JPH10301026A - Optical system having diffractive optical element - Google Patents
Optical system having diffractive optical elementInfo
- Publication number
- JPH10301026A JPH10301026A JP12633697A JP12633697A JPH10301026A JP H10301026 A JPH10301026 A JP H10301026A JP 12633697 A JP12633697 A JP 12633697A JP 12633697 A JP12633697 A JP 12633697A JP H10301026 A JPH10301026 A JP H10301026A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- deformation
- diffractive optical
- correcting
- diffraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は回折光学素子を有し
た光学系に関し、例えば回折光学素子としてバイナリ型
の回折光学素子を用い、該バイナリ型の回折光学素子
(以下「回折光学素子」ともいう。)を光学系中に配置
したときの自重変形や鏡筒おさえ変形等による光学性能
の低下を非球面を用いて補正することによって光学性能
を良好に維持するようにした各種の光学系に好適なもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system having a diffractive optical element, for example, using a binary diffractive optical element as the diffractive optical element, and using the binary diffractive optical element (hereinafter also referred to as "diffractive optical element"). Is suitable for various optical systems in which the optical performance is maintained well by compensating for the deterioration of the optical performance due to its own weight deformation and lens barrel deformation when the lens is disposed in the optical system by using an aspherical surface. It is something.
【0002】[0002]
【従来の技術】近年、光の回折現象を利用した回折光学
素子を用いた光学系が種々と提案されている。回折光学
素子としては、例えばフレネルゾーンプレート、回折格
子、ホログラム等が知られている。2. Description of the Related Art In recent years, various optical systems using a diffractive optical element utilizing a light diffraction phenomenon have been proposed. As a diffractive optical element, for example, a Fresnel zone plate, a diffraction grating, a hologram and the like are known.
【0003】回折光学素子は、入射波面を定められた波
面に変換する光学素子として用いられている。この回折
光学素子は屈折型レンズにはない特長を持っている。例
えば、屈折型レンズと逆の分散値を有すること、実質的
には厚みを持たないので光学系がコンパクトになること
等の特長を持っている。[0003] A diffractive optical element is used as an optical element for converting an incident wavefront into a predetermined wavefront. This diffractive optical element has features not found in refraction lenses. For example, it has features such as having a dispersion value opposite to that of a refraction lens, and having a compact optical system because it has substantially no thickness.
【0004】一般に回折光学素子の形状としてバイナリ
型の形状にするとその作製に半導体素子の製造技術が適
用可能となり、微細なピッチも比較的容易に実現するこ
とができる。この為、ブレーズド形状を階段形状で近似
したバイナリ型の回折光学素子に関する研究が最近盛ん
に進められている。In general, when a diffractive optical element is formed into a binary shape, a semiconductor element manufacturing technique can be applied to its manufacture, and a fine pitch can be realized relatively easily. For this reason, research on a binary diffractive optical element in which a blazed shape is approximated by a step shape has been actively pursued recently.
【0005】図8はバイナリ型の回折光学素子の説明図
である。同図のバイナリ型の回折光学素子は図8(A)
に示す平凸型屈折型レンズ201の形状に対し、波長の
整数倍の光路差を与える部分を取り除き、図8(B)に
示すような断面形状を有する回折光学素子(フレネルレ
ンズ)202を、更に波長の数分の一の厚さで形状を量
子化して図8(C)のように階段状の形状構造で近似す
ることによって回折光学素子204を作製している。FIG. 8 is an explanatory diagram of a binary diffractive optical element. The binary diffractive optical element shown in FIG.
The portion giving an optical path difference of an integral multiple of the wavelength to the shape of the plano-convex refraction lens 201 shown in FIG. 8 is removed, and a diffractive optical element (Fresnel lens) 202 having a sectional shape as shown in FIG. Further, the diffractive optical element 204 is manufactured by quantizing the shape with a thickness of a fraction of the wavelength and approximating the shape with a step-like shape structure as shown in FIG.
【0006】ここで、図中203,205が透明な基板
であり、その表面に微細な形状を有する回折光学素子2
02,204が形成されている。Here, reference numerals 203 and 205 in the figure denote transparent substrates, and the diffractive optical element 2 having a fine shape on its surface.
02, 204 are formed.
【0007】図9は従来の4段構造のバイナリ型の回折
光学素子の製造方法の説明図である。図中、300は透
明なガラス基板(屈折率:n)、301はレジスト、3
02は第1の露光に用いるためのマスク、303は露光
光を表す。尚ここでは、レジスト301としてはポジ型
を仮定している。FIG. 9 is an explanatory view of a conventional method for manufacturing a binary diffractive optical element having a four-stage structure. In the figure, 300 is a transparent glass substrate (refractive index: n), 301 is a resist,
02 denotes a mask used for the first exposure, and 303 denotes exposure light. Here, it is assumed that the resist 301 is a positive type.
