[go: up one dir, main page]

JPH0354157A - Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition - Google Patents

Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition

Info

Publication number
JPH0354157A
JPH0354157A JP1188281A JP18828189A JPH0354157A JP H0354157 A JPH0354157 A JP H0354157A JP 1188281 A JP1188281 A JP 1188281A JP 18828189 A JP18828189 A JP 18828189A JP H0354157 A JPH0354157 A JP H0354157A
Authority
JP
Japan
Prior art keywords
inorganic powder
plastic
powder
clay
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1188281A
Other languages
Japanese (ja)
Inventor
Tatsuro Takeuchi
竹内 辰郎
Motoya Mori
元哉 毛利
Tetsuya Sawara
佐原 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP1188281A priority Critical patent/JPH0354157A/en
Publication of JPH0354157A publication Critical patent/JPH0354157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide high plastic forming properties to an inorganic powder in water system and simultaneously obtain a burned article having excellent strength and dimensional accuracy by blending substantially non-plastic inorganic powder with Paramilon. CONSTITUTION:The inorganic powder composition for body obtained by blending substantially non-plastic inorganic powder with paramilon. When other forming assistant is used together with paramilon, higher plastic forming properties can be preferably provided to the substantially non-plastic inorganic powder. As the such forming assistant, e.g. cellulose based compound, polyhydric hydroxy compound, polyvinyl polymer, etc., is preferably used. The paramilon is blended ordinarily at an amount of about 0.1-10pts.wt. based on 100pts.wt. inorganic powder. As the substantially non-plastic inorganic powder, fine ceramic powder, kaolinite, natural kaolin, talc and cebiolite, etc., is exemplified, but more effective when fine ceramic powder is used.

Description

【発明の詳細な説明】 皮呈±旦肌里立立 本発明は、無機粉体坏土用組戒物及びこれを焼威してな
る焼威物に関し、詳しくは、実質的に非可塑性の無機粉
体に水系にて可塑威形性を付与せしめてなる無機粉体坏
土用組成物、及びかかる組成物を焼成してなる無機粉体
焼戒物に関する。
[Detailed Description of the Invention] The present invention relates to an inorganic powder kneaded material and a burnable material obtained by burning the same. The present invention relates to an inorganic powder kneaded composition made by imparting plasticity to inorganic powder in an aqueous system, and an inorganic powder kneaded product obtained by baking such a composition.

罠来旦技班 従来、無機粉体の可塑戒形法の代表的なものとして、粘
土と水とからなる粘土系坏土をろくろ成形する方法が知
られており、その後、種々の形状の金型を用いる押出成
形も実用化されるに至っている。粘土系坏土は、本来的
に可塑性を有しており、上記したような可塑成形によっ
て容易に威形ずることができる。
Traditionally, a typical method for plastic shaping of inorganic powder was known as molding clay-based clay consisting of clay and water on a potter's wheel. Extrusion molding using molds has also come into practical use. Clay-based clay inherently has plasticity and can be easily shaped by plastic molding as described above.

しかしながら、近年、例えば、アルξナやジルコニアの
ようなファイン・セラξツクス粉体が新しい素材として
種々の分野で利用されるに至っているが、これらフアイ
ン・セラミツクス粉体といわれる無機粉体は、可塑成形
し得るに足る可塑性をもたず、従って、そのままでは、
例えば、押出成形をすることができない。
However, in recent years, fine ceramic powders such as alumina and zirconia have come to be used as new materials in various fields, but these inorganic powders called fine ceramic powders are It does not have sufficient plasticity to be plastically molded, and therefore, as it is,
For example, it cannot be extruded.

一般に、無機粉体を可塑威形、例えば、押出戒形し得る
には、その無機粉体が応力によって所定の形状に変形し
、成形し得る狭義の可塑性と共に、戒形時に坏土が口金
から滑らかに押し出される平滑性、このようにして押し
出された戊形体が乾燥されるまでの過程においてその形
状を保持する保形性、及び得られた戒形体が、その乾燥
後、焼威されるまでの過程において施される加工等のハ
ンドリングに耐える生地強度を有することが要求される
.これらは併せて広義の可塑性といわれており、前記し
た粘土一水系坏土は、本来的にかかる可塑性を備えてい
る。しかし、前記したフアイン・セラミツクス粉体は、
かかる可塑性を実質的にもたず、非可塑性坏土と称され
ており、従って、そのままでは可塑威形加工を行なうこ
とができない。
In general, in order for an inorganic powder to be shaped into a plastic shape, for example, by extrusion, the inorganic powder has plasticity in the narrow sense of being able to be deformed and molded into a predetermined shape by stress, and the clay is removed from the die during shaping. Smoothness for smooth extrusion, shape retention for the extruded rod to maintain its shape during the process of drying, and shape retention for the obtained rod to be burned after drying. The fabric is required to have the strength to withstand the processing and other handling that occurs during the process. These are collectively referred to as plasticity in a broad sense, and the above-mentioned clay-monohydrous clay inherently has such plasticity. However, the fine ceramic powder mentioned above is
It does not substantially have such plasticity and is called a non-plastic clay, and therefore cannot be plastically shaped as it is.

