JPH0356114A - Method for treating exhaust gas of organic solvent storage vessel - Google Patents
Method for treating exhaust gas of organic solvent storage vesselInfo
- Publication number
- JPH0356114A JPH0356114A JP1193240A JP19324089A JPH0356114A JP H0356114 A JPH0356114 A JP H0356114A JP 1193240 A JP1193240 A JP 1193240A JP 19324089 A JP19324089 A JP 19324089A JP H0356114 A JPH0356114 A JP H0356114A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- solvent
- organic solvent
- concentration
- storage container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
く産業上の利川分野〉
本発明は有機溶剤貯蔵容器の内圧調節のために当該容器
内の上部空間のガスをJJ『出ずる際のilrガス処理
方法に関するものである.
く従来の技術〉
有機溶剤を貯蔵する場合、貯蔵容器内の液面上の空間に
N3ガス等の不括性ガスを充填することが多い.この場
合、貯蔵容器の内圧調節のため、内圧が増加して上限圧
力に達すれは上記のガスを容器外に排出し、内圧が減少
して下限圧力に達すれば不活性ガスを送大している.而
るに、容器内の上部空間には有機溶剤が蒸発飽和してお
り、上記貯蔵容器から排出される不活性ガスには有機溶
剤蒸気が多量に含まれている.従って、第4図に示すよ
うに、容器内ガスを排気管6′により直接大気放出する
と、その放出量いかんによっては、無視し難い大気汚染
を惹起し、またイfits!溶剤のロスを招来するに至
る.
〈解決しようとする課題〉
従来、第5図に示すように有機溶剤貯蔵容器1′内の排
ガスを吸着剤充填塔13′に則して排ガス中の有機溶剤
を吸着除去し、この吸着除去後の清浄ガスを大気eに放
出し、吸着剤で吸着した溶剤を、貯蔵容器から液を抜き
出す際に容器内に流入する封入ガスgにより脱離せしめ
て容器に回収することが提案されている(特開昭50−
413515号).シかしながら、吸着前のガス中の有
機溶剤濃度が高いために、吸着剤においては貯蔵容器排
ガス負荷条{’t. (濃度、処理時間、処理量等)の
変動に対応する余裕が少なく、しかも、71 1Fil
条件においても吸着時の発熱量以上の操作熱量を有する
ため、吸着剤の平衡飽和以上の操作点の出現の可能性が
高く、有機溶剤蒸気が殆ど吸着されずに大気に放出され
る場合もあり得る.従って第5図に示す方法においても
、全体としての排出ガス中の溶剤濃度が高く、従って、
溶剤回収率も充分とは言い難い.
本発明の目的は、上記の大気に放出するガス中の有機溶
剤濃度を著しく低濃度(0.005%以下)になし得、
溶剤回収率を著し< +fli効率(99.9%以上)
になし得る方法を提供することにある.〈課題を解決す
るための手段〉
本発明に係る有1ltl剤貯蔵容器の排ガス処理方?は
、有m溶剤佇威容器の内服調節のために当該容器内の上
部空間における有機溶剤蒸気混合ガスを排出する方法に
おいて、そのリ1出ガスを選V<S過性膜によって低溶
剤濃度非透過ガスと高溶剤濃度透過ガスとに分離し、低
溶剤濃度非透過ガスを排気し、高溶剤濃度透過ガスをT
T機溶剤貯蔵容器に戻すことを特徴とする方法である。[Detailed Description of the Invention] Industrial Field in Icheon> The present invention relates to a method for treating ILR gas when the gas in the upper space of an organic solvent storage container is discharged in order to adjust the internal pressure of the container. .. BACKGROUND TECHNOLOGY When storing organic solvents, the space above the liquid level in the storage container is often filled with a non-volatile gas such as N3 gas. In this case, to adjust the internal pressure of the storage container, when the internal pressure increases and reaches the upper limit pressure, the above gas is discharged from the container, and when the internal pressure decreases and reaches the lower limit pressure, inert gas is pumped out. However, the upper space inside the container is saturated with organic solvent, and the inert gas discharged from the storage container contains a large amount of organic solvent vapor. Therefore, as shown in FIG. 4, if the gas inside the container is directly released into the atmosphere through the exhaust pipe 6', depending on the amount released, it may cause air pollution that is difficult to ignore. This results in solvent loss. <Problem to be Solved> Conventionally, as shown in FIG. 5, the organic solvent in the exhaust gas is adsorbed and removed from the exhaust gas in the organic solvent storage container 1' using an adsorbent packed tower 13'. It has been proposed to release the clean gas of 1977-
No. 413515). However, due to the high concentration of organic solvent in the gas before adsorption, the adsorbent is not suitable for storage vessel exhaust gas loading conditions {'t. There is little margin to accommodate fluctuations in (concentration, processing time, processing amount, etc.)
