[go: up one dir, main page]

JPH0352219B2 - - Google Patents

Info

Publication number
JPH0352219B2
JPH0352219B2 JP58146501A JP14650183A JPH0352219B2 JP H0352219 B2 JPH0352219 B2 JP H0352219B2 JP 58146501 A JP58146501 A JP 58146501A JP 14650183 A JP14650183 A JP 14650183A JP H0352219 B2 JPH0352219 B2 JP H0352219B2
Authority
JP
Japan
Prior art keywords
calibration
sensitivity
standard
sample
standard sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58146501A
Other languages
Japanese (ja)
Other versions
JPS6038827A (en
Inventor
Mitsuyoshi Koizumi
Toshiaki Yanai
Yukio Murakawa
Masakuni Akiba
Hiroshi Maejima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP58146501A priority Critical patent/JPS6038827A/en
Publication of JPS6038827A publication Critical patent/JPS6038827A/en
Publication of JPH0352219B2 publication Critical patent/JPH0352219B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体ウエハ、及びマスク等の自動
異物検査装置の感度校正方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for calibrating the sensitivity of an automatic foreign matter inspection apparatus for semiconductor wafers, masks, etc.

〔発明の背景〕[Background of the invention]

一般的な半導体ウエハ上の異物検査装置は第1
図に示す如く、光源3、試料ウエハ1、光電変換
部6、電圧増幅器7により構成されている。
The most common foreign particle inspection equipment on semiconductor wafers is
As shown in the figure, it is composed of a light source 3, a sample wafer 1, a photoelectric conversion section 6, and a voltage amplifier 7.

しかし、光源3の劣化による照明光4の照度変
化、光電変換部6、電圧増幅器7の感度変化が生
じた場合(経時変化)には、異物2からの見掛け
の反射光5強度が変化するので定期的な感度校正
を行なう必要がある。
However, if the illuminance of the illumination light 4 changes due to deterioration of the light source 3 or the sensitivity of the photoelectric conversion unit 6 or voltage amplifier 7 changes (change over time), the apparent intensity of the reflected light 5 from the foreign object 2 will change. Periodic sensitivity calibration is required.

異物検査装置の感度校正は、言い換えれば第1
図に示す如くとなる。異物2の装置検出出力値V
8(照明光4に対する、特定異物2からの反射光
5強度を光電変換器6によつて出力した値)を常
に一定に維持することが目的である。しかし、
1μm程度の微少ない特定異物2を試料上に塗布
し、長時間維持することは困難である。又、実際
の異物2の種類は金属粉、塵埃等の様に種々であ
るが、これらは同一な大きさでも、その反射光強
度が著しく異なる為、特定異物2として実際異物
2を用いると、複数の異物検査装置間の感度を同
一にすることも困難である。
In other words, the sensitivity calibration of foreign object inspection equipment is the first step.
The result will be as shown in the figure. Device detection output value V of foreign object 2
8 (the value outputted by the photoelectric converter 6 of the intensity of the reflected light 5 from the specific foreign object 2 with respect to the illumination light 4). but,
It is difficult to apply a very small amount of specific foreign matter 2 of about 1 μm onto a sample and maintain it for a long time. In addition, there are various types of actual foreign matter 2 such as metal powder, dust, etc., but even if they are the same size, the reflected light intensity is significantly different. Therefore, if the actual foreign matter 2 is used as the specific foreign matter 2, It is also difficult to make the sensitivities of multiple foreign object inspection devices the same.

そこで、校正における異物欠陥の基準として予
め大きさが明確に測定され、基準照明光4aに対
する反射光強度が、実際の異物欠陥とほぼ等しい
ビーズ状ラテツクス標準粒子を特定異物2の代わ
りに用いる方法が一般的である。又、生産現場に
おいても、実際の異物の大きさを特定の異物検査
装置で「標準粒子何μm相当の反射光強度と同等
な異物」として、標準粒子径に置き換えている。
Therefore, there is a method of using bead-shaped latex standard particles, whose size is clearly measured in advance and whose reflected light intensity with respect to the reference illumination light 4a is almost equal to that of the actual foreign matter defect, in place of the specific foreign matter 2 as a reference for the foreign matter defect in calibration. Common. Also, at production sites, the actual size of foreign particles is determined by a specific foreign particle inspection device as ``a foreign particle equivalent to the reflected light intensity equivalent to several micrometers of a standard particle,'' and is replaced by the standard particle diameter.

