある。即ち、超音波送受器から送信される超音波送
信パルスが、測定対象及び測定対象の収容されている容
器の形状等によって、乱反射されるため、測定対象から
の超音波反射受信パルスが、他の超音波反射パルスによ
って干渉を受けて、送受器(8)から得らられた反射受
信間欠パルス信号の包絡線波形が、 (1)2つに割れたり、 (2)一部が欠損したり、一部のレベルが極端に小さく
或ったり、 (3)レベルが過大に成ったり する如く変形する場合がある。
Such conventional ultrasonic distance measuring devices have the following drawbacks. That is, since the ultrasonic transmission pulses transmitted from the ultrasonic transceiver are diffusely reflected by the measurement object and the shape of the container in which the measurement object is housed, the ultrasonic reception pulses reflected from the measurement object are reflected by other objects. The envelope waveform of the reflected and received intermittent pulse signal obtained from the transceiver (8) is interfered with by the ultrasonic reflected pulse, (1) split into two, (2) partially missing, (3) Some levels may be deformed such that some levels become extremely small, or (3) some levels become excessively large.

その原因としては、超音波送受器(8)の超音波放射の
指向特性が、第13図に示す如く、鈍ったメインローブ
及びその両側のサブローブから成る特性を呈するために
、超音波は、送受器(8)の放射面から垂直の方向のみ
ならず、斜めの方向にも放射される。このため、測定対
象が、第14図に示す如くタンクに収容された粉体表面
である場合に、その粉体表面に段差があると、次のよう
な現象が生じる。
The reason for this is that the directional characteristics of the ultrasonic radiation from the ultrasonic transceiver (8) exhibit characteristics consisting of a blunt main lobe and sublobes on both sides, as shown in Figure 13. Radiation is emitted from the radiation surface of the vessel (8) not only in the perpendicular direction but also in the diagonal direction. Therefore, when the object to be measured is the surface of powder contained in a tank as shown in FIG. 14, if there is a step on the powder surface, the following phenomenon occurs.

即ち、送受器(8)の放射面から垂直に放射された超音
波送信パルスが平面部Xで垂直に反射されたその反射受
信パルスRxと、斜めに放射された超音波送信パルスが
傾斜部yで反射されたその反射パルスRyとが交叉し、
第15図A、Bに示す如く、その交叉点における再反射
パルスRx、Rの位相差がλ/2(但し、λは超音波送
信パルスの波長)と成った場合には、第16図に示すよ
うに、同図六の反射受信パルスが、同図Bに示す反射パ
ルスによって干渉されて、同図Cに示す如く、その包路
線波形が大幅に崩れると共に、その波高値が大幅に低下
する。
That is, the ultrasonic transmission pulse vertically radiated from the radiation surface of the transceiver (8) is reflected vertically at the flat part The reflected pulse Ry reflected at
As shown in FIGS. 15A and 15B, when the phase difference between the re-reflected pulses Rx and R at the intersection point is λ/2 (where λ is the wavelength of the ultrasonic transmission pulse), as shown in FIG. As shown in FIG. 6, the reflected received pulse shown in FIG. 6 is interfered with by the reflected pulse shown in FIG. .

又、第17図に示す如く、測定対象が、粒体の層の上に
ある粉体の層の表面である場合に、その粉体の層の厚さ
が、λ/2と威る場合にも、粉体の層の表面からの反射
受信パルスRaが、粒体の層の表面からの反射パルスR
bに干渉されて、上述と同様に、その包路線波形が大幅
に崩れると共に、その波高値が大幅に低下する。
Furthermore, as shown in Fig. 17, when the object to be measured is the surface of a powder layer on a layer of granules, and the thickness of the powder layer is λ/2, Also, the reflected received pulse Ra from the surface of the powder layer is the reflected pulse R from the surface of the granular layer.
b, the envelope waveform is significantly disrupted and the peak value is significantly lowered, as described above.