Since the amount of heat generated during adsorption is greater than the amount of heat generated during adsorption, there is a high possibility that an operating point will occur that exceeds the equilibrium saturation of the adsorbent, and organic solvent vapor may be released into the atmosphere without being adsorbed. obtain. Therefore, even in the method shown in FIG. 5, the overall concentration of solvent in the exhaust gas is high, and therefore,
The solvent recovery rate is also far from sufficient. The purpose of the present invention is to reduce the concentration of organic solvent in the gas released into the atmosphere to a significantly low concentration (0.005% or less),
Significant solvent recovery <+fli efficiency (>99.9%)
The goal is to provide ways that can be done. <Means for Solving the Problems> How to treat the exhaust gas of the 1ltl drug storage container according to the present invention? In the method of discharging the organic solvent vapor mixed gas in the upper space of the container in order to control the internal administration of the container, the discharged gas is selected and treated with a low solvent concentration film using a V<S-permeable membrane. The permeated gas and the high solvent concentration permeated gas are separated, the low solvent concentration non-permeated gas is exhausted, and the high solvent concentration permeated gas is
This method is characterized by returning the solvent to the T machine solvent storage container.
上記有1a78剤としては、脂肪族炭化水素類、脂環式
炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類
、ケトン頬、アルコール類、カルボン酸エステル類があ
る.
容器内への充填ガスとしては、通常、N■ガス等の不粘
性ガスが使用されるが、空気を使用することもある.
選択透過性膜、すなわち、溶剤蒸気はよ<i8遇するが
不活性ガス、空気算を殆どMJさせない股は溶剤に応じ
て選定され、例えば、シリコーン樹脂が架橋されてなる
粘性薄1模をポリイミド、ボリアミド、ボリフフ化ビニ
リデンまたはボリスルホン多孔質支持nIi上に形成し
た複合膜を使用できる.く実施例の説明〉
以下、図面により本発明の実施例について説明する.
第1図において、lは有機溶剤貯蔵容器、2は有機溶剤
供給管、3は有機溶剤取出管、4は取出ポンプ、5はガ
ス流入管、6はガス排出管である.Aは本発明を実施す
るために付加した設備を示している.7は排出管に連結
した送風機である.8はi1沢透過性欣モジュールであ
り、一次(l1llと二次側(透過側)との間を膜で隔
ててあり、一次側を送風a7の出1−1管に連通してあ
る.9は一次側に設けた非透過ガス排出管であり、圧力
調整弁IOを有する.11は真空吸引機であり、その吸
入側をモジュール8の二次側に連通し、吐出側を戻し管
l2により有機溶剤貯蔵容器に連通してある.上記貯蔵
溶剤の蒸気は常圧よりも数百mml!to低い減圧下で
飽和状熊に達する.而して、上記貯蔵容器内の上部空間
は飽和状態の溶剤蒸気を含む不活性ガス(溶剤濃度はl
O〜50v/v%)で満たされており、この容器内圧力
が増大すると送風機7並びに真空吸引機11を駆動する
。この場合、モジュール8の一次側圧力を100−10
00m+a■,0(ゲージ圧)、二次側圧力を10〜3
00torr(絶対圧)とするように、圧力調整弁10
、送風機7並びに真空吸引機l1を操作する。送風機7
、真空吸引Ia11の駆動により、容器l内の溶剤蒸気
混合不活性ガスがモジュール8の一次01つに送られ、
膜の選択透過性により一次側と二次側との差圧下、溶剤
蒸気は11タをよく透過し、不活性ガスは殆ど透過せず
に、一次側の低溶剤蒸気濃度不活性ガスと二次側の高溶
剤蒸気濃度不油性ガスとに分離される.