ここで、基準照明光4aは特開昭52−138983号
に示してある様な方法により得られる。即ち感度
変化のない第2光電変換器30(照度計)により
照明光4照度を測定して光電変換器30の出力
Vcが予め設定した値V0になる様に光源3の入力
を変化させる方法である。第2図でこの方法を説
明する。半透過鏡33により、照明光4の一部は
光電変換器30へ入射する。光源3の劣化が生じ
ていない初期に予め測られている光電変換器30
の出力V0と、校正時の出力Vcを比較回路31で
比較する。電気回路32はこの比較結果を基に出
力がV0になるまで光源3の照明輝度を制御する。
この時点で半透過鏡33を除去し、基準照明光4
aが得られ、特定径の標準粒子からの反射光強度
の検出出力8を初期装置感度と呼ぶ。
Here, the reference illumination light 4a is obtained by a method as shown in Japanese Patent Laid-Open No. 138983/1983. That is, the illumination light 4 illuminance is measured by the second photoelectric converter 30 (illuminance meter) with no sensitivity change, and the output of the photoelectric converter 30 is measured.
This is a method of changing the input of the light source 3 so that Vc becomes a preset value V0 . This method is illustrated in FIG. A part of the illumination light 4 is incident on the photoelectric converter 30 by the semi-transparent mirror 33 . Photoelectric converter 30 measured in advance at an early stage when the light source 3 has not deteriorated
A comparator circuit 31 compares the output V 0 of the output V 0 and the output Vc at the time of calibration. The electric circuit 32 controls the illumination brightness of the light source 3 based on the comparison result until the output reaches V 0 .
At this point, the semi-transparent mirror 33 is removed and the reference illumination light 4 is
a is obtained, and the detection output 8 of the intensity of reflected light from a standard particle of a specific diameter is called the initial device sensitivity.

次に標準粒子を用いる方法を以下に説明する。
第3,4図に示す如く平滑で清浄な試料面1に、
標準粒子9を純水10(異物のない清浄な)に撹
はんし、クリーンエア11で吹付け12乾燥させ
塗布する。特定の径の標準粒子径Ds(例えば1μm
径)の装置検出出力8Vsの初期相関関数(初期
装置感度)をノートに明記し記録する。経時変化
による装置感度校正は、同一径の標準粒子9′を
校正時に再び塗布して、初期のDsとVsの相関関
係になる様、その都度、光源3又は光電変換の電
圧増幅器7の調整により行なう。
Next, a method using standard particles will be explained below.
As shown in Figures 3 and 4, on a smooth and clean sample surface 1,
Standard particles 9 are stirred in pure water 10 (clean without any foreign substances), and dried by spraying 12 with clean air 11 and applied. Standard particle size D s of a specific diameter (e.g. 1 μm
Record the initial correlation function (initial device sensitivity) of the device detection output of 8 V s (diameter) in a notebook. To calibrate the device sensitivity due to changes over time, apply standard particles 9' of the same diameter again at the time of calibration, and adjust the light source 3 or photoelectric conversion voltage amplifier 7 each time to maintain the initial correlation between D s and V s . This is done through adjustment.

しかし、この方法によると吹き付ける手間が掛
る上、クリーンルーム等の清浄な部屋で塗布を行
なう為、部屋を汚し易すい。又、初期の標準粒子
の塗布試料は、標準粒子の脱落、及び作業者の指
紋等の他の異物が付着する為保存が難しい。さら
にこの試料は洗浄できない(標準粒子が脱落す
る)等の欠点がある。
However, this method takes time and effort to spray, and since the application is performed in a clean room such as a clean room, the room is likely to get dirty. In addition, it is difficult to preserve early standard particle coating samples because the standard particles fall off and other foreign substances such as operator's fingerprints adhere to them. Furthermore, this sample has drawbacks such as not being able to be washed (standard particles fall off).

その他、従来の経時変化における校正方法とし
て、第5図に示す如く、試料1表面にレーザ溶解
13、又はエツチング化学処理14によつて凹凸
を加工した試料を用いる。即ち、初期校正相関関
係を凹凸13,14の装置検出出力値の初期装置
感度として記録し、経時変化が生じた場合には、
その都合、凹凸13,14の反射光5強度を初期
装置感度と比較して、照明光源3又は光電変換の
電圧増幅器7の調整を行なう方法である。
In addition, as a conventional calibration method for changes over time, as shown in FIG. 5, a sample 1 whose surface is made uneven by laser melting 13 or etching chemical treatment 14 is used. That is, the initial calibration correlation is recorded as the initial device sensitivity of the device detection output values of the unevenness 13 and 14, and if a change occurs over time,
For this reason, this method compares the intensity of the reflected light 5 from the unevenness 13 and 14 with the initial device sensitivity to adjust the illumination light source 3 or the voltage amplifier 7 for photoelectric conversion.

しかし、この方法は初期感度との相対関係(絶
対校正でない)を示す為、試料の破損によつて装
置の再校正が不可能となる。又、レーザ加工時
間、エツチング時間等を制御しても、同一形状が
得られない為、(即ち再現性がない為)加工した
試料毎に校正する必要性がある等の欠点があつ
た。
However, since this method shows a relative relationship with the initial sensitivity (not absolute calibration), it becomes impossible to recalibrate the device due to damage to the sample. Further, even if the laser processing time, etching time, etc. are controlled, the same shape cannot be obtained (that is, there is no reproducibility), so there are drawbacks such as the need to calibrate each processed sample.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術の欠点をなくし、自
動異物検査装置における絶対感度校正を安定して
簡便に行なうことができるようにした自動異物検
査装置の感度校正方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for calibrating the sensitivity of an automatic foreign matter inspection device, which eliminates the drawbacks of the prior art and allows the absolute sensitivity calibration of the automatic foreign matter inspection device to be carried out stably and easily.