更に、第18図に示す如く、測定対象が、小さなパイプ
に容れられた水の表面である場合にも、超音波送受器(
8)の放射面から垂直に放射された超音波送信パルスが
、水面で垂直に反射されたその反射受信パルスRaが、
斜めに放射された超音波送信パルスがパイプの内面で反
射を繰り返したその反射パルスRbと交叉し、その交叉
点における両反射波の位相差が、λ/2と戒る場合にも
、反射受信パルスRaが反射パルスRhに干渉されて、
上述と同様にその包絡線波形が大幅に崩れると共に、そ
の波高値が大幅に低下する。
Furthermore, as shown in Figure 18, even when the object to be measured is the surface of water contained in a small pipe, the ultrasonic transceiver (
The ultrasonic transmission pulse radiated vertically from the radiation surface in 8) is reflected vertically on the water surface, and the reflected reception pulse Ra is
Even when the obliquely emitted ultrasonic transmission pulse intersects with the reflected pulse Rb that has been repeatedly reflected on the inner surface of the pipe, and the phase difference between the two reflected waves at the intersection point is λ/2, reflected reception is possible. The pulse Ra is interfered with by the reflected pulse Rh,
As described above, the envelope waveform is significantly distorted and the peak value thereof is significantly reduced.

か(すると、反射受信パルスが他の反射パルスによって
干渉されて、その包路線波形が大幅に崩れたり、その波
高値が大幅に低下したりしない場合は、検波器(10)
における受信電圧パルス信号及びその矩形波信号の波形
は、夫々第5図A、Bに示す如く成り、送信電圧パルス
信号の前縁から矩形波信号の前縁までの時間t、は正し
く計測される。
(Then, if the reflected received pulse is not interfered with by other reflected pulses and its envelope waveform is not significantly disrupted or its peak value is not significantly reduced, the detector (10)
The waveforms of the received voltage pulse signal and its rectangular wave signal are as shown in FIGS. 5A and 5B, respectively, and the time t from the leading edge of the transmitted voltage pulse signal to the leading edge of the rectangular wave signal is measured correctly. .

ところが、反射受信パルスが、これとの位相差がλ/2
又はそれに極く近い値の他の反射パルスによって干渉さ
れて、その包絡線波形が大幅に崩れたり、その波高値が
大幅に低下した場合は、検波器(10)における受信電
圧パルス信号及びその矩形波信号波形は、夫々第5図C
,Dに示す如く戒り、送信電圧パルス信号の前縁から矩
形波信号の前縁までの時間は、tlではなく、誤差Δt
を含0 むt2と戒ってしまう。
However, the phase difference between the reflected received pulse and this pulse is λ/2.
If the envelope waveform is significantly distorted or the peak value is significantly lowered due to interference by other reflected pulses with a value very close to the received voltage pulse signal at the detector (10) and its rectangle. The wave signal waveforms are shown in Figure 5C.
, D, the time from the leading edge of the transmission voltage pulse signal to the leading edge of the rectangular wave signal is not tl, but the error Δt.
I warn that t2 includes 0.

