JPH0393110A - superconducting wire - Google Patents
superconducting wireInfo
- Publication number
- JPH0393110A JPH0393110A JP1231192A JP23119289A JPH0393110A JP H0393110 A JPH0393110 A JP H0393110A JP 1231192 A JP1231192 A JP 1231192A JP 23119289 A JP23119289 A JP 23119289A JP H0393110 A JPH0393110 A JP H0393110A
- Authority
- JP
- Japan
- Prior art keywords
- plane
- silver
- crystal
- oxide superconductor
- oxide superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、酸化物超電導体を使用した超電導線材に関す
る。Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting wire using an oxide superconductor.
(従来の技術)
1988年にBa−La−Cu−0系の層状ペロブス力
イト型の酸化物が40K以上の高い臨界温度を有するこ
とが発表されて以来、酸化物系の超電導体が注目を集め
、新材料探索の研究が活発に行われている。(Prior art) Since it was announced in 1988 that Ba-La-Cu-0-based layered perovskite oxides have a high critical temperature of 40K or more, oxide-based superconductors have attracted attention. Research is being actively conducted to collect and search for new materials.
その中でも、液体窒素温度以上の高い臨界温度を有する
Y−Ba−Cu−0系で代表される欠陥ペロプス力イト
型の酸化物超電導体や、at−sr−ca”cu−o系
およびTI−Ba−Ca−Cu−0系の酸化物超電導体
は、冷媒として高価な液体ヘリウムに代えて、安価な液
体窒素を利用できるため、工業的にも重要な価値を有し
ている。Among them, there are defective Peropsite type oxide superconductors represented by the Y-Ba-Cu-0 system which has a high critical temperature higher than the liquid nitrogen temperature, the at-sr-ca"cu-o system and the TI- Ba-Ca-Cu-0-based oxide superconductors have important industrial value because they can use inexpensive liquid nitrogen as a coolant instead of expensive liquid helium.
このような酸化物超電導体のエネルギー分野への応用を
考えた場合、まず線材化することが必要となる。そこで
、各種方法を用いて酸化物超電導体を線材化する試みが
なされている。When considering the application of such oxide superconductors to the energy field, it is first necessary to make them into wires. Therefore, attempts have been made to produce wires from oxide superconductors using various methods.
酸化物超電導体を用いた超電導線材の作製方法としては
、
(a) 金属管内に酸化物超電導体を封入し、これを
線引き加工することによって線材化する方法、
(b) 酸化物超電導体粉末と有機バインダとを混合
し、ノズルから押し出して線材化する方法、
(e) 金属テープ上に溶射法や各種膜形成方法によ
って酸化物超電導体層を形成し、線材化する方法
などが知られている。Methods for producing a superconducting wire using an oxide superconductor include (a) a method of enclosing an oxide superconductor in a metal tube and drawing it into a wire; (b) a method of forming an oxide superconductor powder into a wire; (e) A method of forming an oxide superconductor layer on a metal tape by thermal spraying or various film forming methods and forming a wire into a wire. .
これら酸化物超電導体を用いた超電導線材の臨界電流密
度は徐々に向上する傾向にあり、上記方法の中で特に(
C)の方法が配同性に優れた酸化物超電導体層が得やす
く、超電導特性の向上が期待できることから特に注目を
集めている。The critical current density of superconducting wires using these oxide superconductors tends to gradually improve, and among the above methods, especially (
Method C) is attracting particular attention because it is easy to obtain an oxide superconductor layer with excellent coordination properties and is expected to improve superconducting properties.
しかしながら、上記(e)の方法を適用し、直接金属基
体上に酸化物超電導体層をスバッタ法や蒸着法などで形
成したのでは、κ向した酸化物超電導体層を得ることは
非常に困難である。たとえば耐熱材料であるハステロイ
系合金からなる基体上にスパッタ法を用いて酸化物超電
導体層を形成することが試みられているが、基体と酸化
物超電導体が反応して界面に反応物を生成したり、また
配向膜が得られないなどの不都合が生じる。However, if method (e) above is applied and an oxide superconductor layer is directly formed on a metal substrate by a sputtering method or a vapor deposition method, it is very difficult to obtain an oxide superconductor layer with a κ orientation. It is. For example, attempts have been made to use sputtering to form an oxide superconductor layer on a substrate made of Hastelloy alloy, which is a heat-resistant material, but the substrate and oxide superconductor react and produce reactants at the interface. Inconveniences may occur, such as the formation of an oriented film or the inability to obtain an alignment film.