〔発明の概要〕[Summary of the invention]

前述の様に、従来の校正方法における標準粒子
の塗布試料は吹き付ける作業の手間が掛る上保存
が難しく、校正用試料上に他の異物が付着した場
合には洗浄が不可能である。又、エツチング、及
び、レーザ加工した試料は、初期値の相対校正試
料である為、破損によつて初期装置感度の再現が
出来ない。
As mentioned above, in the conventional calibration method, the sample coated with standard particles requires a laborious spraying operation and is difficult to store, and if other foreign matter adheres to the calibration sample, it is impossible to clean it. Furthermore, since the etched and laser-processed sample is a relative calibration sample of the initial value, the sensitivity of the initial device cannot be reproduced due to damage.

そこで、本発明は表面上に加工により標準粒子
径に対応する凹凸傷を形成し、更に予め該凹凸傷
に照明手段により基準照明光を照射して検出手段
により検出される反射光強度を測定してこの反射
光強度を明記した絶対感度校正用標準試料を準備
し、その後、実異物検査装置においてこの準備さ
れた絶対校正用標準試料を用いて該標準試料の凹
凸傷に照明手段により照明光を照明すると共に検
出手段から該標準試料に明記された反射光強度が
得られるように絶対感度校正を行うことを特徴と
する自動異物検査装置の感度校正方法である。上
記絶対感度校正用標準試料として、具体的に以下
(1)〜(4)に示す。
Therefore, in the present invention, uneven scratches corresponding to the standard particle diameter are formed on the surface by processing, and the uneven scratches are further irradiated with reference illumination light by an illumination means and the reflected light intensity detected by the detection means is measured. Prepare a standard sample for absolute sensitivity calibration in which the intensity of reflected light from the lever is specified, and then use the prepared standard sample for absolute calibration in an actual foreign matter inspection device to apply illumination light to the uneven scratches on the standard sample using an illumination means. This is a method for calibrating the sensitivity of an automatic foreign substance inspection apparatus, which is characterized by illuminating the standard sample and calibrating the absolute sensitivity so that the intensity of reflected light specified in the standard sample is obtained from the detection means. Specifically, the following is the standard sample for the above absolute sensitivity calibration.
Shown in (1) to (4).

(1) 試料面上に、機械加工、レーザ溶解加工、又
はエツチング化学処理等の加工により凹凸傷を
形成し、予めこの凹凸傷に照明手段により基準
照明光を照射して検出手段により検出される反
射光強度(出力電圧値に変換した値)を測定し
てこの反射光強度を試料表面に表示した絶対感
度校正用標準試料、又はこの反射光強度をプラ
スチツクシート等の用紙に明記し、記録された
絶対感度校正用標準試料。
(1) An uneven scratch is formed on the sample surface by processing such as mechanical processing, laser melting processing, or etching chemical treatment, and the uneven scratch is irradiated with reference illumination light by the illumination means in advance and detected by the detection means. A standard sample for absolute sensitivity calibration in which the reflected light intensity (value converted to an output voltage value) is measured and this reflected light intensity is displayed on the sample surface, or this reflected light intensity is clearly written on paper such as a plastic sheet and recorded. Standard sample for absolute sensitivity calibration.

(2) 前記(1)において、凹凸傷からの基準照明光に
対する反射光強度を、同一の反射光強度を有す
る標準粒子径寸法に置き換えて、明記した絶対
感度校正用標準試料。
(2) In (1) above, a standard sample for absolute sensitivity calibration in which the reflected light intensity for the reference illumination light from the uneven scratches is replaced with a standard particle size having the same reflected light intensity.

(3) 前記(1)(2)において、校正しようとする実異物
検査装置に容易に装着する目的で、絶対校正用
標準試料を、該実異物検査装置で検査する対象
物である被検査物、即ちホトマスク或いはシリ
コンウエハを基材とした絶対校正用標準試料、
又はホトマスク或いはシリコンウエハと同一形
状及び同一厚さを有する平滑な金属板とした絶
対感度校正用標準試料。
(3) In (1) and (2) above, for the purpose of easily attaching the absolute calibration standard sample to the actual foreign matter inspection device to be calibrated, the test object is the object to be inspected with the actual foreign matter inspection device. , that is, a standard sample for absolute calibration based on a photomask or silicon wafer,
Or a standard sample for absolute sensitivity calibration made of a smooth metal plate having the same shape and thickness as a photomask or silicon wafer.