かかる点に鑑み、本発明は、超音波反射受信パルスの他
の反射パルスからの干渉による測定距離の誤差の発生を
除去することのできる超音波式距離測定装置を提案しよ
うとするものである。
In view of this, the present invention proposes an ultrasonic distance measuring device that can eliminate errors in measurement distance due to interference of ultrasonic reflected received pulses from other reflected pulses.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、超音波送受器(8)から所定時間毎に所定継
続時間を以て放射される超音波送信間欠パルスを測定対
象に向けて送信し、その測定対象からの超音波反射受信
間欠パルスを超音波送受器(8)で受信して、反射受信
間欠パルス信号を得、その超音波送信間欠パルスの送信
時から、反射受信間欠パルス信号の受信時までの時間を
計測することによって、超音波送受器(8)から測定対
象までの距離を測定するようにした超音波式距離測定装
置において、所定周期を以て所定周波数範囲内で周波数
が変化する周波数信号発生手段(4)を設け、その周波
数信号発生手段(4)からの周波数信号を、超音波送受
器(8)に供給して、所定時間毎に所定■ 継続時間を以て、所定周期を以て所定周波数範囲内で周
波数が変化する超音波送信間欠パルスを発生させるよう
にすると共に、反射受信間欠パルス信号の内、その継続
時間が所定時間範囲内にある反射受信間欠パルス信号を
抽出する抽出手段(1112、,14)を設け、その抽
出手段(11,12,14)からの反射受信間欠パルス
信号を用いて、超音波送信間欠パルスの送信時から、反
射受信間欠パルス信号の受信時までの時間を計測するよ
うにしたものである。
The present invention transmits intermittent ultrasonic transmission pulses emitted from an ultrasonic transceiver (8) for a predetermined duration at predetermined intervals toward a measurement object, and receives intermittent ultrasonic reception pulses reflected from the measurement object. The ultrasound transmitter/receiver (8) receives the reflected reception intermittent pulse signal and measures the time from the transmission of the ultrasound transmission intermittent pulse signal to the reception of the reflected reception intermittent pulse signal. In an ultrasonic distance measuring device that measures the distance from a device (8) to a measurement target, a frequency signal generating means (4) whose frequency changes within a predetermined frequency range at a predetermined period is provided, and the frequency signal generation means (4) is provided. The frequency signal from the means (4) is supplied to the ultrasonic transmitter/receiver (8) to transmit intermittent ultrasonic transmission pulses whose frequency changes within a predetermined frequency range at a predetermined period with a predetermined duration at predetermined intervals. At the same time, an extraction means (1112, 14) is provided for extracting a reflected reception intermittent pulse signal whose duration is within a predetermined time range from among the reflected reception intermittent pulse signals. The reflected reception intermittent pulse signal from 12, 14) is used to measure the time from the transmission of the ultrasonic transmission intermittent pulse to the reception of the reflected reception intermittent pulse signal.

〔作用〕[Effect]

かかる本発明によれば、周波数信号発生手段(4)から
の周波数信号を、超音波送受器(8)に供給して、所定
時間毎に所定継続時間を以て、所定周期を以て所定周波
数範囲内で周波数が変化する超音波送信間欠パルスを発
生させる。そして、反射受信間欠パルス信号の内、その
継続時間が所定時間範囲内にある反射受信間欠パルス信
号を、抽出手段<LL 12.14)によって抽出し、
その抽出された反射受信間欠パルス信号を用いて、超音
波送信間欠パルスの送信時から、反射受信間欠パルス信
号の受信時までの時間を計測する。
According to the present invention, the frequency signal from the frequency signal generating means (4) is supplied to the ultrasonic transmitter/receiver (8) to generate a frequency within a predetermined frequency range at a predetermined period with a predetermined duration every predetermined time. Generates intermittent pulses of ultrasonic transmission that vary. Then, among the reflected reception intermittent pulse signals, a reflected reception intermittent pulse signal whose duration is within a predetermined time range is extracted by the extraction means <LL 12.14),
Using the extracted reflected reception intermittent pulse signal, the time from the transmission of the ultrasonic transmission intermittent pulse signal to the reception of the reflected reception intermittent pulse signal is measured.

〔実施例〕〔Example〕

以下に、第1図を参照して、本発明の一実施例を詳細に
説明するも、上述した第6図の従来例と重複する部分に
は、同一符号を付して、重複説明を省略する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. 1, but parts that overlap with the conventional example shown in FIG. do.

(4)は交流電圧発生器で、これより例えば周期が60
秒で、+IV〜−IVの範囲で変化する交流電圧が発生
する。この交流電圧は加算器(5)に供給されて、温度
変換器(3)からの温度検出信号(電圧)に加算され、
その加算電圧が電圧/周波数変換器(6)に供給される
。そして、この電圧/周波数変換器(6)から、基準タ
イマ(1)によって制御され、所定期間(例えば、15
0 m5ec〜1sec、ここでは333m5ec )
毎に、所定継続時間(例えば、1 、 2 m5ec 
>を以て、第2図に示す如<、温度によって変化する中
心周波数(例え3 ば、32.5kHz)を中心として、所定周波数(例え
ば、32.5kHz±2.5kHz、即ち、30kHz
〜35kHzの範囲で変化する間欠パルス信号が発生し
、これが電力増幅器(7)を通じて超音波送受器(8)
に供給される。
(4) is an AC voltage generator, which has a period of, for example, 60
In seconds, an alternating voltage is generated that varies between +IV and -IV. This AC voltage is supplied to an adder (5) and added to the temperature detection signal (voltage) from the temperature converter (3),
The added voltage is supplied to a voltage/frequency converter (6). Then, from this voltage/frequency converter (6), it is controlled by the reference timer (1) for a predetermined period (for example, 15
0 m5ec~1sec, here 333m5ec)
Each time, a predetermined duration (for example, 1, 2 m5ec
>, as shown in FIG.
An intermittent pulse signal varying in the range ~35kHz is generated, which is transmitted through a power amplifier (7) to an ultrasound transceiver (8).
supplied to