そのために、従来から、かかるフアイン・セラミツクス
粉体に可塑成形性を与えるために、例えば、「セラミッ
クス」第22巻第5号第385〜392頁(1 9 8
 7年〉に記載されているように、解膠剤、結合剤、滑
剤、可塑剤等として、種々の有機物質が添加されている
。例えば、代表的には、解膠剤としてはアクリル酸の単
独重合体やその共重合体、或いはそれらの塩のような高
分子電解質が、結合剤としてはポリビニルアルコールの
ような水溶性重合体が、滑剤としてはワックスやステア
リン酸のエマルジョンが、また、可塑剤としては、水系
の坏土ではグリセリン、ポリエチレングリコール等、油
性系ではフタル酸エステル等がそれぞれ知られている。
For this reason, in order to impart plastic moldability to such fine ceramic powders, for example, "Ceramics" Vol. 22, No. 5, pp. 385-392 (198
7], various organic substances are added as peptizers, binders, lubricants, plasticizers, etc. For example, typically, the deflocculant is a polymer electrolyte such as an acrylic acid homopolymer, a copolymer thereof, or a salt thereof, and the binder is a water-soluble polymer such as polyvinyl alcohol. As lubricants, emulsions of wax and stearic acid are known, and as plasticizers, glycerin, polyethylene glycol, etc. are known for water-based clays, and phthalate esters are known for oil-based clays.

フアイン・セラミツクスの押出成形においては、これら
有機物質がフアイン・セラミツクス粉体に対して、通常
、約5〜20重量%添加される。
In the extrusion molding of fine ceramics, these organic substances are usually added in an amount of about 5 to 20% by weight based on the fine ceramic powder.

更に、フアイン・セラミツクス粉体の成形焼底物の重要
な用途分野である電子部品や機械部品等の製品において
は、威形物に厳しい寸法精度が要求されるために、多く
は、射出戒形にて威形される。この射出戒形は、ファイ
ン・セラミック粉体にボリスチレン、ポリエチレン、ポ
リプロピレン、酢酸セルロース、アクリル系樹脂、エチ
レンー酢酸ビニル共重合体等、熱可塑性樹脂の結合剤や
、フタル酸エステル等の可塑剤、ステアリン酸等の滑剤
等の有機物質を10〜30重量%加え、加熱混練して、
非水系の坏土組成物を調製し、これを熱可塑性樹脂の射
出成形と同様にして、金型内に射出して戒形する方法で
ある。
Furthermore, in products such as electronic parts and mechanical parts, which are important application fields for molded and fired products of fine ceramic powder, strict dimensional accuracy is required for large-sized objects, so injection molding is often used. will be honored at. This injection molding is made of fine ceramic powder, binders of thermoplastic resins such as polystyrene, polyethylene, polypropylene, cellulose acetate, acrylic resins, ethylene-vinyl acetate copolymers, plasticizers such as phthalate esters, and stearin. Add 10 to 30% by weight of organic substances such as lubricants such as acids, heat and knead,
This method involves preparing a non-aqueous clay composition and injecting it into a mold in the same manner as injection molding of a thermoplastic resin.

以上のように、従来の方法によっても、フアイン・セラ
ミツクス粉体に、ある程度は、可塑成形性を与えること
は可能ではあるが、他方、上述したように、多種類の且
つ多量の有機物質をフアイン・セラミツクス粉体に配合
するために、成形後のその焼成に際して、これら有機物
質が分解する500℃程度の温度までは、非常に緩慢な
昇温速度にて昇温しで、所謂脱脂を完全に行なうことが
必要であるので、生産性が著しく低い。更に、多量の有
機物質を含む戒形体は、焼戒によって、大きい体積収縮
を示すので、寸法精度の要求される製品の製造は容易で
はない。
As described above, it is possible to impart plastic moldability to fine ceramic powder to some extent using conventional methods.・In order to mix it into ceramic powder, during firing after molding, the temperature is raised at a very slow rate to about 500°C, at which point these organic substances decompose, thereby completely eliminating the so-called degreasing. Productivity is extremely low as it requires a lot of work. Furthermore, since the precept form containing a large amount of organic material exhibits a large volumetric shrinkage upon burning, it is not easy to manufacture products that require dimensional accuracy.

更に、従来、フアイン・セラミツクスの可塑成形におい
ては、その役割に応じて、5〜10種類もの多種類の有
機物質を配合することが必要であり、用途や要求物性に
対応して、可塑性坏土組成物を調製することが必要であ
って、坏上組成物の組成設計が容易ではない。
Furthermore, in conventional plastic molding of fine ceramics, it has been necessary to mix as many as 5 to 10 types of organic substances depending on the role. It is necessary to prepare a composition, and it is not easy to design the composition of the dressing composition.

日が”しよ゛とする量 以上のように、従来、ファイン・セラ旦ツクスには、あ
る程度の可塑性を付与し得ても、尚、十分とはいい難く
、しかも、そのような可塑化にあたっては、用途や要求
物性に応じて、多種類の有機物質を選択し、且つ、多量
に配合することが必要であって、坏土用組成物の組或設
計が容易ではなく、更に、焼或に際しては、脱脂工程を
要し、かくして、上述したように、生産性が低く、また
、焼戒時に割れや寸法変動を生じ、結局は、製品価格を
高めることとなっている。
Conventionally, even though it has been possible to impart a certain degree of plasticity to fine ceramics, it is difficult to say that it is sufficient; It is necessary to select many kinds of organic substances and to mix them in large amounts according to the use and required physical properties, which makes it difficult to formulate or design the composition for clay. In this case, a degreasing process is required, and thus, as mentioned above, productivity is low, and cracks and dimensional changes occur during burning, which ultimately increases the product price.