そこで、配向層を得るための現実的な手法としては、酸
化物超電導体と格子定数が近似したMgO層などを、金
属基体上にバッファ層として形成し、このバッファ層上
に酸化物超電導体層を薄膜形成する方法が採用されてい
る。Therefore, as a practical method for obtaining an oriented layer, a layer such as MgO having a lattice constant similar to that of the oxide superconductor is formed as a buffer layer on a metal substrate, and an oxide superconductor layer is formed on the buffer layer. A method of forming a thin film has been adopted.
このようなバッファ層を介した酸化物超電導体層の形成
方法によれば、界面での反応を防ぐことができると共に
、配向した酸化物超電導体層が得られ、臨界電流密度の
向上を図ることができる半面、酸化物超電導体層と金属
基体との界面にMgOのような絶縁層が介在するため、
酸化物超電導体層と金属基体との電気的な導通をとるこ
とができないという欠点がある。したがって、使用中に
酸化物超電導体層の一部が常電導状態に転移した場合に
、金属基体へ電流をバイパスさせて超電導体を保護する
、いわゆる安定化材として金属基体を機能させることが
できない。According to such a method of forming an oxide superconductor layer via a buffer layer, reactions at the interface can be prevented, an oriented oxide superconductor layer can be obtained, and the critical current density can be improved. On the other hand, since an insulating layer such as MgO is present at the interface between the oxide superconductor layer and the metal substrate,
There is a drawback that electrical continuity cannot be established between the oxide superconductor layer and the metal substrate. Therefore, if part of the oxide superconductor layer transitions to a normal conductive state during use, the metal substrate cannot function as a so-called stabilizing material that bypasses the current to the metal substrate and protects the superconductor. .
(発明が解決しようとする課題〉
上述したように、従来の薄膜法を適用した超電導線材で
は、酸化物超電導体の配向層を得るためにMgOなどの
バッファ層を介在させているために、金属基体を安定化
材として機能させることができないという難点があった
。(Problems to be Solved by the Invention) As mentioned above, in superconducting wires to which the conventional thin film method is applied, a buffer layer such as MgO is interposed in order to obtain an oriented layer of oxide superconductors. There was a drawback in that the substrate could not function as a stabilizing material.
本発明は、このような従来技術の課題に対処するために
なされたもので、金属基体上に配向性に優れた酸化物超
電導体層を形成し、臨界電流密度の向上を図ると共に、
金属基体を安定化材として機能させることを可能にした
超電導線材を提供することを目的とするものである。The present invention was made to address the problems of the prior art, and aims to improve critical current density by forming an oxide superconductor layer with excellent orientation on a metal substrate.
The object of the present invention is to provide a superconducting wire that allows a metal base to function as a stabilizing material.
[発明の構成]
(課題を解決するための手段)
すなわち本発明は、長尺な金属基体と、この金属基体上
に長手方向に連続して形成された酸化物超電導体層との
複合体からなる超電導線材において、前記金属基体の少
なくとも酸化物超電導体層形成面は、銀の(100)結
晶面および/または(lie)結晶面が、前記酸化物超
電導体層形成面に対して平行に配向した面により構成さ
れていることを特徴としている。[Structure of the Invention] (Means for Solving the Problems) That is, the present invention is based on a composite of a long metal substrate and an oxide superconductor layer formed continuously in the longitudinal direction on the metal substrate. In the superconducting wire, at least the oxide superconductor layer forming surface of the metal substrate has a (100) crystal plane and/or a (lie) crystal plane of silver oriented parallel to the oxide superconductor layer forming surface. It is characterized by being made up of two sides.
酸化物超電導体としては、多数のものが知られているが
、本発明においては希土類元素含有のペロブスカイト型
の酸化物超電導体や、旧−Sr−Ca−Cu−0系酸化
物超電導体、TI−Ba−Ca−Cu−0系酸化物超電
導体などが適用される。Many oxide superconductors are known, but in the present invention, rare earth element-containing perovskite oxide superconductors, old -Sr-Ca-Cu-0 based oxide superconductors, TI -Ba-Ca-Cu-0 based oxide superconductor etc. are applied.