それによって、送受器(8)から超音波送信間欠パルス
〔但し、送受器(8)の送信器に設けられた、圧電振動
子に固着され、機械的インピーダンスが空気と圧電素子
との間にある弾性体層の存在により、その継続時間は例
えば1.15m5ecと成る)が、送受器(8)から送
信される。又、この超音波送信パルスは、測定対象で反
射し、その超音波反射受信間欠パルスが送受器(8)に
よって受信され、その受信間欠パルス信号が増幅器(9
)によって増幅された後、検波器(10)に供給されて
従来例の場合と同様に検波される。
As a result, intermittent ultrasonic pulses are transmitted from the transceiver (8) [However, the transmitter is fixed to a piezoelectric vibrator provided in the transmitter of the transceiver (8), and the mechanical impedance is between the air and the piezoelectric element. Due to the presence of the elastic layer, a duration of, for example, 1.15 m5ec) is transmitted from the handset (8). Further, this ultrasonic transmission pulse is reflected by the measurement target, and the ultrasonic reflected reception intermittent pulse is received by the transceiver (8), and the reception intermittent pulse signal is transmitted to the amplifier (9).
) and then supplied to the detector (10) where it is detected in the same way as in the conventional example.

この検波器(10)からの反射受信電圧パルス信号(矩
形波信号)は、アンダーパルス幅比較器(11)、オー
バーパルス幅比較器(12)及びゲート回路(14)に
夫々供給される。そして、検波器(10)からパル4 ス幅比較器(11)、(12)に供給される矩形波状の
受信電圧パルス信号(入力パルス)(第3図人)のパル
ス幅が、アンダーパルス幅比較器(11)の第3図Bに
示すアンダーパルス(そのパルス幅が例えば1m5ec
の基準パルス)よりも広く、オーバパルス幅比較器(1
2)の第3図Cに示すオーバーパルス(そのパルス幅が
例えば1.3m5ec基準パルス)よりも狭いときのみ
、ゲート回路(■4)が開かれて、その矩形波状の受信
電圧パルス信号(入力パルス)(第3図人)が、ゲート
回路(14)から出力されて、時間/電圧変換器(15
)に供給される。
The reflected received voltage pulse signal (rectangular wave signal) from the detector (10) is supplied to an under pulse width comparator (11), an over pulse width comparator (12), and a gate circuit (14), respectively. Then, the pulse width of the rectangular waveform received voltage pulse signal (input pulse) (Figure 3) supplied from the wave detector (10) to the pulse width comparators (11) and (12) is equal to the under pulse width. The under pulse shown in FIG. 3B of the comparator (11) (its pulse width is, for example, 1 m5ec)
reference pulse), and the overpulse width comparator (1
2), the gate circuit (■4) is opened only when the overpulse shown in FIG. 3C (its pulse width is, for example, 1.3 m5ec reference pulse) is The pulse) (Figure 3) is output from the gate circuit (14) and is sent to the time/voltage converter (15).
).

尚、増幅度制御器(13)は、アンダーパルス幅比較器
(11)の比較出力によっても制御され、検波器(10
)からの矩形波状の受信電圧パルス信号(入力パルス)
(第3図人)のパルス幅が、アンダーパルス(第3図B
)よりも広いときは、増幅度制御器(13)による増幅
器(9)に対する増幅度増大制御を停止させるようにし
ている。
Note that the amplification controller (13) is also controlled by the comparison output of the under pulse width comparator (11), and is controlled by the comparison output of the under pulse width comparator (11).
Rectangular waveform received voltage pulse signal (input pulse) from )
The pulse width of the person (Figure 3) is under pulse (Figure 3B).
), the amplification increase control of the amplifier (9) by the amplification controller (13) is stopped.