本発明者らは、実質的に可塑性をもたない前記フアイン
・セラミツクス粉体のような無機粉体の可塑化、及びそ
のように可塑化された組成物の焼戒における上記した問
題を解決するために鋭意研究した結果、少量のパラミロ
ンをフアイン・セラミツクス粉体に加えることによって
、実質的に非可塑性の無機粉体に水系にて高い可塑成形
性を付与することができ、更に、かかる組戒物を焼或す
ることによって、容易に強度及び寸法精度にすぐれる焼
成物を得ることができることを見出して、本発明に至っ
たものである。
The present inventors solve the above-mentioned problems in the plasticization of inorganic powders, such as the fine ceramic powders, which have substantially no plasticity, and in the burning of compositions so plasticized. As a result of intensive research, we found that by adding a small amount of paramylon to fine ceramic powder, it was possible to impart high plastic formability to a substantially non-plastic inorganic powder in an aqueous system. The present invention was developed based on the discovery that by firing a product, a fired product with excellent strength and dimensional accuracy can be easily obtained.

即ち、本発明は、実質的に可塑性をもたない無機粉体、
特に、前述したようなファイン・セラ邑ツクス粉体に水
系にて可塑成形性を有せしめてなる無機粉体坏土用組戒
物、及びかかる組成物を焼威してなる無機粉体焼成物を
提供することを目的とする。
That is, the present invention provides an inorganic powder having substantially no plasticity,
In particular, an inorganic powder kneaded material made of the above-mentioned fine ceramic powder that has plastic moldability in an aqueous system, and an inorganic powder fired product made by baking such a composition. The purpose is to provide

課−を”?するための一三L一圭i 本発明による坏土用Mi戊物は、実質的に非可塑性の無
機粉体にパラミロンを含有させてなることを特徴とする
13L Ikkei for "?" The present invention is characterized in that the Mi powder for clay is made of a substantially non-plastic inorganic powder containing paramylon.

また、本発明による無機粉体焼威物は、かかる坏土用組
成物を焼威してなることを特徴とする。
Furthermore, the inorganic powder incineration material according to the present invention is characterized in that it is obtained by incineration of such a clay composition.

本発明において、実質的に非可塑性の無機粉体とは、先
に説明した広義の可塑性を実質的にもたない無機粉体で
あって、具体例として、例えば、アルミナ、ジルコニア
、チタニア、シリカ、マグネシア、フエライト、チタン
酸バリウム、合戒コージエライト等の酸化物系無機粉体
、炭化ケイ素、炭化ホウ素、炭化タングステン等の炭化
物系無機粉体、窒化ケイ素、窒化アル柔ニウム、窒化ホ
ウ素等の窒化物系無機粉体、ホウ化ジルコニウム、ホウ
化チタン等のホウ化物系無機粉体、カオリナイト、天然
カオリン、タルク、セピオライト、合戒粘土、ヒドロキ
シアバルタイト等のリン酸カルシウム系化合物等を挙げ
ることができる。本発明は、特に、上記無機粉体のうち
でも、フアイン・セラミツクス粉体からなる坏土用組成
物及びその焼成物の製造に好適である。更に、本発明に
おいては、無機粉体は、単独にて、又は任意割合での2
種以上の混合物としで用いられる。しかし、本発明にお
いては、坏土組成物におけるこれら無機粉体は、できる
限り小さい粒度を有することが望ましく、特に、1μm
以下の粒度を有することが好ましい。
In the present invention, the substantially non-plastic inorganic powder is an inorganic powder that does not substantially have plasticity in the broad sense described above, and specific examples include alumina, zirconia, titania, and silica. , oxide-based inorganic powders such as magnesia, ferrite, barium titanate, and cordierite, carbide-based inorganic powders such as silicon carbide, boron carbide, and tungsten carbide, and nitrides such as silicon nitride, aluminum nitride, and boron nitride. Examples include physical inorganic powders, boride-based inorganic powders such as zirconium boride and titanium boride, and calcium phosphate compounds such as kaolinite, natural kaolin, talc, sepiolite, hekai clay, and hydroxyabartite. . The present invention is particularly suitable for producing clay compositions made of fine ceramic powders among the above-mentioned inorganic powders, and baked products thereof. Furthermore, in the present invention, the inorganic powder may be used alone or in combination with two
It is used as a mixture of more than one species. However, in the present invention, it is desirable that these inorganic powders in the clay composition have a particle size as small as possible, particularly 1 μm.
It is preferred to have a particle size of:

本発明において用いるパラミロンは、β−1,3グルコ
シド結合を主体とする多糖類であり、微生物であるユー
グレナ(Euglena)が細胞内に蓄積する貯蔵多糖
の1種である。このようなパラミロンは・例えば、Ca
rbohydrate Research+ 25+ 
231242 (1979)や、特開千i37297号
公報等によって既に知られている。
Paramylon used in the present invention is a polysaccharide mainly composed of β-1,3 glucosidic bonds, and is a type of storage polysaccharide that is accumulated in the cells of the microorganism Euglena. Such paramylons are, for example, Ca
rbohydrate Research+ 25+
231242 (1979) and Japanese Unexamined Patent Application Publication No. 1,37297.