低溶剤蒸気濃度不活性ガスは排出管のより大気に放出す
る.このガスの溶剤蒸気温度は通常0.005%以下で
あり、実質上、環境汚染や溶剤ロスが問題となることは
ない.
モジュール二次側の透過ガスは高溶剤濃度であるが、モ
ジュール8と真空吸引機I!との間においては、圧力が
10〜300torrと低く、真空吸引機1lの後では
温度が30〜80゜Cの加温状態にあるから、いずれの
区間においても、その溶剤蒸気混合不活性ガスは飽和点
以下の状態にある.この溶剤蒸気混合不゜活性ガスは戻
し管12を経て溶剤貯蔵容器lの上部空間に流入し、こ
の空間が飽和状態にあるので、その流入により過飽和と
なって凝縮が行われ、非凝縮のガスが容器l内のガスと
共に再び上記した処理に付される.以下、これをvf4
1!繰り返して行き、容器内圧力が正常圧力にまで降下
すると送風fi?、真空吸引機l1を停止する.
通常、上記の操作は、送風機並びに真空吸引機の駆動・
停止を操作するための比カスイッチを溶剤貯蔵容器に設
けて、自動操作とする。The above-mentioned 1a78 agents include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ketones, alcohols, and carboxylic acid esters. Normally, an inviscid gas such as N2 gas is used to fill the container, but air may also be used. A selectively permeable membrane, that is, a membrane that allows solvent vapor to pass through but hardly allows MJ for inert gas or air, is selected depending on the solvent. Composite membranes formed on porous supports nIi, polyamide, polyvinylidene fluoride, or polysulfone can be used. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, 1 is an organic solvent storage container, 2 is an organic solvent supply pipe, 3 is an organic solvent take-out pipe, 4 is a take-out pump, 5 is a gas inflow pipe, and 6 is a gas discharge pipe. A shows the equipment added to carry out the present invention. 7 is a blower connected to the exhaust pipe. 8 is an i1 permeable module, in which a membrane separates the primary side (l1ll) and the secondary side (permeation side), and the primary side is communicated with the outlet 1-1 pipe of the air blower a7.9 is a non-permeable gas discharge pipe provided on the primary side, and has a pressure regulating valve IO. 11 is a vacuum suction machine, whose suction side is connected to the secondary side of the module 8, and its discharge side is connected by a return pipe l2. It is connected to an organic solvent storage container.The vapor of the storage solvent reaches a saturated state under a reduced pressure of several hundred millimeters! Inert gas containing solvent vapor (solvent concentration is l
When the internal pressure of this container increases, the blower 7 and the vacuum suction device 11 are driven. In this case, the primary pressure of the module 8 is set to 100-10
00m+a■, 0 (gauge pressure), secondary pressure 10~3
The pressure regulating valve 10 is set to 00 torr (absolute pressure).
, operates the blower 7 and the vacuum suction machine l1. Blower 7
, by driving the vacuum suction Ia11, the solvent vapor mixed inert gas in the container l is sent to the primary 01 of the module 8,
Due to the selective permselectivity of the membrane, under the differential pressure between the primary side and the secondary side, solvent vapor permeates well through the 11 ta, while inert gas hardly permeates. The high solvent vapor concentration on the side is separated from the non-oily gas. The inert gas with low solvent vapor concentration is released into the atmosphere through the exhaust pipe. The solvent vapor temperature of this gas is usually 0.005% or less, so there is virtually no problem with environmental pollution or solvent loss. The permeate gas on the secondary side of the module has a high solvent concentration, but module 8 and vacuum suction machine I! The pressure is low at 10 to 300 torr, and the temperature after 1 liter of vacuum suction machine is heated to 30 to 80°C, so in any section, the solvent vapor mixed inert gas is It is below the saturation point. This solvent vapor mixed inert gas flows into the upper space of the solvent storage container l through the return pipe 12, and since this space is in a saturated state, the inflow causes supersaturation and condensation, and non-condensable gas is again subjected to the above treatment together with the gas in the container L. Below, this is vf4
1! Repeat this process until the pressure inside the container drops to normal pressure. , stop the vacuum suction machine l1. Normally, the above operations involve driving and
A ratio switch for operating the stop is provided on the solvent storage container for automatic operation.