さて、第4図に示す如く、堅い面上に軟らかい粉体の層
があり、超音波送受器(8)から粉体の層■ の表面までの距離をL+  (−3400mm)、堅い
面までの距離をL2  (=3417mm)とする。又
、超音波送受器(8)か放射される超音波送信パルスの
周波数を10kHzとする。かくすると、送受器(8)
から放射される超音波の波長λは、λ−音音速局周波 数340 (m/see)X10kHz=34mm と戊るから、7/2は17mmと戒り、これはL2L1
 に等しく、従って、このときは、送受器(8)からの
超音波送信パルスが、夫々粉体の層の表面及び堅い面で
反射したとき、粉体の表面で反射した反射受信パルスは
、堅い面で反射した反射パルスによって干渉され、その
包路線波形が大幅に崩れると共に、その波高値が大幅に
低下する。
Now, as shown in Figure 4, there is a layer of soft powder on a hard surface, and the distance from the ultrasonic transceiver (8) to the surface of the powder layer is L+ (-3400 mm), and the distance to the hard surface is L+ (-3400 mm). Let the distance be L2 (=3417mm). Further, the frequency of the ultrasonic transmission pulse emitted from the ultrasonic transceiver (8) is assumed to be 10 kHz. Thus, the handset (8)
The wavelength λ of the ultrasonic wave emitted from the
Therefore, in this case, when the ultrasonic transmission pulse from the transceiver (8) is reflected from the surface of the powder layer and the hard surface, the reflected reception pulse reflected from the powder surface is equal to the hard surface. Interfering with the reflected pulses reflected from the surface, the envelope waveform is significantly disrupted and the peak value is significantly lowered.

しかし、送受器(8)から放射される超音波送信パルス
の周波数が変化して、例えば、15kHzに変化したと
すれば、その波長λは、 λ−340(m/5ec)x15kHz−22,667
mm と戒り、従って、L2−Ll = 17mm−(3/4
)×λと成る。このときは、粉体の表面で反射した反射
受信パルスは、堅い面で反射した反射パルスによって干
渉されて、その包路線波形が大幅に崩れたり、その波高
値が大幅に低下することはない。
However, if the frequency of the ultrasonic transmission pulse emitted from the handset (8) changes to, for example, 15kHz, then the wavelength λ is: λ-340 (m/5ec) x 15kHz-22,667
Therefore, L2-Ll = 17mm-(3/4
)×λ. In this case, the reflected received pulse reflected from the powder surface is not interfered with by the reflected pulse reflected from the hard surface, and its envelope waveform is not significantly distorted or its peak value is not significantly reduced.

か(して、反射受信パルスが、これとの位相差がλ/2
又はこれに極く近い値の他の反射パルスによって干渉さ
れて、その包路線波形が大幅に崩れたり、その波高値が
大幅に下がった場合は、検波器(10)における受信電
圧パルス信号は、第5図Cに示す如くその波形が崩れ、
その受信電圧パルス信号の電圧が、検出レベルの上下内
に入っていることが検出されて得られた、第5図Cに示
す反転矩形波信号の前縁の、送信電圧パルス信号の前縁
からの時間は、tl ではなく、誤差Δtを含むt2と
成る。しかし、そのような場合には、検波器(10)か
らの矩形波状の受信電圧パルス信号は、ゲート回路(1
4)によって阻止され、時間/電圧変換器(15)には
供給されない。
(Then, the reflected received pulse has a phase difference of λ/2
Or, if it is interfered with by another reflected pulse with a value very close to this, and its envelope waveform is significantly disrupted or its peak value is significantly lowered, the received voltage pulse signal at the detector (10) will be As shown in Figure 5C, the waveform collapses,
From the leading edge of the transmitted voltage pulse signal of the inverted square wave signal shown in FIG. 5C, which is obtained by detecting that the voltage of the received voltage pulse signal is within the upper and lower detection levels. The time is not tl, but t2, which includes the error Δt. However, in such a case, the rectangular waveform received voltage pulse signal from the detector (10) is transmitted to the gate circuit (10).
4) and is not supplied to the time/voltage converter (15).