パラミロンは、微生物によって生産される多糖類である
が、本発明においては、これを未精製のままにて用いて
もよく、或いは高度に精製して用いてもよい。また、通
常、パラξロンの粉末は加熱凝固性をもたないが、加熱
凝固性をもたせるために、必要に応じて、アルカリ処理
したものを用いてもよい。
Paramylon is a polysaccharide produced by microorganisms, and in the present invention, it may be used unpurified or highly purified. In addition, para-ξron powder usually does not have heat-coagulability, but in order to make it heat-coagulate, it may be treated with alkali if necessary.

本発明において、パラミロンの配合量は、無機粉体l0
0重量部に対して、通常、0.1〜10重量部の範囲で
あり、好ましくは、0、5〜5重量部の範囲である。
In the present invention, the blending amount of paramylon is 10% of the inorganic powder.
It is usually in the range of 0.1 to 10 parts by weight, preferably in the range of 0.5 to 5 parts by weight.

本発明においては、パラミロンと共に他の成形助剤を併
用することによって、実譬的に非可塑性の無機粉体に一
層高い可塑成形性を付与することができる。また、得ら
れた坏土組成物を通常の戒形手段にて成形し、焼戒する
ことによって、一層強度にすぐれる焼戒物を得ることが
できる。かかる成形助剤としては、例えば、セルロース
系化合物、多価ヒドロキシ化合物、又はポリビニル重合
体が好ましく用いられる。
In the present invention, by using paramylon together with other molding aids, even higher plastic moldability can be imparted to the virtually non-plastic inorganic powder. In addition, by molding the obtained clay composition using a conventional molding method and burning it, it is possible to obtain a baked article with even greater strength. As such a molding aid, for example, a cellulose compound, a polyhydric hydroxy compound, or a polyvinyl polymer is preferably used.

上記セルロース系化合物としては、例えば、メチルセル
ロース、エチルセルロース、カルボキシルメチルセルロ
ース、カルボキシルメチルセルロースナトリウム、ヒド
ロキシエチルセルロース、ヒドロキシプ口ピルセルロー
ス等のセルロース誘導体等を挙げることができる。多価
ヒドロキシ化合物としては、例えば、グリセリン、エチ
レングリコール、プロピレングリコール、トリエチレン
グリコール、1.3−ブチレングリコール等のアルキレ
ングリコールや、ポリエチレングリコール、ポリプロピ
レングリコール等のポリオキシアルキレングリコール等
を挙げることができる。また、ポリビニル重合体として
は、例えば、ポリビニルアルコール、ポリビニルビロリ
ドン、ポリアクリル酸樹脂、ポリアクリル酸塩、例えば
、ポリアクリル酸アンモニウム、アクリル酸−マレイン
62共重合体、そのアンモニウム塩等を挙げることがで
きる。ポリアクリル酸樹脂は架橋されていてもよい。か
かる架橋型ポリアクリル酸樹脂は既に知られており、市
販品として人手することができる。
Examples of the above-mentioned cellulose compounds include cellulose derivatives such as methylcellulose, ethylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, hydroxyethylcellulose, and hydroxybutylated cellulose. Examples of polyvalent hydroxy compounds include alkylene glycols such as glycerin, ethylene glycol, propylene glycol, triethylene glycol, and 1,3-butylene glycol, and polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol. . Examples of polyvinyl polymers include polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid resins, polyacrylates, such as ammonium polyacrylate, acrylic acid-maleic acid 62 copolymer, and ammonium salts thereof. be able to. The polyacrylic acid resin may be crosslinked. Such cross-linked polyacrylic acid resins are already known and can be produced manually as commercially available products.

上記以外にも、例えば、種々の戒形助剤を用いることが
でき、例えば、カルボキシルメチルスターチも助剤とし
て用いることができる。
In addition to the above, various other formulation auxiliaries can be used, for example, carboxyl methyl starch can also be used as an auxiliary agent.

本発明においては、これらの戒形助剤は、単独にて用い
てもよいが、2種以上の混合物として用いることもでき
る。成形助剤は、無機粉体100重量部に対して、通常
、(2種以上の混合物を用いるときは、その総量として
、)約0.1〜10重量部、好ましくは、約0. 5〜
5重量部の範囲で配合される。
In the present invention, these adjuvants may be used alone, but they can also be used as a mixture of two or more. The molding aid is usually used in an amount of about 0.1 to 10 parts by weight, preferably about 0.1 to 10 parts by weight (when a mixture of two or more is used, as the total amount) per 100 parts by weight of the inorganic powder. 5~
It is blended in an amount of 5 parts by weight.

更に、本発明においては、必要に応じて、ポリエチレン
グリコールのアルキルエーテル等、湿潤剤として知られ
ている界面活性剤や、或いはステアリン酸亜鉛、ステア
リン酸アルくニウム、ステアリン酸マグネシウム等の滑
剤を坏土組成物中に含有させてもよい。
Furthermore, in the present invention, a surfactant known as a wetting agent such as an alkyl ether of polyethylene glycol, or a lubricant such as zinc stearate, aluminum stearate, or magnesium stearate may be used. It may also be included in the soil composition.