(4) 前記(1)(2)(3)において、加工される凹凸傷を基
盤目状(マトリツクス状)、又は円周状に等配
置(環状)等のパターン状、又は数字若しくは
文字状に配置した絶対感度校正用標準試料。
(4) In (1), (2), and (3) above, the uneven scratches to be processed are formed into a base pattern (matrix pattern), a pattern such as equally spaced circles (ring pattern), or numbers or letters. The placed standard sample for absolute sensitivity calibration.

この目的は、実異物検査装置の検査結果を異
物分布を地図状に表示する機能を利用して、凹
凸傷を他の付着異物と明確に判別し、簡単に感
度調整(感度校正)が行なえるようにするため
である。
The purpose of this is to use the function of displaying the inspection results of the actual foreign matter inspection device in the form of a map of the distribution of foreign matter, to clearly distinguish uneven scratches from other adhered foreign matter, and to easily adjust the sensitivity (sensitivity calibration). This is to ensure that.

以上説明したような絶対感度校正用標準試料を
準備することにより、校正しようとする実異物検
査装置において、安定して簡便に絶対感度校正を
行なうことが可能となる。
By preparing the standard sample for absolute sensitivity calibration as described above, it becomes possible to stably and easily calibrate the absolute sensitivity in the actual foreign matter inspection device to be calibrated.

〔発明の実施例〕[Embodiments of the invention]

本発明の具体的実施例として、半導体自動異物
検査装置用絶対感度校正用標準試料を第6,7,
8図に基いて説明する。
As a specific embodiment of the present invention, standard samples for absolute sensitivity calibration for semiconductor automatic foreign matter inspection equipment are
This will be explained based on FIG.

第6図aは、本発明に係る絶対感度校正用標準
試料の一実施例である校正用シリコンウエハ15
を示した図である。即ち、校正用シリコンウエハ
15は、予め、シリコンウエハ上に、レーザ加工
により標準粒子径に対応するように傷13を形成
し、予め該傷13を形成したシリコンウエハを第
2図に示す初期装置に装着し、該傷13に制御さ
れた光源3から基準照明光4aを照明して該傷1
3からの反射光強度を光電変換器30で測定して
その検出出力値16及びその検出出力値と同一の
検出出力値を有する標準粒子径に置き換えた換算
標準粒子径の大きさ17をレーザペン、またはエ
ツチング等で明記することにより製造される。
FIG. 6a shows a calibration silicon wafer 15 which is an embodiment of the standard sample for absolute sensitivity calibration according to the present invention.
FIG. That is, the calibration silicon wafer 15 is prepared by forming scratches 13 on the silicon wafer in advance by laser processing so as to correspond to the standard particle diameter, and then using the silicon wafer with the scratches 13 formed in advance in the initial apparatus shown in FIG. and illuminates the scratch 13 with the reference illumination light 4a from the controlled light source 3 to illuminate the scratch 1.
The intensity of the reflected light from 3 is measured by the photoelectric converter 30, and the detected output value 16 and the converted standard particle diameter size 17 obtained by replacing it with a standard particle diameter having the same detection output value as the detected output value are determined by the laser pen, Alternatively, it can be manufactured by clearly marking it by etching or the like.

なお、レーザペンで文字を書く作業やエツチン
グ工程を省くため、換算標準粒子径の大きさ17
とその検出出力値(反射光強度)16とを用紙1
8上に記録する方法でもよい。但し、この場合に
は、第6図bに示す様に、傷13と用紙上の記録
位置が対応していることが望ましい。第6図b右
図は、検出出力値(反射光強度)16と換算標準
粒子径の大きさ17とを明記した用紙18であ
る。
In addition, in order to avoid writing with a laser pen and the etching process, the converted standard particle diameter is 17.
and its detection output value (reflected light intensity) 16 on paper 1.
8 may also be used. However, in this case, it is desirable that the scratch 13 corresponds to the recording position on the paper, as shown in FIG. 6b. The right diagram of FIG. 6b is a sheet 18 on which the detection output value (reflected light intensity) 16 and the size 17 of the converted standard particle diameter are specified.

本発明に係る絶対感度校正用標準試料を異物検
査装置に簡単に装着するために、被検査物と同じ
基材、即ち、第7図aはシリコンウエハ15に、
第7図bはホトマスク19に、校正用傷13を加
工したものを示す。また、異物検査装置に簡単に
装着し、破損がしにくい目的で、第7図cはホト
マスクと同一形状で平滑な鉄板20に校正用傷1
3を加工した絶対感度校正用標準試料を示す。
In order to easily attach the standard sample for absolute sensitivity calibration according to the present invention to a foreign matter inspection device, the same base material as the object to be inspected, that is, the silicon wafer 15 shown in FIG.
FIG. 7b shows a photomask 19 with calibration scratches 13 formed thereon. In addition, in order to easily attach it to the foreign object inspection device and prevent it from being damaged, Figure 7c shows a calibration scratch 1 on a smooth iron plate 20 that has the same shape as the photomask.
The standard sample for absolute sensitivity calibration processed from 3 is shown.