【0008】まず、プロセスAにおいてマスク302の
パターンが露光光303によってレジスト301上に転
写される。プロセスBにおいてはレジスト301の現像
が行なわれ、プロセスCにおいてはガラス基板300へ
のエッチングが行われる。そしてプロセスDにおいて、
基板300上の不要なレジストを除去することによっ
て、2段構造のバイナリ型回折光学素子が完成する。First, in process A, a pattern of a mask 302 is transferred onto a resist 301 by exposure light 303. In process B, development of the resist 301 is performed, and in process C, etching of the glass substrate 300 is performed. And in process D,
By removing unnecessary resist on the substrate 300, a binary diffractive optical element having a two-stage structure is completed.
【0009】ここでエッチングの深さd1はバイナリ型
の回折光学素子を使用する際の波長をλとして、 d1=λ/2(n−1) により決定される。Here, the etching depth d1 is determined by d1 = λ / 2 (n−1), where λ is the wavelength when a binary diffractive optical element is used.
【0010】次に2段構造のバイナリ型の回折光学素子
が形成されたガラス基板300に対して改めてレジスト
304を塗布し、プロセスEにおいてマスク305を用
いた第2の露光を行う。マスク305上のパターンはマ
スク302のパターンの半分のピッチを有しており、そ
の遮光部の端を2段バイナリ構造の端に正確に位置合わ
せをして露光を行うことにより、プロセスFにおける現
像処理の後は図示するようなレジストパターンが形成さ
れる。Next, a resist 304 is again applied to the glass substrate 300 on which the binary diffractive optical element having the two-stage structure is formed, and a second exposure using the mask 305 is performed in the process E. The pattern on the mask 305 has a half pitch of the pattern of the mask 302, and the exposure in the process F is performed by accurately aligning the edge of the light shielding portion with the edge of the two-stage binary structure and performing exposure. After the processing, a resist pattern as shown is formed.
【0011】次にプロセスGにおいて2回目のエッチン
グを行ない、プロセスHにおいて不要レジストの除去を
行うことにより、4段バイナリ型の回折光学素子が完成
する。ここで2回目のエッチングにおけるエッチング深
さd2は d2=λ/4(n−1) により決定される。Next, a second etching is performed in process G, and unnecessary resist is removed in process H, thereby completing a four-stage binary diffractive optical element. Here, the etching depth d2 in the second etching is determined by d2 = λ / 4 (n−1).
【0012】ここでの説明は4段構造に対して行った
が、上記のプロセスを繰り返すことで、8段,16段構
造のバイナリ型の回折光学素子が作製可能なことは周知
のとおりである。Although the description here has been made for a four-stage structure, it is well known that a binary diffractive optical element having an eight-stage or sixteen-stage structure can be manufactured by repeating the above process. .
【0013】前述した方法では、作製することの可能な
階段の段数が2n (n:自然数)に限られてしまうが、
使用するマスクの数とパターン線幅を自由に選択するこ
とによって、任意の段数から成るバイナリ型の回折光学
素子を作製することが可能になる。In the above-described method, the number of steps that can be manufactured is limited to 2 n (n: natural number).
By freely selecting the number of masks to be used and the pattern line width, a binary diffractive optical element having an arbitrary number of steps can be manufactured.
【0014】尚、形状を階段状に近似することによって
回折効率はある程度低下するが、8段の近似で約95
%、16段近似で約99%の回折効率が得られ、実用上
は問題なく使用できる。Although the diffraction efficiency is reduced to some extent by approximating the shape in a stepwise manner, it is approximately 95% in approximation of eight steps.
%, A diffraction efficiency of about 99% is obtained by approximation of 16 steps, and it can be used without any problem in practical use.
【0015】[0015]
【発明が解決しようとする課題】回折光学素子を光学系
の一部に用いると前述した各種の利点が得られる。しか
しながら、このようなバイナリ型の回折光学素子の基板
形状は製作の容易さから平行平面板を用いる場合が多
く、概してその基板の厚みは薄い、また光学系中で用い
られる場合、瞳近傍に配置されることが多く、NAの増
大等の要請により回折光学素子の有効径が非常に大きく
なる場合がある。このように回折光学素子の有効径が大
きく基板の厚さが薄い場合には、自重変形により結像性
能の劣化が起こることが懸念される。When the diffractive optical element is used as a part of the optical system, the above-mentioned various advantages can be obtained. However, the substrate shape of such a binary diffractive optical element often uses a parallel plane plate for ease of manufacture, and the thickness of the substrate is generally thin. When used in an optical system, the substrate is arranged near the pupil. In many cases, the effective diameter of the diffractive optical element becomes extremely large due to a request such as an increase in NA. As described above, when the effective diameter of the diffractive optical element is large and the thickness of the substrate is small, there is a concern that the imaging performance may be deteriorated due to its own weight deformation.
【0016】本発明は、回折光学素子を光学系の一部に
用いたときに、該回折光学素子の変形による結像性能の
劣化を補正し、光学性能を良好に維持することができる
ようにした回折光学素子を有した光学系の提供を目的と
する。According to the present invention, when a diffractive optical element is used as a part of an optical system, deterioration of the imaging performance due to deformation of the diffractive optical element can be corrected, and the optical performance can be maintained satisfactorily. And an optical system having the diffractive optical element.