しかし、送受器(8)から送信される超音波送信7 パルスの周波数が変化して、測定対象からの反射波受信
パルスが他の反射パルスによって干渉されて、その包絡
線波形が大幅に崩れたり、その波高値が大幅に低下した
りすることがなくなった場合には、検波器(10)で、
第5図人に示す如く、正常な波形の受信電圧パルス信号
が得られ、その受信電圧パルス信号の電圧が、検出レヘ
ル上下内に入っていることが検出されて得られた、第5
図Bに示す反転矩形波信号は、ゲート回路(14)から
出力されて、時間/電圧変換器(15)に供給され、そ
の矩形波信号の前縁の、送信電圧パルス信号の前縁から
の時間t1が正しく測定される。
However, the frequency of the ultrasonic transmission 7 pulse transmitted from the transceiver (8) changes, and the reflected wave reception pulse from the measurement target is interfered with by other reflected pulses, causing its envelope waveform to be significantly distorted. , when the peak value no longer decreases significantly, the detector (10) detects the
As shown in Figure 5, a received voltage pulse signal with a normal waveform was obtained, and it was detected that the voltage of the received voltage pulse signal was within the upper and lower detection levels.
The inverted rectangular wave signal shown in FIG. Time t1 is correctly measured.

しかして、超音波送受器(8)と測定対象との間の正し
い距離が測定されて、指示計(17)に表示される。
Thus, the correct distance between the ultrasonic transceiver (8) and the object to be measured is measured and displayed on the indicator (17).

尚、検波器(10)においては、周波数/電圧変換器の
代わりに、包路線検波回路を設けても良い。
In addition, in the wave detector (10), an envelope detection circuit may be provided instead of the frequency/voltage converter.

但し、周波数/電圧変換器の場合は、送受器(8)と測
定対象との間に、粉体等が飛び込んで来て、これに超音
波送信パルスが反射して、ドプラー効8 果によって周波数が変化した超音波反射パルスが生した
場合における誤測定を回避することができる。
However, in the case of a frequency/voltage converter, particles such as powder fly in between the transceiver (8) and the object to be measured, and the ultrasonic transmission pulse is reflected by this, causing the frequency to change due to the Doppler effect. It is possible to avoid erroneous measurements when an ultrasonic reflected pulse with a changed value occurs.

〔発明の効果〕〔Effect of the invention〕

上述せる本発明によれば、超音波反射受信パルスの他の
反射パルスからの干渉による測定距離の誤差の発生を除
去することのできる超音波式距離測定装置を得ることが
できる。
According to the present invention described above, it is possible to obtain an ultrasonic distance measuring device that can eliminate errors in measurement distance due to interference of ultrasonic reflected received pulses from other reflected pulses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック線図、第2図は
電圧/周波数変換器の周波数変化の説明図、第3図はパ
ルス幅比較の説明図、第4図は反射波の干渉の説明図、
第5図は正常波及び干渉波の場合の測定時間の説明図、
第6図は従来例を示すブロック線図、第7図は音波の減
衰特性図、第8図は指向特性図、第9図は周波数/電圧
変換の説明図、第10図は反射波の検出の説明図、第1
1図は増幅率の制御の説明図、第12図はパルス幅のチ
エツクの説明図、第13図は超音波送受器9 からの放射超音波の指向特性図、第14図は反射波の干
渉の説明図、第15図は反射波の相対位相の説明図、第
16図、第17図及び第18図は夫々反射波の干渉の説
明図である。 (1)は基準タイマ、(2)は温度感知素子、(3)は
温度変換器、(4)は交流電圧発生器、(5)は加算器
、(6)は電圧/周波数変換器、(7)は電力増幅器、
(8)は超音波送受器、(9)は増幅器、(10)は検
波器、(11)はアンダーパルス幅比較器、(12)は
オーバーパルス幅比較器、(13)は増幅度制御器、(
14)はゲート回路、(15)は時間/電圧変換器、(
16)は出力回路、(17)は指示計である。 代 理 人 松 隈 秀 盛 0 特開平3 46586 (7) 狸よg!’蟹(J 嘴ぐ 9コ −b’qi − ■ 中
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of frequency change of the voltage/frequency converter, Fig. 3 is an explanatory diagram of pulse width comparison, and Fig. 4 is an illustration of reflected wave interference. An explanatory diagram of
Figure 5 is an explanatory diagram of measurement time in the case of normal waves and interference waves,
Fig. 6 is a block diagram showing a conventional example, Fig. 7 is a sound wave attenuation characteristic diagram, Fig. 8 is a directional characteristic diagram, Fig. 9 is an explanatory diagram of frequency/voltage conversion, and Fig. 10 is reflected wave detection. Explanatory diagram, 1st
Figure 1 is an explanatory diagram of the amplification factor control, Figure 12 is an explanatory diagram of the pulse width check, Figure 13 is a directional characteristic diagram of the radiated ultrasound from the ultrasonic transceiver 9, and Figure 14 is the interference of reflected waves. FIG. 15 is an explanatory diagram of the relative phase of reflected waves, and FIGS. 16, 17, and 18 are explanatory diagrams of interference of reflected waves, respectively. (1) is a reference timer, (2) is a temperature sensing element, (3) is a temperature converter, (4) is an AC voltage generator, (5) is an adder, (6) is a voltage/frequency converter, ( 7) is a power amplifier,
(8) is the ultrasonic transceiver, (9) is the amplifier, (10) is the detector, (11) is the under pulse width comparator, (12) is the over pulse width comparator, and (13) is the amplification controller. ,(
14) is a gate circuit, (15) is a time/voltage converter, (
16) is an output circuit, and (17) is an indicator. Agent Hidemori Matsukuma 0 JP-A-3 46586 (7) Tanuki yo g! 'Crab (J beak9ko-b'qi - ■ Medium