以上の絶対感度校正用標準試料を異物検査装置
の校正時に用いることにより、常に反射光強度が
一定の傷13が提供され、この傷13からの反射
光強度を光電変換器で検出し、検出された検出出
力値を明記された検出出力値(反射光強度)(初
期装置による感度)16に合わせれば、容易に異
物検査装置の校正作業を行なうことができる。
By using the above standard sample for absolute sensitivity calibration when calibrating the foreign object inspection device, a flaw 13 whose reflected light intensity is always constant is provided, and the reflected light intensity from this flaw 13 is detected by a photoelectric converter. By matching the detected output value to the specified detection output value (reflected light intensity) (sensitivity by the initial device) 16, the foreign matter inspection device can be easily calibrated.

しかし、傷13は、大きさが1〜3μm程度で
あり、異物検査装置に拡大顕微鏡(日立評論昭和
55年11月・第62巻・第11号・通巻第706号第791頁
参照)が付属していない場合には、傷13を探す
ことが困難であり、校正時に第1図に示すように
傷13を照明光4で照明し、光電変換器6,7の
検出出力8Vを測定する作業に長時間を要する。
その為、校正時に異物検査装置の検査結果の異物
分布を地図状に表示する機能(マツピング機能)
を利用する方法を用いる。
However, the scratch 13 was about 1 to 3 μm in size, and the foreign object inspection equipment was equipped with a magnifying microscope (Hitachi Hyoron Showa).
(November 1955, Vol. 62, No. 11, Volume 706, Page 791) is not included, it will be difficult to find scratches 13, and when calibrating, as shown in Figure 1. It takes a long time to illuminate the scratch 13 with the illumination light 4 and measure the detection output of 8V from the photoelectric converters 6 and 7.
Therefore, during calibration, there is a function (mapping function) that displays the foreign material distribution of the inspection results of the foreign material inspection device in a map form.
Use a method that utilizes.

第8図a,bは、前述の校正用標準試料の傷1
3を、予め明確にわかる加工位置、たとえば(a)は
マトリツクス状21に配置させて加工した例であ
り、(b)は放射状に配置させて加工した例である。
また第8図b,cは、傷の大きさを大小順配列2
2に従つて加工配置した例である。この場合に
は、傷の大きさを環状、又は横一列で均一にする
必要があるため、従来のレーザ加工、エツチング
処理加工では困難な場合がある。
Figures 8a and b show scratches 1 on the calibration standard sample mentioned above.
3 are processed at clearly known processing positions in advance, for example (a) is an example in which they are arranged in a matrix shape 21, and (b) is an example in which they are processed in radial arrangement.
In addition, Fig. 8 b and c show the size of the scratches arranged in order of size 2.
This is an example of processing and arrangement according to 2. In this case, it is necessary to make the size of the scratches uniform in an annular shape or in a horizontal line, which may be difficult with conventional laser machining or etching processing.

そこで、ウエハ上に塗布されたホトレジストの
光又はX線リソグラフイ、又は電子ビーム描画後
の現像処理若しくはエツチング処理により微細
で、且つ安定な凹凸加工プロセス技術を用いる必
要が有る。
Therefore, it is necessary to use a process technique for forming fine and stable irregularities by light or X-ray lithography of the photoresist coated on the wafer, or development treatment or etching treatment after electron beam lithography.

これらの実施例によつて、絶対感度校正が簡単
に、安定して、短時間に行なえ、校正用標準試料
15の保存条件も容易となつた。その理由は、第
9図a,bに示す如く、マトリツクス状に傷を配
置した校正用標準試料を用いれば、異物検査装置
から得られる異物分布地図34の表示によつて校
正用標準試料15上の傷13と他の異物35の付
着とを明確に判別でき、感度校正が簡単に行なえ
る故に有る。また、校正時に校正用標準試料を装
着して、1図に示す異物検査装置において光源
3、又は電圧増幅器7を調整する代わりに、スラ
イスレベルを調整する方法を用いても良い。即
ち、第8図dに示すスライスレベルVL(図中では
例えば、2μm径を超える出力)を調整して校正
を行なつても、検出粒子(検出異物)径の検出レ
ベルの校正が容易に行なえる。第8図cに示す校
正用標準試料を用いて、スライスレベルVLが2μ
mを超えるレベルに校正し終えると、第8図eに
示す異物分布地図34では、2μm以下の傷は表
示されず、2μmを超えるレベルの傷がマトリツ
クス状に表示されるので、作業者が未熟練者でも
容易にスライスレベルを適当に調整することによ
り、簡単に校正作業の確認を行なうことができ
る。
These embodiments allow absolute sensitivity calibration to be performed easily, stably, and in a short time, and the storage conditions for the calibration standard sample 15 are also facilitated. The reason for this is that, as shown in FIGS. 9a and 9b, if a calibration standard sample with scratches arranged in a matrix is used, the foreign substance distribution map 34 obtained from the foreign substance inspection device can be displayed on the calibration standard sample 15. This is because it is possible to clearly distinguish between the scratches 13 and the adhesion of other foreign matter 35, and the sensitivity calibration can be easily performed. Furthermore, instead of adjusting the light source 3 or voltage amplifier 7 in the foreign matter inspection apparatus shown in FIG. 1 by attaching a calibration standard sample during calibration, a method of adjusting the slice level may be used. In other words, even if calibration is performed by adjusting the slice level VL shown in Fig. 8d (in the figure, for example, an output exceeding a diameter of 2 μm), the detection level of the detected particle (detected foreign object) diameter cannot be easily calibrated. Ru. Using the calibration standard sample shown in Figure 8c, the slice level VL is 2μ.
When the calibration is completed to a level exceeding 2 μm, scratches smaller than 2 μm are not displayed in the foreign matter distribution map 34 shown in FIG. Even an expert can easily check the calibration work by easily adjusting the slice level appropriately.