希土類元素を含有しベロブスカイト型構造を有する酸化
物超電導体は、超電導状態を実現できるものであればよ
く、たとえばREMCuO 系2 3 7−δ
(REは、Y SLas Ses Nd, 81% E
LISGdSDF% HO、Ers Ttss YbS
Luなどの希土類元素から選ばれた少なくとも1種の元
素を、HはBas Sr, Caから選ばれた少なくと
も 1種の元素を、δは酸素欠陥を表し通常1以下の数
、Cuの一部はT1% V s Cr、Mn,Fe,
CO% Niq Znなどで置換可能。)の酸化物など
が例示される。なお、希土類元素は広義の定義とし、S
e%YおよびLa系を含むものとする。The oxide superconductor containing a rare earth element and having a berovskite structure may be one that can realize a superconducting state, for example, REMCuO 2 3 7-δ (RE is Y SLas Ses Nd, 81% E
LISGdSDF% HO, Ers Ttss YbS
At least one element selected from rare earth elements such as Lu, H is at least one element selected from Bas, Sr, Ca, δ represents an oxygen defect, usually a number of 1 or less, and a part of Cu is T1% V s Cr, Mn, Fe,
Can be replaced with CO% Niq Zn, etc. ) are exemplified. In addition, rare earth elements are defined in a broad sense, and S
It shall include e% Y and La systems.
また、Bl−Sr−Ca−Cu−0系の酸化物超電導体
は、化学式: Bl2 Srz Ca2Cu30x
−−= ( I ):Biz(Sr.Ca)xcu
;+Ox −−(n)(式中、Blの一部はpbな
どで置換可能。)などで表されるものであり、TI−B
a−Ca−Cu−0系酸化物超電導体は、
化学式: Tl2 Ba2Ca2Cux Ox
= (III):TI2(Ba.Ca)3Cu20x
−(IV)などで表されるものである。In addition, the Bl-Sr-Ca-Cu-0-based oxide superconductor has the chemical formula: Bl2 Srz Ca2Cu30x
--=(I):Biz(Sr.Ca)xcu
;+Ox --(n) (in the formula, a part of Bl can be replaced with pb etc.), and TI-B
The a-Ca-Cu-0 based oxide superconductor has the chemical formula: Tl2 Ba2Ca2Cux Ox
= (III):TI2(Ba.Ca)3Cu20x
-(IV) etc.
本発明に使用される金属基体は、少なくとも酸化物超電
導体層の形成面が銀により構成されているものであり、
金属基体全体を銀で構成してもよいし、また銀と固溶し
にくい鉄、二・ツケル、クロムおよびこれらの合金から
なる芯村上に銀層を形成したものを用いることも可能で
ある。また、金属基体の形状としては、テープ状、ワイ
ヤ状など各種形状のものを用いることが可能である。The metal substrate used in the present invention is one in which at least the surface on which the oxide superconductor layer is formed is made of silver,
The entire metal substrate may be made of silver, or it is also possible to use one in which a silver layer is formed on a core made of iron, carbon dioxide, chromium, or alloys thereof, which are difficult to form a solid solution with silver. Moreover, various shapes such as a tape shape and a wire shape can be used as the shape of the metal base.
そして、これらいずれの場合においても酸化物超電導体
層の形成面を、銀の(100)結晶面または(11G)
結晶面が形成面に対して平行に配向した面、もしくはこ
れらの混7Eシた配向面により構成する。In any of these cases, the formation surface of the oxide superconductor layer is the (100) crystal plane of silver or the (11G)
It is constituted by a plane in which the crystal plane is oriented parallel to the formation plane, or a mixed oriented plane.
このように、酸化物超電導体層の形威面を銀の(100
)結晶面や(11G)結晶面とすることによって、この
形成面に対してC面配向させた酸化物超電導体層を得る
ことが可能となり、特に(100)結晶面が酸化物超電
導体層を配向させるのに適している。In this way, the shape and appearance of the oxide superconductor layer can be changed to silver (100
) crystal plane or (11G) crystal plane, it is possible to obtain an oxide superconductor layer that is C-plane oriented with respect to this formation plane. Suitable for orientation.