Claims (1)

【特許請求の範囲】  超音波送受器から所定時間毎に所定継続時間を以て放
射される超音波送信間欠パルスを測定対象に向けて送信
し、該測定対象からの超音波反射受信間欠パルスを該超
音波送受器で受信して、反射受信間欠パルス信号を得、
上記超音波送信間欠パルスの送信時から、上記反射受信
間欠パルス信号の受信時までの時間を計測することによ
って、上記超音波送受器から上記測定対象までの距離を
測定するようにした超音波式距離測定装置において、所
定周期を以て所定周波数範囲内で周波数が変化する周波
数信号発生手段を設け、 該周波数信号発生手段からの周波数信号を、上記超音波
送受器に供給して、上記所定時間毎に上記所定継続時間
を以て、上記所定周期を以て上記所定周波数範囲内で周
波数が変化する超音波送信間欠パルスを発生させるよう
にすると共に、上記反射受信間欠パルス信号の内、その
継続時間が所定時間範囲内にある反射受信間欠パルス信
号を抽出する抽出手段を設け、 該抽出手段からの上記反射受信間欠パルス信号を用いて
、上記超音波送信間欠パルスの送信時から、上記反射受
信間欠パルス信号の受信時までの時間を計測するように
したことを特徴とする超音波式距離測定装置。
[Claims] Intermittent ultrasonic transmission pulses emitted from an ultrasonic transceiver at predetermined intervals with a predetermined duration are transmitted toward a measurement target, and intermittent ultrasonic reception pulses reflected from the measurement target are transmitted over a predetermined period of time. Receive it with a sonic transceiver to obtain a reflected reception intermittent pulse signal,
An ultrasonic type that measures the distance from the ultrasonic transceiver to the measurement target by measuring the time from the transmission of the ultrasonic transmission intermittent pulse to the reception of the reflected reception intermittent pulse signal. In the distance measuring device, a frequency signal generating means whose frequency changes within a predetermined frequency range with a predetermined period is provided, and the frequency signal from the frequency signal generating means is supplied to the ultrasonic transceiver, and the frequency signal is supplied to the ultrasonic transceiver at the predetermined time intervals. An intermittent ultrasonic transmission pulse whose frequency changes within the predetermined frequency range with the predetermined cycle is generated for the predetermined duration, and the duration of the reflected reception intermittent pulse signal is within the predetermined time range. an extraction means for extracting the intermittent reflected reception pulse signal from the extraction means, and using the intermittent reflected reception pulse signal from the extraction means, from the time of transmission of the intermittent ultrasonic transmission pulse to the time of reception of the intermittent reflected reception pulse signal. An ultrasonic distance measuring device characterized by measuring the time taken to reach the destination.
JP1181400A 1989-07-13 1989-07-13 Ultrasonic distance measuring device Pending JPH0346586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1181400A JPH0346586A (en) 1989-07-13 1989-07-13 Ultrasonic distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181400A JPH0346586A (en) 1989-07-13 1989-07-13 Ultrasonic distance measuring device