また、傷の加工位置を、文字、数字等を形成す
る様に配置しても良い。たとえば、第10図a
は、同一の大きさ傷で、しかもその傷の大きさ
(傷の初期装置において検出される検出出力値を
それと同様の標準粒子径に置き換えた換算標準粒
子径の大きさ)を示す文字38を形成するように
加工配置したものである。これにより、前述のス
ライスレベルVL調整による校正方法によれば、
異物分布地図出力表示機能によつて、第10図b
に示す如く、スライスレベルを超える大きさの傷
を示す文字3μmの文字が表示される。これによ
り、スライスレベルが明確にわかり易く校正作業
を容易に行なうことができる。
Further, the processing positions of the scratches may be arranged so as to form letters, numbers, etc. For example, Figure 10a
is a flaw of the same size, and the character 38 indicating the size of the flaw (the size of the converted standard particle diameter obtained by replacing the detection output value detected by the initial flaw device with a similar standard particle diameter) It is processed and arranged so as to form. As a result, according to the calibration method using the slice level VL adjustment described above,
With the foreign matter distribution map output display function, Fig. 10b
As shown in the figure, the letters 3 μm are displayed, indicating scratches larger than the slice level. Thereby, the slice level can be clearly understood and the calibration work can be easily performed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、表面上に
加工により標準粒子径に対応する凹凸傷を形成
し、更に予め該凹凸傷を照明手段により基準照明
光を照射して検出手段により検出される反射光強
度を測定してこの反射光強度を明記した絶対感度
校正用標準試料を準備したので、該絶対感度校正
用標準試料の保管や洗浄が簡単に行なうことがで
き、しかも自動異物検査装置において照明輝度や
検出感度が経時変化等により変化しても、常に絶
対感度校正を容易に、且つ短時間に正確に行なう
ことができる効果を奏する。
As explained above, according to the present invention, uneven scratches corresponding to the standard particle diameter are formed on the surface by processing, and the uneven scratches are further irradiated with reference illumination light by the illumination means in advance and detected by the detection means. Since we have prepared a standard sample for absolute sensitivity calibration that measures the intensity of reflected light and specifies the intensity of reflected light, it is easy to store and clean the standard sample for absolute sensitivity calibration, and it is also easy to use in automatic foreign matter inspection equipment. Even if the illumination brightness or detection sensitivity changes due to changes over time, etc., the absolute sensitivity calibration can always be easily and accurately performed in a short time.

従来の自動異物検査装置の校正方法と本発明の
校正方法と比較して、校正時間が約1/10に低減で
きた。これは、校正試料がその検査装置の被検査
物と同等であり、又、絶対校正(標準粒子径と相
対が取れている)であることによる。
The calibration time was reduced to about 1/10 compared to the conventional calibration method for automatic foreign substance inspection equipment and the calibration method of the present invention. This is because the calibration sample is equivalent to the object to be inspected by the inspection device, and also because it is an absolute calibration (relative to the standard particle diameter).

本発明の校正試料は保存や洗浄が簡単に行な
え、破損し難い材料である。(請求範囲3項の金
属板試料を用いた場合)仮に破損しても、絶対校
正試料である為、別試料で再効正が可能である。
The calibration sample of the present invention is a material that can be easily stored and cleaned, and is difficult to damage. (When the metal plate sample according to claim 3 is used) Even if it is damaged, it is an absolute calibration sample, so recalibration can be performed with another sample.

又、校正時間の短縮法として、マトリクス状に
傷の配置をすれば、各々の傷の検出出力波形のピ
ーク値をシンクロスコープ等により測定後校正す
る作業を行う必要はなく、異物分布地図出力表示
機能によつて、感度調整が簡単に短時間に行なえ
る。
In addition, as a method to shorten the calibration time, by arranging the flaws in a matrix, there is no need to calibrate the peak value of the detection output waveform of each flaw using a synchroscope, etc., and the foreign matter distribution map can be output and displayed. Sensitivity adjustment can be done easily and quickly depending on the function.

又、本発明によれば、絶対校正の利点を利用し
て、複数の異物検査装置の感度を同一にする事も
容易にできる。
Further, according to the present invention, by utilizing the advantage of absolute calibration, it is possible to easily make the sensitivities of a plurality of foreign object inspection devices the same.