なお、銀と他の金属との複合体によって金属基体を構成
する際の銀層の厚さは特に限定されるものではないが、
銀の配向性を考慮して実用的にはlμ膳以上とすること
が好ましい。また、複合方法としては、芯材となる金属
部材表面に銀層をメッキ法や各種膜形成・法によって形
成したり、機械的に芯材と銀とを一体化するなどの方法
を採用することができる。Note that the thickness of the silver layer when forming the metal substrate from a composite of silver and other metals is not particularly limited;
Considering the orientation of silver, it is practically preferable to set it to 1μ or more. In addition, as a composite method, methods such as forming a silver layer on the surface of the metal member serving as the core material by plating or various film formation methods, or mechanically integrating the core material and silver may be adopted. I can do it.
これら銀の結晶面の配向度は、(100)結晶面もしく
は(110)結晶面、あるいはこれらが混在した状態で
、酸化物超電導体層の形成面に対して60%以上平行に
配向させる必要があり、特に銀の(100)結晶面が8
0%以上となるように配向させることが好ましい。The degree of orientation of these silver crystal planes must be 60% or more parallel to the formation plane of the oxide superconductor layer, with the (100) crystal plane, (110) crystal plane, or a mixture thereof. Yes, especially the (100) crystal plane of silver is 8
The orientation is preferably 0% or more.
このような銀の(100)結晶面や( 1.10 )結
晶面による配向面は、配向面方向に対して銀に圧延加工
を施し、すべり面によって結晶方位を揃えることによっ
て得ることができる。そして、圧延加工によって得られ
る結晶面は、(11G)結晶面が揃いやすいため、この
後、熱処理を施すことによって再結晶させることが好ま
しい。この再結晶化によって、銀の結晶粒が粗大化する
と共に、(100)結晶面の配向度が向上し、より酸化
物超電導体の結晶方位を配向しやすくなる。Such a (100) crystal plane or (1.10) crystal plane of silver can be obtained by rolling silver in the direction of the oriented plane and aligning the crystal orientation by a slip plane. Since the crystal planes obtained by rolling are likely to have (11G) crystal planes aligned, it is preferable to recrystallize the material by subsequently performing heat treatment. This recrystallization coarsens the silver crystal grains and improves the degree of orientation of the (100) crystal plane, making it easier to orient the crystal orientation of the oxide superconductor.
また、上記少なくとも表面を銀により構成した金属基体
への酸化物超電導体層の形成方法としては、物理的蒸着
法であるスバッタ法、反応性蒸着法、レーザ蒸着法、あ
るいは化学的蒸着法であるCVD法、MOCVD法など
、各種薄膜形成方法を用いることが可能である。The method for forming the oxide superconductor layer on the metal substrate having at least the surface made of silver is a physical vapor deposition method such as a sputtering method, a reactive vapor deposition method, a laser vapor deposition method, or a chemical vapor deposition method. Various thin film forming methods such as CVD method and MOCVD method can be used.
(作 用)
本発明の超電導線材においては、金属基体の酸化物超電
導体形成面が銀の(100)結晶面もしくは(11G)
結晶面による配向面により構成されている。これら銀の
結晶面の格子定数(a軸−4.09A)は、酸化物超電
導体結晶のa軸およびb軸の格子定数(3.8λ〜3,
9入)に近似しているため、上記銀の結晶面上に酸化物
超電導体層を薄膜形成法により形成することによって、
金属基体表面に直接酸化物超電導体結晶のC面を配向さ
せた酸化物超電導体層を得ることが可能となる。したが
って、臨界電流密度の向上が図れると共に、金属基体を
超電導体に対する安定化材として機能させることが可能
となる。(Function) In the superconducting wire of the present invention, the oxide superconductor forming surface of the metal base is a silver (100) crystal plane or a (11G) crystal plane.
It is composed of oriented planes based on crystal planes. The lattice constants of these silver crystal planes (a-axis - 4.09A) are the lattice constants of the a- and b-axes of the oxide superconductor crystal (3.8λ~3,
9), by forming an oxide superconductor layer on the silver crystal plane using a thin film formation method,
It becomes possible to obtain an oxide superconductor layer in which the C-plane of the oxide superconductor crystal is oriented directly on the surface of the metal substrate. Therefore, the critical current density can be improved, and the metal substrate can function as a stabilizing material for the superconductor.
(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.
実施例1
まず、銀素材に対して一定方向に圧延加工を施しつつ線
引き加工を行い、幅10msX厚さ lmsの長尺なテ
ープ状基体を作製した。このようにして得た銀製テープ
状基体の主面(圧力印加面)の結晶方位をX線回折によ
り解析したところ、主面長手方向に対してほぼ平行とな
るように(11G)面が配向していた。Example 1 First, a silver material was rolled and drawn in a certain direction to produce a long tape-like substrate with a width of 10 ms and a thickness of 1 ms. When the crystal orientation of the main surface (pressure application surface) of the silver tape-shaped substrate thus obtained was analyzed by X-ray diffraction, the (11G) plane was oriented almost parallel to the longitudinal direction of the main surface. was.