上記の排ガス処理においては、真空吸引機l1を出た高
溶剤蒸気濃度不活性ガスを溶剤貯蔵容器1に直接戻して
いるが、第2園に示すように、溶剤回収装’It 1
3 (例えば、吸収法、凝縮法あるいは活性炭吸着法等
による回収〉で、そのガス中の溶剤を回収し、回収後の
ガスを戻し管l2により溶剤貯蔵容器1に戻すようにし
てもよい,14は回収溶剤取出管である.また、第3園
に示すように、弁l5、16等の操作により上記何れの
処理方法をも選択できるようにしてもよい.く発明の効
果〉
上述した通り、本発明においては、有a溶剤貯蔵容器内
の溶剤蒸気混合不活性ガスをtJr出することにより容
器内圧力を!+[Tする際、排出ガスを選択透過性膜で
分離し、非透過ガスのみを大気に排出し透過ガスはモジ
ュールで循環処理しており、排出ガス中の溶剤濃度を膜
の選択透過性のために著しく低くできるから(0.00
5%以下)、大気汚染を防止でき、溶剤を効率よく回収
できる.このことは、次の実施例と比較例との対比から
も明らかである.
実施例
有機溶剤にはn−へキサン(25゜Cでの飽和蒸気圧は
160mlg)を使用し、不活性ガスにはN2ガスを使
用した.容器内空間のN.ガス中の溶剤濃度は21’/
V%であった.第1図に示す装置を使用し、モジュール
には膜面積約20m!のスパイラル膜モジュールを、膜
にはシリコーン架橋ポリイミド膜をそれぞれ使用した.
送風機の吐出圧力を1 0 0 mml{to (ゲー
ジ圧)とし、真空吸引機の真空度を150torr (
絶対圧)とし、ガス送り量をOn3/l{rと1 2
m’/H rの間欠送りで、かつ平均流量を5m’/H
rとした.比較例l (直接tJト気法)
第4図に示す装置を使用し、溶剤、不情性ガス、容器に
は実施例とトj1シものを使用した。ガスのtJi出量
はOm’/Ilrと1 2 m3/H rの間欠排出で
あり、平均流量は5m3/tlrである。In the above exhaust gas treatment, the inert gas with high solvent vapor concentration leaving the vacuum suction machine 11 is directly returned to the solvent storage container 1.
3 (For example, recovery by absorption method, condensation method, activated carbon adsorption method, etc.) The solvent in the gas may be recovered, and the recovered gas may be returned to the solvent storage container 1 through the return pipe 12.14 is a recovered solvent extraction pipe.Furthermore, as shown in the third picture, any of the above treatment methods may be selected by operating valves 15, 16, etc. In the present invention, the pressure inside the container is reduced by releasing tJr of the solvent vapor mixed inert gas in the a-containing solvent storage container. is discharged into the atmosphere, and the permeated gas is circulated in the module, and the solvent concentration in the discharged gas can be significantly lowered due to the selective permselectivity of the membrane (0.00
5% or less), can prevent air pollution and efficiently recover solvents. This is also clear from the comparison between the following example and comparative example. Examples n-hexane (saturated vapor pressure at 25°C: 160 mlg) was used as the organic solvent, and N2 gas was used as the inert gas. N of the space inside the container. The concentration of solvent in the gas is 21'/
It was V%. Using the device shown in Figure 1, the module has a membrane area of approximately 20 m! A spiral membrane module was used, and a silicone cross-linked polyimide membrane was used for the membrane.