又、本発明の標準試料は半導体ウエハの他、ホ
トマスクでもよい。
Further, the standard sample of the present invention may be a photomask in addition to a semiconductor wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な半導体ウエハ上の異物検査装
置を示した図、第2図は従来の感度校正法の一例
を示した図、第3図及び第4図は標準粒子を用い
て感度を校正する方法を示す図、第5図a,bは
凹凸を加工した試料を用いて初期感度校正する場
合を示した図、第6図a,bは本発明に係る自動
異物検査装置用校正試料を示した図、第7図a〜
cは第6図a,bとは異なる他の自動異物検査装
置用校正試料を示した図、第8図a〜eは更に異
なる他の自動異物検査装置用校正試料を示した
図、第9図a,bは更に他の自動異物検査装置用
校正試料を示した図、第10図a,bは更に他の
自動異物検査装置用校正試料を示した図である。 1;校正用試料、2;異物、3;光源、4;照
明光、4a;基準照明光、5;異物からの反射
光、6;光電変換器、7;増幅器、8;検出出力
値、9;標準粒子、10;純水、11;クリーン
エア、12;吹付け、13;レーザ加工による
傷、14;エツチング加工による傷、15;シリ
コンウエハ、16;明記された検出出力値、1
7;明記された標準粒子径、18;用紙、19;
ホトマスク、20;鉄板、21;マトリクス状に
配置、22;大小順に配置、30;光電変換器
(照度計)、31;比較回路、32;電気回路、3
3;半過鏡、34;モニタ上の異物分布地図表
示、35;付着異物、36;加工傷の異物分布地
図表示、37;付着異物の異物分布地図表示、3
8;文字を形成する様に配置された傷群。
Figure 1 shows a general foreign matter inspection device on semiconductor wafers, Figure 2 shows an example of a conventional sensitivity calibration method, and Figures 3 and 4 show sensitivity calibration using standard particles. Figures 5a and 5b are diagrams showing the calibration method, Figures 5a and b are diagrams showing the case of initial sensitivity calibration using a sample processed with unevenness, Figures 6a and b are calibration samples for the automatic foreign substance inspection device according to the present invention. Figure 7 a~
c is a diagram showing another calibration sample for an automatic foreign matter inspection device different from FIGS. 6a and b, FIGS. FIGS. 10A and 10B are diagrams showing still another calibration sample for an automatic foreign substance inspection apparatus, and FIGS. 10A and 10B are diagrams showing still another calibration sample for an automatic foreign substance inspection apparatus. 1; Calibration sample, 2; Foreign object, 3; Light source, 4; Illumination light, 4a; Reference illumination light, 5; Reflected light from foreign object, 6; Photoelectric converter, 7; Amplifier, 8; Detection output value, 9 ; Standard particles, 10; Pure water, 11; Clean air, 12; Spraying, 13; Scratches caused by laser processing, 14; Scratches caused by etching processing, 15; Silicon wafer, 16; Specified detection output value, 1
7; Specified standard particle size, 18; Paper, 19;
Photomask, 20; Iron plate, 21; Arranged in matrix, 22; Arranged in order of size, 30; Photoelectric converter (illuminance meter), 31; Comparison circuit, 32; Electric circuit, 3
3; Half mirror, 34; Foreign matter distribution map display on monitor, 35; Adhering foreign matter, 36; Foreign matter distribution map display of processing scratches, 37; Foreign matter distribution map display of attached foreign matter, 3
8; A group of scratches arranged to form letters.

Claims (1)

【特許請求の範囲】 1 表面上に加工により標準粒子径に対応する凹
凸傷を形成し、更に予め該凹凸傷に照明手段によ
り基準照明光を照射して検出手段により検出され
る反射光強度を測定してこの反射光強度を明記し
た絶対感度校正用標準試料を準備し、その後、実
異物検査装置においてこの準備された絶対感度校
正用標準試料を用いて該標準試料の凹凸傷に照明
手段により照明光を照明すると共に検出手段から
該標準試料に明記された反射光強度が得られるよ
うに絶対感度校正を行うことを特徴とする自動異
物検査装置の感度校正方法。 2 上記絶対感度校正用標準試料に、更に標準粒
子径寸法を明記することを特徴とする特許請求の
範囲第1項記載の自動異物検査装置の感度校正方
法。
[Claims] 1. Forming uneven scratches corresponding to the standard particle diameter on the surface by processing, and further irradiating the uneven scratches with reference illumination light using illumination means to measure the reflected light intensity detected by the detection means. Prepare a standard sample for absolute sensitivity calibration in which the reflected light intensity has been measured, and then use the prepared standard sample for absolute sensitivity calibration in an actual foreign matter inspection device to illuminate the uneven scratches on the standard sample using illumination means. 1. A method for calibrating the sensitivity of an automatic foreign substance inspection device, which comprises illuminating the illumination light and calibrating the absolute sensitivity so that the intensity of reflected light specified on the standard sample is obtained from the detection means. 2. The method for calibrating the sensitivity of an automatic foreign substance inspection device according to claim 1, wherein the standard sample for calibrating absolute sensitivity further includes a standard particle diameter dimension.
JP58146501A 1983-08-12 1983-08-12 Sensitivity calibration method for automatic foreign substance inspection equipment Granted JPS6038827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146501A JPS6038827A (en) 1983-08-12 1983-08-12 Sensitivity calibration method for automatic foreign substance inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146501A JPS6038827A (en) 1983-08-12 1983-08-12 Sensitivity calibration method for automatic foreign substance inspection equipment