次いで、この銀製テープ状基体に対してTOO℃×60
分の条件で再結晶化のための熱処理を施した。Next, this silver tape-shaped substrate was heated at TOO°C x 60°C.
Heat treatment for recrystallization was carried out under conditions of 10 minutes.
熱処理後の同一面の結晶方位および結晶粒の大きさをX
線回折により調べたところ、(100)面が配向してお
り、その配向度は80%であり、他は(110)面であ
った。また、結晶粒は0.5厘一〜2msに粗大化して
いた。The crystal orientation and crystal grain size on the same plane after heat treatment are
When examined by line diffraction, it was found that the (100) plane was oriented, with a degree of orientation of 80%, and the rest were (110) planes. Moreover, the crystal grains were coarsened to 0.5 ms to 2 ms.
なお、この結晶面の配向度は、X線回折による各結晶面
の強度比により測定した結果である。Note that the degree of orientation of this crystal plane is the result of measurement based on the intensity ratio of each crystal plane by X-ray diffraction.
次に、上記銀製テープ状基体を(100)面による配向
面が蒸着源に対向するよう成膜装置内に設置し、この銀
製テープ状基体を約700℃に加熱しつつ、Y%Ha%
Cuをそれぞれ加熱蒸発させ、膜厚モニターで膜厚を1
μ一に制御しながら銀製テープ状基体の(100)面に
よる配向面上に連続して堆積させて超電導線材を作製し
た。Next, the above-mentioned silver tape-shaped substrate was installed in a film forming apparatus so that the (100) oriented plane faced the vapor deposition source, and while heating this silver tape-shaped substrate to about 700°C, Y%Ha%
Heat and evaporate Cu, and measure the film thickness by 1 on a film thickness monitor.
A superconducting wire was produced by continuously depositing the material on the (100) oriented surface of a silver tape-shaped substrate while controlling the μ to be constant.
なお、成膜の際に銀製テーブ状基体の表面近傍に酸素を
ノズルから吹付け、さらに高周波で励起しつつ供給した
。また、各蒸発元素はクラスター化させてイオン化し、
加速して着膜させると共に、膜組成がYBa2Cu30
7−δとなるように各蒸発元素の量を調整した。Note that during film formation, oxygen was blown from a nozzle near the surface of the silver tabular substrate, and was further supplied while being excited by high frequency. In addition, each evaporated element is clustered and ionized,
The film is deposited at an accelerated rate, and the film composition is YBa2Cu30.
The amount of each evaporated element was adjusted to be 7-δ.
このようにして得た超電導線材の酸化物超電導体層の結
晶方位をX線回折により解析したところ、第1図に示す
ように、銀製テープ状基体の(100)面による配向面
においてC面が平行に配向されていることを確認した。When the crystal orientation of the oxide superconductor layer of the superconducting wire obtained in this way was analyzed by X-ray diffraction, it was found that the C plane was aligned with the (100) plane of the silver tape-shaped substrate, as shown in Figure 1. It was confirmed that they were oriented in parallel.
また超電導特性は、臨界温度が85Kで、77Kにおけ
る臨界電流密度はl×10’A/cjであった。Further, regarding the superconducting properties, the critical temperature was 85K, and the critical current density at 77K was l×10'A/cj.
実施例2
芯材としてニッケルを用い、まずニッケル素材の表面に
銀をメッキにより被覆し、次いでこの複合材に対して一
定方向に圧延加工を施しつつ線引き加工を行い、幅1h
mX厚さ lllI1の長尺なテープ状基体を作製した
。なお、表面の銀層の厚さは5μ一であった。次いで、
この複合テープ状基体に対して700℃×30分の条件
で再結晶化のための熱処理を施した後、銀表面の結晶方
位および結晶粒の大きさをX線回折により調べたところ
、結晶粒が1〜2I朧に粗大化していると共に、実施例
1と同様に主面長手方向に対して平行に(100)面が
配向しており、その配向度は70%であった。Example 2 Using nickel as the core material, the surface of the nickel material was first coated with silver by plating, and then this composite material was rolled in a certain direction and wire-drawn to a width of 1 h.