本発明において、前記無機粉体坏土用組成物の調製方法
は、特に、限定されるものではない。例えば、パラ≧ロ
ンと必要に応じて他の戒形助剤とを粉体状のまま、フア
イン・セラミツクス粉体に加え、又はパラミロンと必要
に応じて他の成形助剤とを予め水や、或いはメタノール
、エタノール等のような水溶性の有機溶剤の少量に溶解
させ、これをフアイン・セラミツクス粉体に加え、この
後、パラミロンや他の成形助剤が偏在しないように十分
に混合し、均一な混合物とし、次いで、得られた混合物
に適当量の水を加え、十分に混練することによって、可
塑戒形に適する本発明による坏土用組成物を得ることが
できる。但し、パラミロンと他の成形助剤とを別々に粉
体に混合してもよい。
In the present invention, the method for preparing the composition for inorganic powder clay is not particularly limited. For example, paramylon and other forming aids as needed are added to the fine ceramics powder in powder form, or paramylon and other forming aids are added as needed to the fine ceramics powder in advance with water, Alternatively, dissolve it in a small amount of a water-soluble organic solvent such as methanol, ethanol, etc., add this to the fine ceramic powder, and then mix thoroughly to prevent paramylon and other molding aids from being unevenly distributed. The composition for clay according to the present invention, which is suitable for plastic molding, can be obtained by preparing a mixture, then adding an appropriate amount of water to the obtained mixture, and thoroughly kneading the mixture. However, paramylon and other molding aids may be mixed separately into the powder.

更に、以上のようにして調製される無機粉体坏土用組成
物を射出戒形、押出成形、ロール押出、ロール圧延等、
常法に従って所要形状に成形し、これを乾燥した後、焼
戒することによって、強度及び寸法精度にすぐれる本発
明による無機粉体焼成物を高生産性にて得ることができ
る。焼或温度は、用いる無機粉体に応じて、適宜に選ば
れる。
Furthermore, the inorganic powder kneaded composition prepared as described above may be subjected to injection molding, extrusion molding, roll extrusion, roll rolling, etc.
The inorganic powder fired product of the present invention, which has excellent strength and dimensional accuracy, can be obtained with high productivity by molding it into a desired shape according to a conventional method, drying it, and then firing it. The firing temperature is appropriately selected depending on the inorganic powder used.

衾盟生菱果 本発明による無機粉体坏土用組戒物は、実質的に非可塑
性の無機粉体に少量のパラミロンを含有させてなる水系
の可塑成形性組威物であって、すぐれた可塑成形性を有
し、通常の手段によって任意の形状に戒形することがで
きる。
The composition for inorganic powder clay according to the present invention is a water-based plastic moldable composition made of a substantially non-plastic inorganic powder containing a small amount of paramylon, and is an excellent material. It has plastic formability and can be formed into any shape by normal means.

更に、本発明によれば、かかる無機粉体坏土用組成物を
例えば押出又は射出戒形等によって所要形状に成形し、
乾燥させた後、焼戒することによって、強度及び寸法精
度にすぐれる無機粉体焼成物を高生産性にて得ることが
できる。
Furthermore, according to the present invention, the inorganic powder kneaded composition is molded into a desired shape by, for example, extrusion or injection molding,
By drying and baking, an inorganic powder sintered product with excellent strength and dimensional accuracy can be obtained with high productivity.

去1む触 以下に実施例及び参考例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
The present invention will be explained below with reference to Examples and Reference Examples.
The present invention is not limited in any way by these Examples.

参考例 (パラミロンのアルカリ処理) パラミロン粉末2gをIN水酸化ナトリウム水溶液20
0m.I中に撹拌下に溶解させた後、これに4N塩酸を
加え、pH6.0に調整して、β−1,3−グルカンを
中和析出させた。得られた中和液をトミー遠心分離機(
8000rpmX10分)にて濃縮し水200mlを加
えて、再び、スラリーとした。
Reference example (alkali treatment of paramylon) 2g of paramylon powder was added to 20% of IN aqueous sodium hydroxide solution.
0m. After dissolving in I under stirring, 4N hydrochloric acid was added thereto to adjust the pH to 6.0 to neutralize and precipitate β-1,3-glucan. The resulting neutralized solution was transferred to a Tommy centrifuge (
The mixture was concentrated at 8,000 rpm for 10 minutes, and 200 ml of water was added to form a slurry again.

このスラリーを上記と同様に遠心分離によって濃縮し、
ペースト50gを得た。これを−2 0 ”Cに凍結し
、2倍量のエタノールを加えて凍結し、濾紙を用いて、
真空下で吸引濾過して、脱水物8gを得た。この脱水物
を60℃で真空乾燥して、多孔質粉末約2gを得た。
This slurry was concentrated by centrifugation in the same manner as above,
50 g of paste was obtained. Freeze this at -20''C, add twice the amount of ethanol, freeze, and use filter paper to
Suction filtration under vacuum yielded 8 g of dehydrate. This dehydrated product was vacuum dried at 60° C. to obtain about 2 g of porous powder.

以上のようにして得られたβ−1.3−グルカン粉末を
下記の方法にてゲル強度を測定したところ、2%濃度で
200g/cfflであって、ゲル形成能を有するのに
対して、原料のパラミロンにはゲル形威能が認められな
かった。
When the gel strength of the β-1,3-glucan powder obtained as described above was measured using the method described below, it was 200 g/cffl at a 2% concentration, and it had gel-forming ability. Paramylon, the raw material, was not found to have any gel form.

工酉孜皮 β−1,3−グルカンに水10mlを加えて上記の濃度
とし、ボターホモごキサーでホモジナイズした後、真空
脱気し、試験管(径1.6cm)に入れて、沸騰水浴中
で10分間加熱した。次いで、水道水にて30分間冷却
し、高さLowに切断した後、カードメーター(飯尾式
)でゲル強度を測定した.以下、前記原料として用いた
バラξロン粉末をバラ短ロンAといい、そのアルカリ処
理物ヲハラミロンBという。
Add 10 ml of water to the above-mentioned concentration of Kotori Kepi β-1,3-glucan, homogenize it with a bottle homogenizer, vacuum degas it, put it in a test tube (diameter 1.6 cm), and place it in a boiling water bath. and heated for 10 minutes. Next, after cooling in tap water for 30 minutes and cutting into low height pieces, the gel strength was measured using a card meter (Iio type). Hereinafter, the powder of Balamilon used as the raw material will be referred to as Baratanron A, and its alkali-treated product will be referred to as Haramilon B.

次に、粘土の練土の可塑性は、粘土鉱物表面と水との相
互作用による水素結合、即ち、束縛水の強さと、その数
によって規定され、次式で規定される可塑特性値CVが
可塑性の程度を表わす尺度として利用できるとされてい
る(芝崎ら、「粘土科学」第24巻第2号第47〜55
頁(1 9 8 4年))。
Next, the plasticity of clay kneaded soil is defined by the strength and number of hydrogen bonds caused by the interaction between the clay mineral surface and water, that is, the bound water, and the plasticity characteristic value CV defined by the following equation is the plasticity It is said that it can be used as a scale to express the degree of
Page (1984)).

但し、ここに、W4。及びWI0。は、ペツファーコル
ン法による試験法にて可塑性を測定した場合に、塑性変
形比H./H=3.3を示す練土の乾燥温度40℃と1
00℃とにおける試料重量を示し、witは室温におけ
る試料重量を示す。
However, here, W4. and WI0. is the plastic deformation ratio H. when plasticity is measured using the Petzferkorn test method. Drying temperature of 40℃ and 1
The weight of the sample at 00° C. is shown, and wit is the weight of the sample at room temperature.

そこで、以下の実施例においては、上記の試験方法に準
じた簡便法にて種々の無機粉体から調製した坏土組成物
の可塑特性値を測定し、可塑性を評価した。
Therefore, in the following examples, plasticity was evaluated by measuring the plasticity properties of clay compositions prepared from various inorganic powders using a simple method similar to the above test method.

即ち、調製した坏土U或物の所定量( W R t )
を精秤し、先ず、40℃にて3〜4日間乾燥し、恒量と
した試料重量(W4。〉を測定し、次いで、この試料を
100℃で1日間以上加熱乾燥して、恒量とした試料重
! (W+。。)を測定し、これら測定値から次式に基
づいて可塑特性値Cvを算出した。
That is, the predetermined amount of the prepared clay U (W R t )
was accurately weighed and first dried at 40°C for 3 to 4 days to obtain a constant weight.The sample weight (W4.) was measured.Then, this sample was heated and dried at 100°C for 1 day or more to obtain a constant weight. The sample weight! (W+...) was measured, and the plasticity characteristic value Cv was calculated from these measured values based on the following formula.

実施例1 第l表に示すように、易焼結性低ソーダアルξナ(住友
化学工業■製AES−11、BET比表面積6〜7m/
g、平均粒子径0.4 〜0.5,crm)50gにバ
ラごロンA又はBを所定量加え、十分に混合して、均一
な混合物を得た。
Example 1 As shown in Table 1, easily sinterable low soda alumina (AES-11 manufactured by Sumitomo Chemical Co., Ltd., BET specific surface area 6 to 7 m/
A predetermined amount of Baragoron A or B was added to 50 g (average particle size: 0.4 to 0.5, crm) and thoroughly mixed to obtain a homogeneous mixture.

次いで、この混合物に蒸留水20gを加え、均一に混練
した後、合戒樹脂袋内に密封して、40℃の恒温槽内に
置き、一昼夜熟威し、更に、この後、恒温槽から取り出
し、袋内に密封したまま、混練し、再度、一昼夜熟成し
て、試験用坏土として、これについて、前記に従って、
可塑特性値を測定した。結果を第1表に示す。
Next, 20 g of distilled water was added to this mixture, and after kneading it uniformly, it was sealed in a resin bag and placed in a constant temperature bath at 40°C, and left to ripen all day and night. , kneaded while sealed in the bag, aged again for a day and night, and used as a test clay according to the above.
Plastic property values were measured. The results are shown in Table 1.

第1表 比較のために、 パラミロンに代えてボリエチレ ングリコールを用いて坏土組成物を調製し、また、前記
アルミナを単独で用いた場合の可塑特性値を測定した。
For comparison in Table 1, a clay composition was prepared using polyethylene glycol instead of paramylon, and the plasticity properties were measured when the alumina was used alone.

結果を第l表に示す。The results are shown in Table I.

第1表に示す結果からか明らかなように、本発明によれ
ば、少量のバラ旦ロンA又はBをアルミナに配合するこ
とによって、水系で高い可塑性を有する坏土組成物を得
ることができる。
As is clear from the results shown in Table 1, according to the present invention, a clay composition having high plasticity in an aqueous system can be obtained by blending a small amount of Baradanron A or B with alumina. .

実施例2 第2表に示すように、ニュージーランド・カオリン50
gにパラミロンBを所定量加え、十分に混合して、均一
な混合物を得、次いで、この混合物を実施例1と同様に
処理して、試験用坏土を得、これについて、実施例lと
同じ方法にて、可塑特性値CVを求めた。
Example 2 As shown in Table 2, New Zealand Kaolin 50
A predetermined amount of paramylon B was added to g and thoroughly mixed to obtain a homogeneous mixture, and this mixture was then treated in the same manner as in Example 1 to obtain a test clay. Plasticity characteristic value CV was determined using the same method.

比較のために、前記ニュージーランド・・カオリン単独
を用いた場合の可塑特性値を上記と同様にして測定し、
結果を第2表に示す。ニュージーランド・カオリンは、
それ自体にても、僅かながらは、可塑性を有するが、本
発明によれば、一層高い可塑性を付与することができる
For comparison, the plastic property values when using the New Zealand kaolin alone were measured in the same manner as above,
The results are shown in Table 2. New Zealand kaolin is
Although the material itself has some plasticity, according to the present invention, even higher plasticity can be imparted.

第 2 表 実施例3 第3表に示す種々の無機粉体にパラミロンA又はBと共
に、戒形助剤を加えて十分に混合した後、0.51容量
の二輪二一グーを用いて、更に混合しながら、これに適
当量の水を加え、30分間練合して、坏土組戒物を調製
した。成形助剤としてのメチルセルロースは、2%水溶
液の20℃における粘度が400cpであるものを用い
、また、ポリエチレングリコールは平均分子16 0 
0 0のものを用いた。
Table 2 Example 3 After adding paramylon A or B and a formative aid to the various inorganic powders shown in Table 3 and thoroughly mixing them, using a 0.51 volume Niwa Niichi Gu, While mixing, an appropriate amount of water was added to the mixture and kneaded for 30 minutes to prepare a kandogumi kaimono. Methyl cellulose as a molding aid is a 2% aqueous solution with a viscosity of 400 cp at 20°C, and polyethylene glycol has an average molecular weight of 160 cp.
0 0 was used.

得られた坏土組戒物の一定量をフローテスター(島津製
作所製CFT−5 0 0)に装填し、押出荷重10〜
300kgfの範囲にて、直径1uの紐状物に押出成形
し、押出成形性を調べた。この押出威形において途中で
切れることなく、長さ1m以上の紐状物を得ることがで
きたときを押出成形性が優秀とし、長さ1m程度の紐威
物を得ることができたときを良好とし、長さ1mの紐状
物を与える前に底形物が切れたときを威形性不良とした
A certain amount of the obtained kadogumi ritual was loaded into a flow tester (CFT-500 manufactured by Shimadzu Corporation), and the extrusion load was 10~
The material was extruded into a string-like material having a diameter of 1 U in a range of 300 kgf, and extrusion moldability was examined. Extrusion moldability is considered excellent when a string-like object with a length of 1 m or more can be obtained without breaking during extrusion, and when a string-like object with a length of about 1 m can be obtained. The condition was judged as good, and the case where the bottom-shaped object broke before being given a string-like object with a length of 1 m was judged as poor formability.

結果を第3表に示す。The results are shown in Table 3.

実施例4 前記アルξナAES−11粉末に所定量のパラξロンB
と、場合によっては成形助剤を加え、十分に混合した後
、所定量の水を加え、減圧下にて30分間練合し、アル
ミナ坏上組成物を調製した。
Example 4 A predetermined amount of Paraξlon B is added to the AlξNa AES-11 powder.
and, if necessary, a forming aid, and after thorough mixing, a predetermined amount of water was added and kneaded for 30 minutes under reduced pressure to prepare an alumina plating composition.

この坏土組成物をフローテスターにて押出荷重200k
gfにて直径51璽、長さ50mの棒状物に押出成形し
た。これを室温で24時間、40℃で24時間、次いで
、115℃で24時間乾燥した。
This clay composition was extruded with a flow tester at a load of 200k.
It was extruded into a rod-shaped product with a diameter of 51 mm and a length of 50 m using gf. This was dried at room temperature for 24 hours, at 40°C for 24 hours, and then at 115°C for 24 hours.

次いで、この乾燥成形物を電気炉に装填し、室温から8
00℃まで3℃/分の速度で加熱し、800℃で3時間
保持し、次いで、800℃から1600゜Cまで2“C
/分の速度で加熱し、その後、800℃で3時間保持し
た後、炉内で放冷した。
Next, this dry molded product was loaded into an electric furnace and heated from room temperature to 8.
Heat at a rate of 3°C/min to 00°C, hold at 800°C for 3 hours, then heat at 2"C from 800°C to 1600°C.
The mixture was heated at a rate of 1/min, then held at 800°C for 3 hours, and then allowed to cool in the furnace.

このようにして得られたアルミナ焼或品について、島津
オートグラフ(AG− I Q Q O型)を用イテ、
スパン長さ20璽1、クロスヘッドa 度0. 5關/
分にて3点曲げ強度を測定した。結果を第4表に示す。
The alumina calcined product thus obtained was tested using a Shimadzu autograph (AG-IQQO type).
Span length 20㎜1, crosshead a degree 0. 5/
The three-point bending strength was measured at 30 minutes. The results are shown in Table 4.