【0017】[0017]
【課題を解決するための手段】本発明の回折光学素子を
有した光学系は、 (1-1) 入射波面を所定の波面に変換する周期的構造を有
する回折格子を基板面上に設けた回折光学素子と該回折
光学素子を光学系中に配置したときの該回折光学素子の
変形後の光学特性の変化を補正する為の補正用光学素子
とを有していることを特徴としている。An optical system having a diffractive optical element according to the present invention comprises: (1-1) a diffraction grating having a periodic structure for converting an incident wavefront into a predetermined wavefront is provided on a substrate surface. It is characterized by having a diffractive optical element and a correcting optical element for correcting a change in optical characteristics after deformation of the diffractive optical element when the diffractive optical element is arranged in an optical system.
【0018】(1-2) 入射波面を所定の波面に変換する周
期的構造を有する回折格子を基板面上に設けた回折光学
素子と該回折光学素子の自重変形又は鏡筒おさえの変形
に伴う光学特性の変化を補正する為の補正用光学素子と
を有していることを特徴としている。(1-2) A diffractive optical element in which a diffraction grating having a periodic structure for converting an incident wavefront into a predetermined wavefront is provided on a substrate surface and the diffractive optical element is caused by its own weight deformation or deformation of a lens barrel. A correction optical element for correcting a change in optical characteristics.
【0019】[0019]
【発明の実施の形態】図1は本発明の実施形態1の要部
断面図である。図中、101は回折光学素子であり、透
明基板104に形成している。102は補正用光学素子
であり、回折光学素子101の自重による光学特性の変
化を補正している。補正用光学素子102は透明基板1
06上に光軸105に対して回転対称に非球面103を
形成した構成より成っている。FIG. 1 is a sectional view of a main part of a first embodiment of the present invention. In the figure, reference numeral 101 denotes a diffractive optical element, which is formed on a transparent substrate 104. A correction optical element 102 corrects a change in optical characteristics due to the weight of the diffractive optical element 101. The correction optical element 102 is a transparent substrate 1
The configuration is such that the aspheric surface 103 is formed on the optical axis 105 in a rotationally symmetric manner with respect to the optical axis 105.
【0020】本実施形態の特徴は、正のパワー(屈折
力)を有する回折光学素子101(以下「回折基板」と
もいう。)が自重変形や鏡筒おさえ変形等の変形を起こ
した場合に発生する諸収差を、その近傍に配置した非球
面を有する補正用光学素子102で補正し、良好なる光
学性能を維持することにある。The feature of this embodiment is that it occurs when the diffractive optical element 101 having positive power (refractive power) (hereinafter also referred to as "diffraction substrate") undergoes deformation such as its own weight deformation or lens barrel deformation. The objective is to correct various aberrations by the correction optical element 102 having an aspheric surface disposed in the vicinity thereof, and to maintain good optical performance.
【0021】次に本実施形態の回折光学素子を有した光
学系の特徴について説明する。まず、簡単なモデルを用
いて基板の自重変形量を求める。薄い円板に対して面に
垂直な方向に一様な荷重がかかった場合の変形は、理論
的に得られる公式を用いて計算することができる。ここ
では、周辺部単純支持(滑り拘束なし)の簡単な場合に
ついて変形量を求めることとする。Next, the features of the optical system having the diffractive optical element of the present embodiment will be described. First, the amount of deformation of the substrate under its own weight is determined using a simple model. Deformation when a uniform load is applied to a thin disk in a direction perpendicular to the plane can be calculated using a theoretically obtained formula. Here, the amount of deformation is determined for a simple case of simple peripheral support (no sliding constraint).
【0022】図2(A)は基板として変形がない場合の
薄い円板401(平行平面板)を示している。ここで、
aは光軸105からの距離、即ち円板401の半径(m
m)であり、tはその厚さ(mm)である。また図2
(B)は変形後の薄い円板404の様子を示しており、
wは厚さt方向の変形量(mm)を示している。FIG. 2A shows a thin circular plate 401 (parallel flat plate) when there is no deformation as a substrate. here,
a is the distance from the optical axis 105, that is, the radius (m
m) and t is its thickness (mm). FIG. 2
(B) shows the state of the thin circular plate 404 after deformation.
w indicates the amount of deformation (mm) in the thickness t direction.
【0023】以上の図より光軸105から距離hにおけ
る変形量wは以下の式により求められることが知られて
いる。From the above figures, it is known that the deformation amount w at a distance h from the optical axis 105 can be obtained by the following equation.