Publications (1)

Publication Number Publication Date
JPH0346586A true JPH0346586A (en) 1991-02-27

Family

ID=16100088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181400A Pending JPH0346586A (en) 1989-07-13 1989-07-13 Ultrasonic distance measuring device

Country Status (1)

Country Link
JP (1) JPH0346586A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055398A (en) * 2003-08-07 2005-03-03 Toshiba Corp In-reactor position measurement device
JP2007218904A (en) * 2006-01-20 2007-08-30 Seiko Epson Corp Liquid detector
CN106066479A (en) * 2016-05-24 2016-11-02 马鞍山市博宇智能装备有限公司 A kind of six-joint robot position detecting system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100763A (en) * 1981-12-10 1983-06-15 Matsushita Electric Works Ltd Ultrasonic wave switch
JPS6045378A (en) * 1983-08-22 1985-03-11 東レ株式会社 Production of fibrous padding
JPS6264973A (en) * 1985-09-18 1987-03-24 Shinko Electric Co Ltd Ultrasonic range finder
JPS6311883A (en) * 1986-07-02 1988-01-19 Hitachi Ltd Ultrasonic flaw detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100763A (en) * 1981-12-10 1983-06-15 Matsushita Electric Works Ltd Ultrasonic wave switch
JPS6045378A (en) * 1983-08-22 1985-03-11 東レ株式会社 Production of fibrous padding
JPS6264973A (en) * 1985-09-18 1987-03-24 Shinko Electric Co Ltd Ultrasonic range finder
JPS6311883A (en) * 1986-07-02 1988-01-19 Hitachi Ltd Ultrasonic flaw detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055398A (en) * 2003-08-07 2005-03-03 Toshiba Corp In-reactor position measurement device
JP2007218904A (en) * 2006-01-20 2007-08-30 Seiko Epson Corp Liquid detector
CN106066479A (en) * 2016-05-24 2016-11-02 马鞍山市博宇智能装备有限公司 A kind of six-joint robot position detecting system

Similar Documents

Publication Publication Date Title
US6925870B2 (en) Ultrasonic fill level device and method
JP2563554B2 (en) Ultrasonic actuated transducer for measuring the velocity of fluid in a tube
JP3022623B2 (en) Electrical measuring device for measuring signal propagation time
US11378686B2 (en) Ultrasonic echo processing in presence of Doppler shift
JPH0771987A (en) Ultrasonic fluid vibration flowmeter
WO2021008234A1 (en) Method, apparatus and system for continuously modulating ultrasonic precision ranging
JPH0346586A (en) Ultrasonic distance measuring device
JP3169534B2 (en) Inundation detection method
JPS63247608A (en) Method for measuring thickness and internal cracking position of concrete
KR101158792B1 (en) Coherent doppler velocity measuring method using signal mixing technique and device therefor
JPH08136643A (en) Ultrasonic distance measuring device
JPH08201514A (en) Ultrasonic distance measuring device
JP3235637B2 (en) Ultrasonic fluid flow meter
Smith et al. Measuring the level of liquid in a partially-filled pipe via the ultrasonic pulse-echo method using acoustic modeling
JPH08136321A (en) Ultrasonic distance measuring instrument
JPS6394184A (en) Ultrasonic wave displacement detecting device
JPH0395477A (en) Ultrasonic detection device
JPS6398507A (en) Apparatus for measuring linearly moving distance
JPH0611452Y2 (en) Ultrasonic transducer
JPS58223714A (en) Method and device for detecting liquid
CN120467457A (en) Sensor controller, sensing method and flow sensor
JPS59218973A (en) On-vehicle obstacle detector
JPH0389189A (en) Ultrasonic sensor
JPS6339843B2 (en)
JPH10123238A (en) Distance measuring device