A long tape-like substrate having a thickness of m×1111 was produced. The thickness of the silver layer on the surface was 5 μm. Then,
After heat-treating this composite tape-shaped substrate for recrystallization at 700°C for 30 minutes, the crystal orientation and crystal grain size of the silver surface were examined by X-ray diffraction. was coarsened to 1 to 2I hazy, and the (100) plane was oriented parallel to the longitudinal direction of the principal surface, and the degree of orientation was 70%.
次に、上記複合テープ状基体をその銀層が蒸着源に対向
するよう成膜装置内に設置し、実施例1と同一条件で厚
さ約lμ圃のY−Ba−Cu−0系酸化物超電導体層を
連続して形威して超電導線材を作製した。Next, the composite tape-shaped substrate was placed in a film forming apparatus so that the silver layer faced the vapor deposition source, and a Y-Ba-Cu-0 based oxide with a thickness of about 1μ was deposited under the same conditions as in Example 1. A superconducting wire was fabricated by continuously forming superconducting layers.
このようにして得た超電導線材の酸化物超電導体層の結
晶方位をX線回折により解析したところ、銀層表面に対
して酸化物超電導体のC面が平行に配向されていること
を確認した。また超電導特性は、臨界温度が85Kで、
77Kにおける臨界電流密度は8XlO”^/cノであ
った。When the crystal orientation of the oxide superconductor layer of the superconducting wire thus obtained was analyzed by X-ray diffraction, it was confirmed that the C-plane of the oxide superconductor was oriented parallel to the silver layer surface. . In addition, the superconducting property has a critical temperature of 85K,
The critical current density at 77K was 8XlO"^/c.
比較例1
まず、板状のステンレス芯材の表面に銀を電気メッキに
よって被覆して複合金属基体を作製した。Comparative Example 1 First, a composite metal substrate was prepared by coating the surface of a plate-shaped stainless steel core material with silver by electroplating.
得られた複合金属基体の銀層の結晶方位をX線回折によ
り解析したところ、銀の結晶面は(Ill)方向に配向
していた。When the crystal orientation of the silver layer of the obtained composite metal substrate was analyzed by X-ray diffraction, the crystal plane of silver was oriented in the (Ill) direction.
次に、上記複合基体の銀層上に実施例1と同一条件でY
−Ba−Cu−0系酸化物超電導体層を形成して超電導
線材を作製した。Next, Y was applied on the silver layer of the composite substrate under the same conditions as in Example 1.
A superconducting wire was produced by forming a -Ba-Cu-0 based oxide superconductor layer.
得られた酸化物超電導体層は、82Kで超電導状態を示
したが、その結晶方位をX線回折によって解析したとこ
ろ、粉末X線回折パターンと同様な回折ピークが得られ
、特にC面の配向は認められなかった。The obtained oxide superconductor layer exhibited a superconducting state at 82K, but when its crystal orientation was analyzed by X-ray diffraction, diffraction peaks similar to the powder X-ray diffraction pattern were obtained, and in particular, the C-plane orientation was observed. was not recognized.
[発明の効果]
以上の実施例からも明らかなように、本発明の超電導線
材は、酸化物超電導体の超電導電流が流れやすいC面が
金属基体の長手方向に配向したものとなり、しかもこの
ような配同性を有する酸化物超電導体層が金属基体上に
直接形成されたものである。したがって、臨界電流密度
のような超電導特性に優れると共に、金属基体が安定化
材として機能するため、安定して超電導特性を発揮させ
ることが可能となる。[Effects of the Invention] As is clear from the above examples, the superconducting wire of the present invention is such that the C-plane of the oxide superconductor through which superconducting current easily flows is oriented in the longitudinal direction of the metal base. An oxide superconductor layer having a specific coordination property is formed directly on a metal substrate. Therefore, it has excellent superconducting properties such as critical current density, and since the metal substrate functions as a stabilizing material, it is possible to stably exhibit superconducting properties.
【図面の簡単な説明】
第1図は本発明の一実施例の超電導線材のX線回折結果
を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the results of X-ray diffraction of a superconducting wire according to an embodiment of the present invention.