Publications (2)

Publication Number Publication Date
JPS6038827A JPS6038827A (en) 1985-02-28
JPH0352219B2 true JPH0352219B2 (en) 1991-08-09

Family

ID=15409051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146501A Granted JPS6038827A (en) 1983-08-12 1983-08-12 Sensitivity calibration method for automatic foreign substance inspection equipment

Country Status (1)

Country Link
JP (1) JPS6038827A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798738B2 (en) * 1985-06-04 1995-10-25 ライオン株式会社 Oral composition
US5036797A (en) * 1986-03-26 1991-08-06 Koozer Howard D Animal husbandry housing and method
JPS63127147A (en) * 1986-11-17 1988-05-31 Hitachi Electronics Eng Co Ltd Detection signal voltage control method for face plate defect detection device
JPH03183149A (en) * 1989-12-12 1991-08-09 Hitachi Electron Eng Co Ltd Specimen for sensitivity calibration use in foreign-body inspection apparatus
JP2671241B2 (en) * 1990-12-27 1997-10-29 日立電子エンジニアリング株式会社 Glass plate foreign matter detection device
US5410400A (en) * 1991-06-26 1995-04-25 Hitachi, Ltd. Foreign particle inspection apparatus
JP3314440B2 (en) * 1993-02-26 2002-08-12 株式会社日立製作所 Defect inspection apparatus and method
JP2007017395A (en) * 2005-07-11 2007-01-25 Nikon Corp Surface inspection apparatus and surface inspection method
JP2010008336A (en) * 2008-06-30 2010-01-14 Shin Etsu Handotai Co Ltd Sample wafer for calibration of image inspection device, and calibration method of image inspection device
JP5589888B2 (en) * 2011-02-18 2014-09-17 Jfeスチール株式会社 Evaluation apparatus for surface inspection apparatus and evaluation method for surface inspection apparatus
JP2014199692A (en) * 2013-03-29 2014-10-23 株式会社日立ハイテクノロジーズ Disk surface inspection device and disk surface inspection method
CN112903551A (en) * 2021-02-05 2021-06-04 顺德职业技术学院 Laser dust sensor and automatic compensation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973710U (en) * 1982-11-09 1984-05-18 日本電気株式会社 Vibration isolation table for optical microscope
JPS5998532A (en) * 1982-11-29 1984-06-06 Toshiba Corp Preparation of reference defect sample

Also Published As

Publication number Publication date
JPS6038827A (en) 1985-02-28

Similar Documents

Publication Publication Date Title
KR101735403B1 (en) Inspection method, templet substrate and focus offset method
JPH0352219B2 (en)
US4352017A (en) Apparatus for determining the quality of a semiconductor surface
US8592770B2 (en) Method and apparatus for DUV transmission mapping
US7179568B2 (en) Defect inspection of extreme ultraviolet lithography masks and the like
JP2006337360A (en) Method for measuring deformation of test piece and system for attaching mark to its test piece
JP4150440B2 (en) Calibration standard sample for optical inspection apparatus and sensitivity calibration method of optical inspection apparatus using the same
JPH0325738B2 (en)
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
TW505948B (en) Method and apparatus for detecting thickness of thin layer formed on a wafer
JPH0982771A (en) Method and apparatus for evaluating semiconductor material
JPS62276441A (en) Testing method and equipment
JP2000002514A (en) Film thickness measuring device, alignment sensor and alignment device
SE9804398D0 (en) Measuring instruments and method for measuring the degree of dust and dirt coating on a surface
US6333785B1 (en) Standard for calibrating and checking a surface inspection device and method for the production thereof
JPH06118009A (en) Foreign substance inspection device and foreign substance inspection method
JP2007278795A (en) Method of inspecting foreign matter in resin composition for forming black matrix
JP2656202B2 (en) Quality test method for thermal spray coating
JP2009282087A (en) Standard substrate for inspecting thin-film defect, manufacturing method thereof and method of inspecting thin-film defect
US20050112853A1 (en) System and method for non-destructive implantation characterization of quiescent material
JPH06294754A (en) Pinhole inspection method and pinhole inspection device
JPS6269527A (en) Inspection equipment
JPH02660B2 (en)
Podstránský Automated defectoscopy of thin poly (methyl methacrylate) layers
JPS61162737A (en) How to check the performance of foreign object inspection equipment