【0024】[0024]
【数1】 但し、E:ヤング率[N/mm2 ],ν:ポアソン比
[無次元量],p:単位面積当たりの荷重[N/mm
2 ],a:円板の半径[mm],t:厚さ[mm],
h:半径座標[mm] ここで自重変形に議論を限定すれば、単位面積当たりの
荷重pはρ[kg/mm3 ]を密度として p=9.81ρt[N/mm2 ]‥‥‥式(2) で与えられる。(Equation 1) Here, E: Young's modulus [N / mm 2 ], ν: Poisson's ratio [Dimensionless amount], p: Load per unit area [N / mm]
2 ], a: radius of the disc [mm], t: thickness [mm],
h: Radial coordinate [mm] If the discussion is limited to the own weight deformation, the load p per unit area is given by p = 9.81ρt [N / mm 2 ] using a density of ρ [kg / mm 3 ]. (2) given by
【0025】次に、式(1)に例えば溶融石英の物性値 E=7.31×104[N/mm2 ] ν=0.170 ρ=2.22×10-6[kg/mm3 ] ‥‥‥式(3) を代入すると、変形量Wは式(1)より、半径hの4次
関数として次のように表される。Next, in equation (1), for example, the physical property value of fused quartz E = 7.31 × 10 4 [N / mm 2 ] ν = 0.170 ρ = 2.22 × 10 −6 [kg / mm 3] } When the equation (3) is substituted, the deformation amount W is expressed as a fourth-order function of the radius h from the equation (1) as follows.
【0026】 W=α1+α2・h2 +α3・h4 [mm]‥‥‥式(4) ここで、円板401の半径aをa=75[mm]、厚さ
tをt=1[mm]として式(4)の係数を求めると、
以下のようになる。W = α1 + α2 · h 2 + α3 · h 4 [mm] ‥‥‥ Formula (4) Here, the radius a of the disk 401 is a = 75 [mm], and the thickness t is t = 1 [mm]. When the coefficient of Expression (4) is obtained as
It looks like this:
【0027】 α1=7.58e−3,α2=−1.65e−6,α3=5.42e−11 ‥‥‥式(5) 尚、本実施形態では、自重変形によって基板401の形
状が変化する影響のみを考慮することとし、回折光学素
子としての位相分布関数の変化については無視してい
る。その理由は、重力と直交する方向の自重変形量は通
常、重力方向の変化量に比較して無視できるレベルとな
るからである。例えば、図3(B)に示すように、自重
変形後の回折光学素子502は、図3(A)の自重変形
前の回折光学素子101の位相分布関数のピッチと略同
一のピッチを有する(例えばピッチp)ものとなってい
る。即ち、変形の前後で輪帯境界の半径方向rの位置が
不変であることに対応している。Α1 = 7.58e−3, α2 = −1.65e−6, α3 = 5.42e−11 Equation (5) In this embodiment, the shape of the substrate 401 changes due to its own weight deformation. Only the influence of the phase distribution function as the diffractive optical element is ignored. The reason is that the amount of self-weight deformation in the direction perpendicular to gravity is usually at a level that can be ignored compared to the amount of change in the direction of gravity. For example, as shown in FIG. 3B, the diffractive optical element 502 after its own weight deformation has substantially the same pitch as the pitch of the phase distribution function of the diffractive optical element 101 before its own weight deformation in FIG. For example, the pitch is p). That is, this corresponds to the fact that the position of the boundary of the annular zone in the radial direction r does not change before and after the deformation.
【0028】本実施形態では、回折光学素子101以外
の自重変形は考えないため、光学系中における回折光学
素子の変形の影響は、基板104の面形状の変化及び基
板104前後の面間隔の変化として現われてくる。ここ
で、図3に示すように回折光学素子101の両面をs,
s+1にて表わし、回折光学素子101はs面(本実施
形態ではs=1)に形成されているとする。さらに図1
に示すように回折光学素子101の基板104と補正用
光学素子102と面間隔をds+1で表すこととする。In the present embodiment, the weight deformation other than the diffractive optical element 101 is not considered. Appears as. Here, as shown in FIG. 3, both surfaces of the diffractive optical element 101 are s,
It is represented by s + 1, and the diffractive optical element 101 is assumed to be formed on the s plane (s = 1 in this embodiment). Further FIG.
As shown in the figure, the surface distance between the substrate 104 of the diffractive optical element 101 and the correction optical element 102 is represented by ds + 1.
【0029】基板104の第1面と第2面の基板形状を
以下の非球面の一般式にて表わす。The substrate shapes of the first surface and the second surface of the substrate 104 are represented by the following aspherical general formula.
【0030】[0030]
【数2】 但し、cは面の曲率、xは光軸方向(厚さ方向t)の座
標、k,A,B‥‥は各々非球面係数である。(Equation 2) Here, c is the curvature of the surface, x is the coordinates in the optical axis direction (thickness direction t), and k, A, and B are aspherical coefficients, respectively.
【0031】ここでk(円錐定数)=−1とすると、自
重変形後の面形状xは以下のように表せる。Here, assuming that k (cone constant) =-1, the surface shape x after its own weight deformation can be expressed as follows.
【0032】[0032]
【数3】 式(4)と比較すると、(Equation 3) Compared to equation (4),
【0033】[0033]
【数4】 となる。また面間隔ds+1の変動量Δdsは、自重変
形による最大の変位量(α1)と直接結び付けて考える
ことができる。(Equation 4) Becomes Further, the variation Δds of the surface distance ds + 1 can be considered in direct connection with the maximum displacement (α1) due to the own weight deformation.