Claims (1)
連続して形成された酸化物超電導体層との複合体からな
る超電導線材において、 前記金属基体の少なくとも酸化物超電導体層形成面は、
銀の(100)結晶面および/または(110)結晶面
が、前記酸化物超電導体層形成面に対して平行に配向し
た面により構成されていることを特徴とする超電導線材
。(1) In a superconducting wire consisting of a composite of a long metal substrate and an oxide superconductor layer formed continuously in the longitudinal direction on the metal substrate, at least the oxide superconductor layer is formed on the metal substrate. The surface is
A superconducting wire characterized in that a (100) crystal plane and/or a (110) crystal plane of silver is constituted by a plane oriented parallel to the oxide superconductor layer forming plane.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1231192A JP2877367B2 (en) | 1989-09-05 | 1989-09-05 | Superconducting wire |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1231192A JP2877367B2 (en) | 1989-09-05 | 1989-09-05 | Superconducting wire |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0393110A true JPH0393110A (en) | 1991-04-18 |
| JP2877367B2 JP2877367B2 (en) | 1999-03-31 |
Family
ID=16919780
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1231192A Expired - Lifetime JP2877367B2 (en) | 1989-09-05 | 1989-09-05 | Superconducting wire |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2877367B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07105750A (en) * | 1993-10-08 | 1995-04-21 | Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai | Superconducting wire |
| EP0734081A1 (en) * | 1995-03-23 | 1996-09-25 | Hitachi, Ltd. | Oxide superconducting wire and manufacturing method |
| US6316391B1 (en) | 1994-09-20 | 2001-11-13 | Hitachi, Ltd. | Oxide superconducting wire and method of manufacturing the same |
| WO2005015575A1 (en) * | 2003-08-06 | 2005-02-17 | Sumitomo Electric Industries, Ltd. | Superconducting wire and its production method |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3521182B2 (en) | 1999-02-26 | 2004-04-19 | 株式会社東芝 | Oxide superconducting wire and superconducting device |
-
1989
- 1989-09-05 JP JP1231192A patent/JP2877367B2/en not_active Expired - Lifetime
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07105750A (en) * | 1993-10-08 | 1995-04-21 | Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai | Superconducting wire |
| US6316391B1 (en) | 1994-09-20 | 2001-11-13 | Hitachi, Ltd. | Oxide superconducting wire and method of manufacturing the same |
| EP0734081A1 (en) * | 1995-03-23 | 1996-09-25 | Hitachi, Ltd. | Oxide superconducting wire and manufacturing method |
| WO2005015575A1 (en) * | 2003-08-06 | 2005-02-17 | Sumitomo Electric Industries, Ltd. | Superconducting wire and its production method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2877367B2 (en) | 1999-03-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6226858B1 (en) | Method of manufacturing an oxide superconductor wire | |
| US6383989B2 (en) | Architecture for high critical current superconducting tapes | |
| US7781376B2 (en) | High temperature superconducting wires and coils | |
| US8142881B2 (en) | Mesh-type stabilizer for filamentary coated superconductors | |
| JPH11504612A (en) | Structure having an effective biaxially oriented structure and method for producing the structure | |
| JP2002203439A (en) | Tape-shaped oxide superconductor | |
| EP1388899A2 (en) | Oxide superconducting wire | |
| JP2711253B2 (en) | Superconducting film and method for forming the same | |
| JP5799081B2 (en) | Thick oxide film with single layer coating | |
| US6349226B1 (en) | Oxide super conductive wire and a super conductive device | |
| CA2037481C (en) | Method of preparing oxide superconducting film | |
| US6316391B1 (en) | Oxide superconducting wire and method of manufacturing the same | |
| Xu et al. | A review of coated conductor development | |
| Watanabe et al. | High rate deposition by PLD of YBCO films for coated conductors | |
| JPH10507590A (en) | Multilayer composite and method of manufacture | |
| JPH0393110A (en) | superconducting wire | |
| JP5415696B2 (en) | Thick film superconducting film with improved functions | |
| JP2008514545A5 (en) | ||
| JP2813287B2 (en) | Superconducting wire | |
| US7445808B2 (en) | Method of forming a superconducting article | |
| JPH0773759A (en) | Method for producing oxide superconducting tape having stabilizing layer | |
| JP3099891B2 (en) | Superconducting material | |
| JP2919955B2 (en) | Superconducting member manufacturing method | |
| US6240620B1 (en) | Making of bismuth 2212 superconducting wire or tape | |
| EP1420088A1 (en) | High-temperature superconductive film having flat surface |