The discharge pressure of the blower is 100 mml {to (gauge pressure), and the degree of vacuum of the vacuum suction machine is 150 torr (
absolute pressure), and the gas feed rate is On3/l{r and 1 2
Intermittent feed of m'/H r and average flow rate of 5 m'/H
It was set as r. Comparative Example 1 (Direct tJ air method) The apparatus shown in FIG. 4 was used, and the same solvent, inert gas, and container as in the example were used. The gas output amount tJi is Om'/Ilr and 1 2 m3/H r, and the average flow rate is 5 m3/tlr.
比較例2(粘性炭吸着法)
上記比較例1 (iiT.接排気法)において、排気管
に活性炭吸着器(4〜8メッシュの粒状粘性炭約200
iを充填)を取付けた以外、上記比較例lと同じとした
.
これら実施例、比較例のそれぞれにおいて、排気ガス中
の溶剤蒸気濃度(平均)を測定し、その測定値から溶剤
回収率を算定したところ、次の通りであり、本発明によ
れば従来例に較べて熔削濃度を著しく低くでき、溶剤を
効率よく回収できることが明らかである.Comparative Example 2 (viscous carbon adsorption method) In the above Comparative Example 1 (iiT. open exhaust method), an activated carbon adsorber (approximately 200 particles of viscous carbon of 4 to 8 mesh) was installed in the exhaust pipe.
The procedure was the same as that of Comparative Example 1 above, except that filling i) was installed. In each of these examples and comparative examples, the solvent vapor concentration (average) in the exhaust gas was measured, and the solvent recovery rate was calculated from the measured value. It is clear that the melting concentration can be significantly lowered and the solvent can be recovered efficiently.
Claims (2)
の上部空間における有機溶剤蒸気混合ガスを排出する方
法において、その排出ガスを選択透過性膜によって低溶
剤濃度非透過ガスと高溶剤濃度透過ガスとに分離し、低
溶剤濃度非透過ガスを排気し、高溶剤濃度透過ガスを有
機溶剤貯蔵容器に戻すことを特徴とする有機溶剤貯蔵容
器の排ガス処理方法。(1) In a method of discharging a mixed gas of organic solvent vapor in the upper space of an organic solvent storage container in order to adjust the internal pressure of the container, the exhaust gas is separated by a selectively permeable membrane into a non-permeable gas with a low solvent concentration and a non-permeable gas with a high solvent concentration. A method for treating exhaust gas from an organic solvent storage container, which comprises separating the gas from the permeated gas, exhausting the non-permeated gas with a low solvent concentration, and returning the permeated gas with a high solvent concentration to the organic solvent storage container.
剤回収装置に導き溶剤を液相回収したうえで有機溶剤貯
蔵容器に戻すことを特徴とする有機溶剤貯蔵容器の排ガ
ス処理方法。(2) A method for treating exhaust gas from an organic solvent storage container according to claim (1), characterized in that the high solvent concentration permeated gas is introduced into a solvent recovery device and the solvent is recovered in a liquid phase before being returned to the organic solvent storage container.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1193240A JP2832372B2 (en) | 1989-07-25 | 1989-07-25 | Exhaust gas treatment method for organic solvent storage container |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1193240A JP2832372B2 (en) | 1989-07-25 | 1989-07-25 | Exhaust gas treatment method for organic solvent storage container |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0356114A true JPH0356114A (en) | 1991-03-11 |
| JP2832372B2 JP2832372B2 (en) | 1998-12-09 |
Family
ID=16304664
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1193240A Expired - Lifetime JP2832372B2 (en) | 1989-07-25 | 1989-07-25 | Exhaust gas treatment method for organic solvent storage container |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2832372B2 (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1995003949A1 (en) * | 1993-07-27 | 1995-02-09 | E.I. Du Pont De Nemours And Company | Membrane closure device |
| US5537911A (en) * | 1992-04-27 | 1996-07-23 | Gkss-Forschungszentrum Geesthacht Gmbh | Method and device for separating gas mixtures formed above liquids |
| US5611841A (en) * | 1995-09-29 | 1997-03-18 | Membrane Technology And Research, Inc. | Vapor recovery process using baffled membrane module |