【0034】このようにして、自重変形による回折光学
素子の面変形量W及び面間隔ds+1の変化量Δdsが
求められる。この面変形及び面間隔変化に伴う結像性能
変化を補正するように、回折光学素子の近傍に予め或い
は自重変形後に非球面を有する補正用光学素子102を
配置し、該非球面量を適切に設定することによって自重
変形の影響を防いでいる。In this way, the change amount Δds of the surface deformation amount W and the surface distance ds + 1 of the diffractive optical element due to its own weight deformation is obtained. A correction optical element 102 having an aspherical surface is arranged beforehand or after its own weight deformation in the vicinity of the diffractive optical element, and the aspherical amount is appropriately set so as to correct the imaging performance change due to the surface deformation and the change in the surface interval. By doing so, the effect of own weight deformation is prevented.
【0035】次に本実施形態の具体的な数値実施例を示
す。尚、図4は本実施形態における光学系の概略図を示
している。同図において601は回折光学素子、602
は補正用光学素子、603は光軸である。また604は
補正用光学素子602の非球面導入面である。また60
5は軸上光束を示している。Next, specific numerical examples of the present embodiment will be shown. FIG. 4 is a schematic diagram of an optical system according to the present embodiment. In the figure, reference numeral 601 denotes a diffractive optical element;
Denotes a correction optical element, and 603 denotes an optical axis. Reference numeral 604 denotes an aspherical surface of the correction optical element 602. Also 60
Reference numeral 5 denotes an on-axis light beam.
【0036】まず、回折光学素子601に自重変形がな
い状態での、光学系の諸データを(数値例1)に示す。
その結像性能を図5(A)に示す。同図は球面収差を表
わしている。この場合、回折光学素子601の基板は平
行平面板であり、自重のための変形は考慮されていな
い。また、補正用光学部材602の非球面も導入されて
いないものとしている。尚、数値例中の位相分布関数の
係数は、以下の式にて定義している。First, various data of the optical system in a state where the diffractive optical element 601 does not have its own weight deformation is shown in (Numerical Example 1).
The imaging performance is shown in FIG. This figure shows the spherical aberration. In this case, the substrate of the diffractive optical element 601 is a plane-parallel plate, and no consideration is given to deformation due to its own weight. It is also assumed that the aspheric surface of the correction optical member 602 is not introduced. Note that the coefficients of the phase distribution function in the numerical examples are defined by the following equations.
【0037】f(h)=a1・h2 +a2・h4 +a3
・h6 +a4・h8 +‥‥ g(h)=2π/λ・f(h) ここで、f(h)は光路長関数、g(h)は位相分布関
数、 a1,a2,a3,a4,‥‥:位相多項式の係数 λ:波長 (数値例1) 物体距離=無限遠,λ=248nm i ri di 1 0 1.0 n=石英 2 0 5.0 3 0 10.0 n=石英 4 0 回折光学素子の位相分布関数の係数 i a1 a2 a3 a4 1 -0.00333 0.359917e-7 -0.74132e-12 0.140112e-16 次に、回折光学素子601に自重変形があり、その影響
による結像性能の劣化が補正用光学素子602に設けた
非球面により補正されていない状態を考える。この場合
の光学系の諸データを(数値例2)に、また結像性能を
図5(B)に示す。即ち、式(4),(8)等に従っ
て、回折光学素子601及び、面間隔ds+1が変形及
び変化している。また補正用光学素子602の非球面は
導入されていないとしている。このとき図5(B)を見
て分かるように、回折光学素子の自重変形によって球面
収差が悪化している。F (h) = a1 · h 2 + a2 · h 4 + a3
· H 6 + a 4 · h 8 + ‥‥ g (h) = 2π / λ · f (h) where f (h) is an optical path length function, g (h) is a phase distribution function, and a1, a2, a3 a4, ‥‥: coefficients of the phase polynomial lambda: wavelength (numerical example 1) object distance = infinity, λ = 248nm i r i d i 1 0 1.0 n = quartz 2 0 5.0 3 0 10.0 n = quartz 4 0 diffractive optical Coefficient of phase distribution function of element i a1 a2 a3 a4 1 -0.00333 0.359917e-7 -0.74132e-12 0.140112e-16 Next, the diffractive optical element 601 has its own weight deformation. Consider a state in which the correction is not performed by the aspherical surface provided in the correction optical element 602. Various data of the optical system in this case are shown in (Numerical Example 2), and the imaging performance is shown in FIG. That is, the diffractive optical element 601 and the surface distance ds + 1 are deformed and changed according to the equations (4) and (8). The aspheric surface of the correction optical element 602 is not introduced. At this time, as can be seen from FIG. 5B, the spherical aberration is deteriorated due to the own weight deformation of the diffractive optical element.
【0038】 (数値例2) 物体距離=無限遠 i ri di 1 -302396.4251 1.0 n=石英 2 -302396.4251 4.992416 3 0 10.0 n=石英 4 0 回折光学素子の位相分布関数の係数 i a1 a2 a3 a4 1 -0.00333 0.359917e-7 -0.74132e-12 0.140112e-16 非球面係数 i K A 1 -1.0 0.54246e-10 2 -1.0 0.54246e-10 更に、回折光学素子601の自重変形の影響に対して、
その近傍に配置された補正用光学素子602の一面60
4に非球面を施して、結像性能を補正したときの光学系
の諸データを(数値例3)に、また球面収差図を図5
(C)に示す。同図から明かのように回折光学素子60
1の自重変形の影響を十分に補正できていることが分か
る。[0038] (Numerical Example 2) object distance = infinite i r i d i 1 -302396.4251 1.0 n = quartz 2 -302396.4251 4.992416 3 0 10.0 n = coefficient of the phase distribution function of quartz 4 0 diffractive optical element i a1 a2 a3 a4 1 -0.00333 0.359917e-7 -0.74132e-12 0.140112e-16 Aspherical surface coefficient i KA 1 -1.0 0.54246e-10 2 -1.0 0.54246e-10 Further, the influence of the self-weight deformation of the diffractive optical element 601 is considered. hand,
One surface 60 of the correction optical element 602 disposed in the vicinity thereof
FIG. 5 shows various data of the optical system when the imaging performance is corrected by applying an aspheric surface to No. 4 and a spherical aberration diagram in FIG.
It is shown in (C). As is apparent from FIG.
It can be seen that the effect of the self-weight deformation of No. 1 has been sufficiently corrected.
【0039】 (数値例3) 物体距離=無限遠 i ri di 1 -302396.4251 1.0 n=石英 2 -302396.4251 4.992416 3 0 10.0 n=石英 4 0 回折光学素子の位相分布関数の係数 i a1 a2 a3 a4 1 -0.00333 0.359917e-7 -0.74132e-12 0.140112e-16 非球面係数 i K A B C D 1 -1.0 0.54246e-10 2 -1.0 0.54246e-10 3 -1.0 -0.157455e-9 0.601459e-13 -0.13130e-16 0.102233e-20 図6は本発明の回折光学素子を有した光学系の実施形態
2の要部概略図である。図6(A)は図1における補正
用光学素子102の裏面に非球面を加工したもの、図6
(B)は補正用光学素子を複数枚配置した場合の概略図
をそれぞれ示している。[0039] (Numerical Example 3) object distance = infinite i r i d i 1 -302396.4251 1.0 n = quartz 2 -302396.4251 4.992416 3 0 10.0 n = coefficient of the phase distribution function of quartz 4 0 diffractive optical element i a1 a2 a3 a4 1 -0.00333 0.359917e-7 -0.74132e-12 0.140112e-16 Aspherical surface coefficient i KA BCD 1 -1.0 0.54246e-10 2 -1.0 0.54246e-10 3 -1.0 -0.157455e-9 0.601459e -13 -0.13130e-16 0.102233e-20 FIG. 6 is a schematic view of a main part of an optical system having a diffractive optical element according to a second embodiment of the present invention. FIG. 6A is a diagram in which the back surface of the correcting optical element 102 in FIG.
(B) is a schematic diagram in the case where a plurality of correction optical elements are arranged.
【0040】図中801,810は、自重変形を起こし
ている状態の回折光学素子、802,811は補正用光
学素子を示す。また、805は光軸、803,806,
807は非球面部分、804,807,809は補正用
光学素子の基板部分を示している。In the drawing, reference numerals 801 and 810 denote diffractive optical elements in a state of being deformed by their own weights, and reference numerals 802 and 811 denote correction optical elements. 805 is an optical axis, 803, 806,
Reference numeral 807 denotes an aspherical portion, and reference numerals 804, 807, and 809 denote substrate portions of the correction optical element.
【0041】尚、基板804の両面を非球面としても構
わない。又、非球面は光軸に対して回転対称であると限
定したわけではなく、回折光学素子の変形を補正する形
状であればどのような非球面形状でも構わない。また、
以上の実施形態のような構成を、ある光学系中の一部に
適用しても前述と同様の効果が得られる。例えば、ある
結像光学系中に回折光学素子が配置されている近傍に、
回折光学素子の自重変形による影響をキャンセルするよ
うな補正用光学素子を配置することにより、以上の実施
形態と同様の結像性能劣化に対する補正効果が得られ
る。Incidentally, both surfaces of the substrate 804 may be aspherical. Further, the aspherical surface is not limited to be rotationally symmetric with respect to the optical axis, and may have any aspherical shape as long as the shape corrects the deformation of the diffractive optical element. Also,
Even if the configuration as in the above embodiment is applied to a part of a certain optical system, the same effect as described above can be obtained. For example, in the vicinity where a diffractive optical element is arranged in an imaging optical system,
By arranging a correcting optical element for canceling the influence of the weight deformation of the diffractive optical element, the same effect of correcting the imaging performance degradation as in the above embodiment can be obtained.
【0042】また、本実施形態では正の屈折力を有する
回折光学素子を取り上げたが、光学系中で負の屈折力を
有していても構わない。In this embodiment, the diffractive optical element having a positive refractive power is described, but the optical system may have a negative refractive power.
【0043】また、以上の実施形態においては、回折光
学素子の変形として「自重変形」を挙げたが、回折光学
素子の基板変形(例えば鏡筒のおさえによる変形)を補
正するにも同様に適用することができる。In the above embodiment, the "deformation of its own weight" is mentioned as the deformation of the diffractive optical element. However, the present invention is similarly applied to the correction of the deformation of the substrate of the diffractive optical element (for example, the deformation of the lens barrel). can do.
【0044】図7は本発明の回折光学素子を有した光学
系を半導体素子製造用の投影露光装置に適用したときの
実施形態3の要部概略図である。同図においては、照明
系ERからの露光光で照明されたレチクルRに設けた回
路パターンを投影光学系TLによってウエハW面上に投
影している。ここで投影光学系TLは回折光学素子と補
正用光学素子とを有する光学系BOを有している。そし
てウエハWを公知の現像処理工程を介して半導体デバイ
スを製造している。FIG. 7 is a schematic view of a principal part of a third embodiment when an optical system having a diffractive optical element according to the present invention is applied to a projection exposure apparatus for manufacturing a semiconductor element. In the figure, a circuit pattern provided on a reticle R illuminated with exposure light from an illumination system ER is projected on a wafer W surface by a projection optical system TL. Here, the projection optical system TL has an optical system BO having a diffractive optical element and a correction optical element. Then, semiconductor devices are manufactured on the wafer W through a known development process.
【0045】[0045]
【発明の効果】本発明によれば以上のように各要素を設
定することによって、回折光学素子を光学系の一部に用
いたときに、該回折光学素子の変形による結像性能の劣
化を補正し、光学性能を良好に維持することができるよ
うにした回折光学素子を有した光学系を達成することが
できる。According to the present invention, by setting each element as described above, when a diffractive optical element is used as a part of an optical system, deterioration of the imaging performance due to deformation of the diffractive optical element is prevented. It is possible to achieve an optical system having a diffractive optical element that has been corrected so as to maintain good optical performance.
【図1】本発明の実施形態1の要部概略図FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention.
【図2】基板の自重変形の説明図FIG. 2 is an explanatory view of the deformation of the substrate by its own weight.
【図3】回折光学素子の自重変形の説明図FIG. 3 is an explanatory view of the weight change of the diffractive optical element.
【図4】回折光学素子の自重変形の説明図FIG. 4 is an explanatory view of the weight change of the diffractive optical element.
【図5】基板の自重変形に対する収差の説明図FIG. 5 is an explanatory diagram of an aberration with respect to a substrate's own weight deformation.
【図6】本発明の実施形態2の要部概略図FIG. 6 is a schematic diagram of a main part of a second embodiment of the present invention.
【図7】本発明の実施形態3の要部概略図FIG. 7 is a schematic diagram of a main part of a third embodiment of the present invention.
【図8】本発明に係るバイナリオプティクスの説明図FIG. 8 is an explanatory diagram of binary optics according to the present invention.
【図9】本発明に係るバイナリオプティクスの作製方法
の説明図FIG. 9 is an explanatory diagram of a method for producing binary optics according to the present invention.
101,601,801,810 回折光学素子 102,602,802,811 補正用光学素子 103,604,803,806,807 非球面 104,401,404,804,807,809
基板101,601,801,810 Diffractive optical element 102,602,802,811 Correction optical element 103,604,803,806,807 Aspheric surface 104,401,404,804,807,809
substrate
Claims (3)
構造を有する回折格子を基板面上に設けた回折光学素子
と該回折光学素子を光学系中に配置したときの該回折光
学素子の変形後の光学特性の変化を補正する為の補正用
光学素子とを有していることを特徴とする回折光学素子
を有した光学系。1. A diffractive optical element having a diffraction grating having a periodic structure for converting an incident wavefront into a predetermined wavefront provided on a substrate surface, and a diffractive optical element when the diffractive optical element is arranged in an optical system. An optical system having a diffractive optical element, comprising: a correction optical element for correcting a change in optical characteristics after deformation.
構造を有する回折格子を基板面上に設けた回折光学素子
と該回折光学素子の自重変形又は鏡筒おさえの変形に伴
う光学特性の変化を補正する為の補正用光学素子とを有
していることを特徴とする回折光学素子を有した光学
系。2. A diffractive optical element having a diffraction grating having a periodic structure for converting an incident wavefront into a predetermined wavefront on a substrate surface, and the optical characteristics of the diffractive optical element due to its own weight deformation or deformation of a lens barrel holder. An optical system having a diffractive optical element, comprising: a correcting optical element for correcting a change.
ることを特徴とする請求項1又は2の回折光学素子を有
した光学系。3. The optical system according to claim 1, wherein the correcting optical element has an aspherical surface.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12633697A JP3703251B2 (en) | 1997-04-30 | 1997-04-30 | Optical system having a diffractive optical element |
| US09/362,698 US6829091B2 (en) | 1997-02-07 | 1999-07-29 | Optical system and optical instrument with diffractive optical element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12633697A JP3703251B2 (en) | 1997-04-30 | 1997-04-30 | Optical system having a diffractive optical element |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH10301026A true JPH10301026A (en) | 1998-11-13 |
| JP3703251B2 JP3703251B2 (en) | 2005-10-05 |
Family
ID=14932664
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP12633697A Expired - Fee Related JP3703251B2 (en) | 1997-02-07 | 1997-04-30 | Optical system having a diffractive optical element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3703251B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6285512B1 (en) | 1998-04-23 | 2001-09-04 | Canon Kabushiki Kaisha | Lens barrel having deformed optical element, and projection including same |
| WO2012077351A1 (en) * | 2010-12-10 | 2012-06-14 | パナソニック株式会社 | Method for designing and method for manufacturing diffraction-grating lens |
| WO2012077350A1 (en) * | 2010-12-10 | 2012-06-14 | パナソニック株式会社 | Diffraction-grating lens, and imaging optical system and imaging device using said diffraction-grating lens |
| JP2019153704A (en) * | 2018-03-05 | 2019-09-12 | 大日本印刷株式会社 | Drawing data generating apparatus, resist pattern forming method, and concavo-convex structure manufacturing method |
-
1997
- 1997-04-30 JP JP12633697A patent/JP3703251B2/en not_active Expired - Fee Related
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6285512B1 (en) | 1998-04-23 | 2001-09-04 | Canon Kabushiki Kaisha | Lens barrel having deformed optical element, and projection including same |
| US6563652B2 (en) | 1998-04-23 | 2003-05-13 | Canon Kabushiki Kaisha | Lens barrel and projection aligner |
| WO2012077351A1 (en) * | 2010-12-10 | 2012-06-14 | パナソニック株式会社 | Method for designing and method for manufacturing diffraction-grating lens |
| WO2012077350A1 (en) * | 2010-12-10 | 2012-06-14 | パナソニック株式会社 | Diffraction-grating lens, and imaging optical system and imaging device using said diffraction-grating lens |
| CN103026273A (en) * | 2010-12-10 | 2013-04-03 | 松下电器产业株式会社 | Diffraction-grating lens, and imaging optical system and imaging device using said diffraction-grating lens |
| US9103981B2 (en) | 2010-12-10 | 2015-08-11 | Panasonic Intellectual Property Management Co., Ltd. | Method for designing and method for manufacturing diffraction-grating lens |
| JP2019153704A (en) * | 2018-03-05 | 2019-09-12 | 大日本印刷株式会社 | Drawing data generating apparatus, resist pattern forming method, and concavo-convex structure manufacturing method |
Also Published As
| Publication number | Publication date |
|---|---|
| JP3703251B2 (en) | 2005-10-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6829041B2 (en) | Projection optical system and projection exposure apparatus having the same | |
| US5636000A (en) | Projection optical system and projection exposure apparatus using the same | |
| JP3353902B2 (en) | Projection lens system | |
| WO2002031570A1 (en) | Method of evaluating imaging performance | |
| JP2001141995A (en) | Optical projection lens system | |
| WO2004090952A1 (en) | Exposure method and apparatus, and device manufacturing method | |
| US20080068705A1 (en) | Projection optical system and method | |
| US6563652B2 (en) | Lens barrel and projection aligner | |
| JP3408112B2 (en) | Optical member having diffractive optical element and optical system using the same | |
| JP3065017B2 (en) | Projection exposure apparatus and device manufacturing method | |
| CN100538524C (en) | projection optical system | |
| JP2007316634A (en) | Polarization modulation optical element and method of manufacturing the same | |
| JPH10301026A (en) | Optical system having diffractive optical element | |
| US5907435A (en) | Laser beam optical focusing system of two symmetrical diffractive optical elements | |
| US7170686B2 (en) | Illumination optical system, exposure apparatus, and device manufacturing method using the same | |
| JP3429525B2 (en) | Projection lens system | |
| JPH11352317A (en) | Diffractive optical element and optical system having the same | |
| JPH11307443A (en) | Projection exposure apparatus and device manufacturing method using the same | |
| US20090041934A1 (en) | Method for manufacturing projection optics | |
| JP2004342728A (en) | Projection optical system | |
| JP7646402B2 (en) | Illumination optical system, exposure apparatus, and method for manufacturing article | |
| CN115524936A (en) | Projection optical system, exposure device and method of manufacturing article | |
| JP2006215131A (en) | Aspherical lens, cylindrical lens, aspherical reflector, cylindrical reflector, micro fly's eye optical element, and exposure apparatus | |
| JPH1138217A (en) | Telecentric optical focus adjustment system | |
| CN114911140A (en) | Illumination optical system, exposure apparatus, and method for manufacturing article |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040628 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050705 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050719 |
|
| R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080729 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20090729 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090729 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20100729 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100729 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110729 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120729 Year of fee payment: 7 |
|
| LAPS | Cancellation because of no payment of annual fees |