3点曲げ強度σ (kgf/mm”)は次式で求められ
る。
The three-point bending strength σ (kgf/mm") is determined by the following formula.

σ=8PL/πd3 ここに、Pは破壊時最大荷重(kgf)、Lは支点間距
離(am) 、dは試験片直径(關)である。
σ=8PL/πd3 Here, P is the maximum load at failure (kgf), L is the distance between fulcrums (am), and d is the diameter of the test piece.

比較のために、前記アルミナAES’−11を400g
に市販バインダー5重量部を加え、上記と同様にしてア
ルミナ焼或品を調製し、3点曲げ強度を測定した。
For comparison, 400g of the alumina AES'-11
5 parts by weight of a commercially available binder was added to the mixture, an alumina calcined product was prepared in the same manner as above, and the three-point bending strength was measured.

結果を第4表に示すように、本発明による坏土組成物を
焼成してなる焼威物は、市販バインダーの半分以下の使
用量にて、より大きい3点曲げ強度を得ることができる
As shown in Table 4, the baked product obtained by firing the clay composition according to the present invention can obtain greater three-point bending strength with less than half the amount of commercially available binder.

Claims (6)

【特許請求の範囲】[Claims] (1)実質的に非可塑性の無機粉体にパラミロンを含有
させてなる無機粉体坏土用組成物。
(1) An inorganic powder clay composition comprising paramylon contained in a substantially non-plastic inorganic powder.
(2)無機粉体がフアイン・セラミツクス粉体であるこ
とを特徴とする請求項第1項記載の無機粉体坏土用組成
物。
(2) The composition for an inorganic powder clay according to claim 1, wherein the inorganic powder is a fine ceramic powder.
(3)パラミロンと共に他の成形助剤を含有することを
特徴とする請求項第1項記載の無機粉体坏土用組成物。
(3) The composition for inorganic powder kneaded clay according to claim 1, which contains other molding aids together with paramylon.
(4)実質的に非可塑性の無機粉体にパラミロンを含有
させてなる無機粉体坏土用組成物を焼成してなることを
特徴とする無機粉体焼成物。
(4) An inorganic powder fired product, which is obtained by firing an inorganic powder clay composition comprising paramylon contained in a substantially non-plastic inorganic powder.
(5)無機粉体がフアイン・セラミツクス粉体であるこ
とを特徴とする請求項第4項記載の無機粉体焼成物。
(5) The fired inorganic powder product according to claim 4, wherein the inorganic powder is fine ceramic powder.
(6)パラミロンと共に他の成形助剤を含有することを
特徴とする請求項第4項記載の無機粉体焼成物。
(6) The fired inorganic powder product according to claim 4, which contains other molding aids together with paramylon.
JP1188281A 1989-07-19 1989-07-19 Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition Pending JPH0354157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1188281A JPH0354157A (en) 1989-07-19 1989-07-19 Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1188281A JPH0354157A (en) 1989-07-19 1989-07-19 Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition

Publications (1)

Publication Number Publication Date
JPH0354157A true JPH0354157A (en) 1991-03-08

Family

ID=16220904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1188281A Pending JPH0354157A (en) 1989-07-19 1989-07-19 Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition

Country Status (1)

Country Link
JP (1) JPH0354157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259331A (en) * 1995-03-22 1996-10-08 Agency Of Ind Science & Technol Preparation of aqueous boron nitride-based composition for plastic molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259331A (en) * 1995-03-22 1996-10-08 Agency Of Ind Science & Technol Preparation of aqueous boron nitride-based composition for plastic molding

Similar Documents

Publication Publication Date Title
JP2753615B2 (en) Clay composition for inorganic powder molding and fired product obtained by firing this
KR101830064B1 (en) Composition for extrusion-molded bodies
US9365702B2 (en) Composition for extrusion-molded bodies
EP2627675A1 (en) Novel cellulose ethers and their use
US9174879B2 (en) Ceramic precursor batch composition and method of increasing ceramic precursor batch extrusion rate
KR101483330B1 (en) Additives comprising cellulose ethers for ceramics extrusion
JPH0354157A (en) Inorganic powdering oxide superconductor for body and burned material obtained by burning same composition
JP4430745B2 (en) Molding compound based on aluminum oxide
JPH02267160A (en) High strength alumina
US9850170B2 (en) Selected binders for the extrusion of ultra-thin wall cellular ceramics
EP0739868A1 (en) Method for forming extruded parts from inorganic material
JPH0450157A (en) Ceramic material for extrusion molding and its extrusion molding method
JPH09169572A (en) Extrusion composition
JP3283346B2 (en) Clay composition for extrusion molding
JP2000264696A (en) Solvent type binder for inorganic molded products
JPH0450158A (en) Ceramic materials for extrusion molding
JPH08188470A (en) Production of ceramics using non-oxide type ceramic raw material
JPH0769740A (en) Method for manufacturing ceramic molded body
MXPA99007130A (en) Gel strength enhancing additives for agaroid-based injection molding compositions
MXPA96001454A (en) Method for forming extruded pieces from an inorgan material
JPH0234545A (en) Composition for extrusion-molding ceramic and production of ceramic extrusion-molded body
JPH0818299B2 (en) High-strength cast molding manufacturing method
JPH06166555A (en) Honeycomb molding cement composition