| US5985002A (en) * | 1997-03-07 | 1999-11-16 | Vapor Systems Technologies, Inc. | Fuel storage system with vent filter assembly |
| US6293996B1 (en) | 1997-03-07 | 2001-09-25 | Vapor Systems Technologies, Inc. | Fuel storage system with vent filter assembly |
| JP2002239532A (en) * | 2001-02-22 | 2002-08-27 | Japan Organo Co Ltd | Liquid chemicals storage tank and water treatment equipment |
| US6953496B2 (en) | 1997-03-07 | 2005-10-11 | Vapor Systems Technologies, Inc. | Sub-atmospheric fuel storage system |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102785871A (en) * | 2011-05-14 | 2012-11-21 | 长兴(广州)精细涂料有限公司 | Organic solvent collection device |
| KR102816668B1 (en) * | 2019-11-28 | 2025-06-02 | 한양대학교 에리카산학협력단 | Vapor permeation device, pervaporation device, and hybrid VOC purification device |
-
1989
- 1989-07-25 JP JP1193240A patent/JP2832372B2/en not_active Expired - Lifetime
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5537911A (en) * | 1992-04-27 | 1996-07-23 | Gkss-Forschungszentrum Geesthacht Gmbh | Method and device for separating gas mixtures formed above liquids |
| WO1995003949A1 (en) * | 1993-07-27 | 1995-02-09 | E.I. Du Pont De Nemours And Company | Membrane closure device |
| US5611841A (en) * | 1995-09-29 | 1997-03-18 | Membrane Technology And Research, Inc. | Vapor recovery process using baffled membrane module |
| US5985002A (en) * | 1997-03-07 | 1999-11-16 | Vapor Systems Technologies, Inc. | Fuel storage system with vent filter assembly |
| US6293996B1 (en) | 1997-03-07 | 2001-09-25 | Vapor Systems Technologies, Inc. | Fuel storage system with vent filter assembly |
| US6953496B2 (en) | 1997-03-07 | 2005-10-11 | Vapor Systems Technologies, Inc. | Sub-atmospheric fuel storage system |
| JP2002239532A (en) * | 2001-02-22 | 2002-08-27 | Japan Organo Co Ltd | Liquid chemicals storage tank and water treatment equipment |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2832372B2 (en) | 1998-12-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4704266B2 (en) | Fuel vapor treatment system | |
| JPS6099192A (en) | Improved process and apparatus for removing hydrocarbon frommixture of air and hydrocarbon vapor | |
| JPH0356114A (en) | Method for treating exhaust gas of organic solvent storage vessel | |
| JP2005000862A (en) | Adsorption apparatus and adsorption method | |
| JP6697535B1 (en) | Radioactive gas treatment equipment, radioactive material treatment system and nuclear reactor equipment | |
| CN208526218U (en) | Volatile organic compounds recyclable device | |
| JPS6320020A (en) | Adsorbing and desorbing method by activated carbon | |
| JP2009160559A (en) | Volatile organic matter recovery equipment | |
| JPH1157372A (en) | Method of recovering hydrocarbon vapor using cooling condensation | |
| JP3241459B2 (en) | Exhaust gas treatment method for tower tanks | |
| JPS5824319A (en) | Treating device for waste gas of fumigation | |
| AU2020219387B2 (en) | Two-stage method for recovering halogenated hydrocarbons | |
| JPH04180811A (en) | Treatment of exhaust gas containing organic vapor | |
| JPH03109912A (en) | Treatment of gas containing organic vapor | |
| JPH10156104A (en) | Membrane deaerator | |
| JPS62244423A (en) | Method for recovering solvent | |
| JPH0356113A (en) | Organic solvent vapor recovery treatment method | |
| JPH0386210A (en) | Treatment of gaseous mixture containing organic solvent | |
| JPS6316030A (en) | Recovery of solvent | |
| JP2926932B2 (en) | Exhaust gas treatment method | |
| JP2007136341A (en) | Carbon dioxide concentration method and apparatus | |
| JPH03288519A (en) | Solvent recovery method | |
| JPH0639834Y2 (en) | Wastewater purification device | |
| JP2504448B2 (en) | Pressure swing adsorption device | |
| KR830000349B1 (en) | Activated Carbon Desorption Device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |