JPH1039913A - Nc data preparing method and nc device - Google Patents
Nc data preparing method and nc deviceInfo
- Publication number
- JPH1039913A JPH1039913A JP21302996A JP21302996A JPH1039913A JP H1039913 A JPH1039913 A JP H1039913A JP 21302996 A JP21302996 A JP 21302996A JP 21302996 A JP21302996 A JP 21302996A JP H1039913 A JPH1039913 A JP H1039913A
- Authority
- JP
- Japan
- Prior art keywords
- feed speed
- remaining distance
- data
- interpolation
- stored
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004364 calculation method Methods 0.000 claims abstract description 10
- 238000003860 storage Methods 0.000 claims abstract description 5
- 238000005520 cutting process Methods 0.000 claims description 39
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000013500 data storage Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 abstract description 61
- 238000010586 diagram Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 11
- 238000003754 machining Methods 0.000 description 11
- 238000007405 data analysis Methods 0.000 description 5
- 230000005489 elastic deformation Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000012840 feeding operation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Landscapes
- Numerical Control (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、NC工作機械の加
工時に切削負荷を一定とするなど所望の送り速度でサー
ボモータを制御するためのNCデータを作成するNCデ
ータ作成方法及びNC装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an NC data creating method and an NC apparatus for creating NC data for controlling a servomotor at a desired feed speed such as keeping a cutting load constant during machining of an NC machine tool. It is.
【0002】[0002]
【従来の技術】一般に、NC工作機械のNC装置は、例
えば図1に示すように、NCデ−タを順次解析して各軸
の移動量及び送り速度に関する位置指令情報を出力する
デ−タ解析部1と、該解析部1からの位置指令情報に対
し補間動作を行いサーボ指令値を出力する補間器2と、
該補間器2からのサーボ指令値を各軸(図ではX軸とY
軸)に分配する分配器3と、該分配器3からの各軸のサ
ーボ指令値を基に各軸のサーボモータ5a,5bをそれ
ぞれ駆動させる複数のサーボ回路4a,4bとを備えて
いる。また、このNC装置においては、例えば特公平7
−11764号公報に開示するように、NCデータの階
段状の速度指令に起因する速度急変によるショックを機
械に伝えなくするために加減速制御回路を設けて速度変
化を平滑化した後、サーボモータ5a,5bを動かすよ
うにすることが行われており、加減速制御には、補間前
加減速方式と補間後加減速方式の2種類がある。2. Description of the Related Art Generally, as shown in FIG. 1, for example, an NC device of an NC machine tool sequentially analyzes NC data and outputs position command information relating to the movement amount and feed speed of each axis. An analysis unit 1; an interpolator 2 that performs an interpolation operation on the position command information from the analysis unit 1 and outputs a servo command value;
The servo command value from the interpolator 2 is applied to each axis (X axis and Y axis in the figure).
And a plurality of servo circuits 4a and 4b for driving the servo motors 5a and 5b of each axis based on the servo command value of each axis from the distributor 3 respectively. In this NC device, for example,
As disclosed in JP-A-11764, an acceleration / deceleration control circuit is provided to prevent a shock due to a sudden change in speed caused by a step-like speed command of NC data from being transmitted to a machine. 5a and 5b are moved. There are two types of acceleration / deceleration control: an acceleration / deceleration method before interpolation and an acceleration / deceleration method after interpolation.
【0003】補間前加減速方式は、図1に示すように、
デ−タ解析部1と補間器2との間に補間前加減速制御回
路8を設け、補間・分配の処理をする前にNCデ−タの
工具経路に沿って一定の補間周期毎に加減速制御された
速度を求め、次に該速度と補間周期の積(距離)だけ隔
たった経路上の補間点を順次を求めていくため、半径減
少やコーナのダレ等加減速による経路誤差が発生しない
という利点があり、最近の高速高精度加工用として多用
されている。この方式においては、デ−タ解析部1にて
NCデータを先読みし、終点前後での接線速度ベクトル
変化が許容値以内に収まるような終点速度が求められ
る。ここで、許容加速度をA、補間周期をΔTとすれ
ば、その後残距離を識別しての速度制御は、下記の式 F(i)=F(i-1)±A×ΔT より計算されるため、図2に示すような勾配一定(α)
の直線パターンとなる。尚、この方式の加減速を実施し
ても分配後の各軸の指令速度に多少ステップ状の段差が
残り、それを平滑化するために通常以下の補間後加減速
方式も併用される(特開平6−282323号公報参
照)。The acceleration / deceleration method before interpolation, as shown in FIG.
A pre-interpolation acceleration / deceleration control circuit 8 is provided between the data analysis unit 1 and the interpolator 2 so that the acceleration / deceleration control circuit 8 performs processing at regular intervals of interpolation along the tool path of NC data before performing interpolation / distribution processing. A speed error controlled by deceleration is calculated, and then interpolation points on a route separated by the product (distance) of the speed and the interpolation period are sequentially calculated. Therefore, a path error occurs due to acceleration / deceleration such as reduction in radius or corner droop. It is widely used for high-speed, high-precision machining. In this method, the data analysis unit 1 pre-reads the NC data and finds an end point speed at which a change in the tangential speed vector around the end point falls within an allowable value. Here, assuming that the allowable acceleration is A and the interpolation cycle is ΔT, the speed control by subsequently identifying the remaining distance is calculated by the following equation: F (i) = F (i−1) ± A × ΔT Therefore, the gradient is constant (α) as shown in FIG.
Is a straight line pattern. Note that even if the acceleration / deceleration of this method is performed, a slightly stepped step remains in the commanded speed of each axis after distribution, and the acceleration / deceleration method after interpolation which is usually less than that described below is also used in order to smooth the difference. See JP-A-6-282323).
【0004】一方、補間後加減速方式は、図3に示すよ
うに、分配器3と各軸のサーボ回路4a,4bとの間に
それぞれ補間後加減速制御回路9a,9bを設け、一定
のNCデータ指令速度で求められた補間点の座標値を各
軸に分配した後、各軸独自に軸速度指令に対し加減速制
御を行う。この方式の代表的なものとしては指数加減速
と直線加減速とがあり、図4に示すように、予め設定さ
れた時間(加減速時定数)で指数曲線又は直線状に(目
標)指令速度に追従するパターンとなる。尚、図4
(a),(b)はそれぞれX軸補間後加減速制御回路9
aの入力側及び出力側での速度パターンを示し、図4
(c),(d)はそれぞれY軸補間後加減速制御回路9
bの入力側及び出力側での速度パターンを示す。また、
これらの加減速制御を行うときにはサーボサンプリング
周期毎に位置指令をザーボ回路4a,4bへ入力するこ
とにより追従制御をする必要があるが、サーボ回路の位
置指令に対し、指数加減速では下記の数式1−(a)
で、また直線加減速では数式1−(b)でそれぞれ計算
を施すことにより加減速制御された位置指令を作ること
ができる。On the other hand, in the post-interpolation acceleration / deceleration method, as shown in FIG. 3, post-interpolation acceleration / deceleration control circuits 9a and 9b are provided between the distributor 3 and the servo circuits 4a and 4b of each axis, respectively. After distributing the coordinate value of the interpolation point obtained by the NC data command speed to each axis, each axis performs acceleration / deceleration control for the axis speed command independently. Typical examples of this method include exponential acceleration / deceleration and linear acceleration / deceleration. As shown in FIG. 4, an exponential curve or linear (target) command speed is set at a preset time (acceleration / deceleration time constant). The pattern follows. FIG.
(A) and (b) are acceleration / deceleration control circuits 9 after X-axis interpolation, respectively.
FIG. 4 shows the speed patterns on the input side and output side of FIG.
(C) and (d) are acceleration / deceleration control circuits 9 after Y-axis interpolation, respectively.
3B shows a speed pattern on the input side and the output side of FIG. Also,
When performing such acceleration / deceleration control, it is necessary to perform tracking control by inputting a position command to the servo circuits 4a and 4b for each servo sampling cycle. 1- (a)
In the linear acceleration / deceleration, a position command controlled by acceleration / deceleration can be created by performing calculations according to Equation 1- (b).
【0005】[0005]
【数1】 x0(k)=x0(k-1)+Δt・{xi(k)−x0(kー1)}/Ts (a) x0(k)=x0(k-1)+Δt・{xi(k)−xi(kーN)}/Ts (b) 但し、x0はサーボ回路への入力となる加減速制御され
た位置指令、xiは加減速制御前の位置指令、NはTs/
Δtなる定数、Tsは加減速時定数、Δtはサーボサン
プリング周期である。X0 (k) = x0 (k-1) + Δt · {xi (k) −x0 (k−1)} / Ts (a) x0 (k) = x0 (k−1) + Δt · {xi (k) −xi (k−N)} / Ts (b) where x0 is a position command subjected to acceleration / deceleration control as an input to the servo circuit, xi is a position command before acceleration / deceleration control, and N is Ts /
The constant Δt, Ts is the acceleration / deceleration time constant, and Δt is the servo sampling period.
【0006】[0006]
【発明が解決しようとする課題】ところで、NC工作機
械において、切削負荷が一定になるような送り速度でサ
ーボモータを制御すれば工具寿命及び加工精度の向上に
有効であることは従来から知られている。また、例えば
図5に示すような工具軌跡がX軸方向からY軸方向に直
角に変化するポケットコーナ部の場合、工具の径方向切
込み量は、図6に破線で示すようにX軸の残距離が0の
終点に向かうに従って増加することから、切削負荷を一
定とする送り速度は、図6に実線で示すような曲線にな
ることも知られている。By the way, it has been conventionally known that, in an NC machine tool, if a servomotor is controlled at a feed rate at which a cutting load becomes constant, it is effective to improve tool life and machining accuracy. ing. Further, for example, in the case of a pocket corner where the tool trajectory changes at right angles from the X-axis direction to the Y-axis direction as shown in FIG. 5, the cutting depth in the radial direction of the tool as shown by the broken line in FIG. Since the distance increases toward the end point of 0, it is also known that the feed speed at which the cutting load is constant becomes a curve shown by a solid line in FIG.
【0007】しかしながら、上記従来の加減速制御は、
いずれの方式も切込み量の変化による切削負荷変動など
切削過程を考慮したものではなく、ポケットコーナ部で
切削負荷一定の送り速度制御を実行することができず、
工具寿命の低下及び工具の弾性変形量の変動による加工
精度の低下をきたす一因となっている。However, the conventional acceleration / deceleration control described above involves:
Neither method takes into account the cutting process, such as cutting load fluctuations due to changes in the depth of cut, and it is not possible to execute feed speed control with a constant cutting load at the pocket corners.
This is one of the causes of a reduction in machining accuracy due to a reduction in tool life and a variation in the amount of elastic deformation of the tool.
【0008】そこで、このような問題を解決するため、
CAD/CAMなどでNCデ−タを作成するとき、切削
負荷を一定とするなど所望の送り速度制御曲線に対応し
て、指令速度を階段状に変化させNCデータを作成する
試みがなされているが、NC装置の加減速制御との関連
について充分に考慮していないため、サーボモータへの
速度指令も階段状の変動を含んだものとなり、所望の送
り速度制御を実現できていないのが実情である。Therefore, in order to solve such a problem,
When creating NC data by CAD / CAM or the like, attempts have been made to create the NC data by changing the command speed stepwise in accordance with a desired feed speed control curve such as keeping the cutting load constant. However, since the relationship with the acceleration / deceleration control of the NC device is not sufficiently considered, the speed command to the servomotor also includes a stepwise change, and the desired feed speed control cannot be realized. It is.
【0009】本発明はかかる諸点に鑑みてなされたもの
であり、その目的とするところは、特にNC装置の補間
後直線加減速制御の場合、送り速度と時定数との積が移
動距離のとき時定数毎に送り速度が直線状に変化すると
いう特性を有することに着目し、この特性を利用して所
望の送り速度でサーボモータを制御し得るNCデータ作
成方法及びNC装置を提供するものである。The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a linear acceleration / deceleration control after interpolation of an NC device, particularly when a product of a feed rate and a time constant is a moving distance. Focusing on the fact that the feed rate changes linearly for each time constant, the present invention provides an NC data creation method and an NC apparatus that can control a servo motor at a desired feed rate using this property. is there.
【0010】[0010]
【課題を解決するための手段】上記目的を達成するた
め、請求項1に係る発明は、従来のNC装置を変更する
ことなく、CAD/CAMなどでNCデータを作成する
ときの作成方法を従来のものと変更するものである。具
体的には、所望の送り速度制御曲線を表した残距離と送
り速度との関係表を予め用意する。そして、先ず残距離
x(j)が0の時の送り速度F(j)を上記関係表より求め、
該残距離x(j)と送り速度F(j)の組み合わせデータをL
IFOメモリに貯える。次に、前回の残距離x(j)及び
送り速度F(j)と時定数Tsを用いて新たに残距離x(j+
1)を下記の式 x(j+1)=x(j)+F(j)・Ts より算出するとともに送り速度を上記関係表より求め、
該両者の組み合わせデータをLIFOメモリに貯える。
そして、このような残距離及び送り速度の算出並びに組
み合わせデータのLIFOメモリへの記憶を関係表より
求めた送り速度が前回のそれと一致するまで繰り返した
後、最後に上記LIFOメモリに貯えた残距離と送り速
度の組み合わせデータから逆に順次読み出しNCデータ
を作成する。In order to achieve the above object, the invention according to claim 1 is directed to a method for preparing NC data by CAD / CAM or the like without changing a conventional NC device. It is something to change. Specifically, a relation table between the remaining distance and the feed speed, which represents a desired feed speed control curve, is prepared in advance. Then, first, the feed rate F (j) when the remaining distance x (j) is 0 is obtained from the above relation table,
The combination data of the remaining distance x (j) and the feed speed F (j) is represented by L
Store in IFO memory. Next, using the previous remaining distance x (j), the feed speed F (j), and the time constant Ts, a new remaining distance x (j +
1) is calculated from the following equation: x (j + 1) = x (j) + F (j) · Ts, and the feed rate is obtained from the above relational table.
The combined data of the two is stored in the LIFO memory.
The calculation of the remaining distance and the feed speed and the storage of the combination data in the LIFO memory are repeated until the feed speed obtained from the relation table matches the previous one, and then the remaining distance finally stored in the LIFO memory is obtained. NC data is sequentially read in reverse from the combination data of the feed speed and the feed speed.
【0011】このような方法で作成したNCデータをN
C装置に用いてサーボモータを制御する場合、送り速度
は加減速時定数Ts毎に折れ線状に変化し、残距離と送
り速度との関係表における所望の送り速度制御曲線に近
似するようになるので、サーボモータを所望の送り速度
で制御することができることになる。ここで、所望の送
り速度とは、切削負荷を一定にすることに限らず、例え
ば始動開始時等での振動を低減するために送り速度をい
わゆるS字状曲線で増加させることなども含む。また、
残距離が0の地点とは、ポケットコーナ部の如く一方の
軸方向の移動量が0となる終点を意味するだけでなく、
所望の送り速度が上述したS字状曲線の場合には送り速
度が最大となる最初の地点を意味する。つまり、送り速
度が変化するときの変化終了地点を意味するものであ
る。The NC data created by such a method is
When the servomotor is controlled by using the C device, the feed speed changes in a polygonal line for each acceleration / deceleration time constant Ts, and approximates a desired feed speed control curve in a relation table between the remaining distance and the feed speed. Therefore, the servo motor can be controlled at a desired feed speed. Here, the desired feed speed is not limited to making the cutting load constant, but also includes, for example, increasing the feed speed by a so-called S-shaped curve in order to reduce vibration at the start of starting or the like. Also,
The point where the remaining distance is 0 means not only the end point where the amount of movement in one axial direction becomes 0 as in a pocket corner, but also
When the desired feed speed is the above-mentioned S-shaped curve, it means the first point where the feed speed becomes maximum. In other words, it means a change end point when the feed speed changes.
【0012】請求項2に係る発明は、従来のNC装置を
変更し、NC装置自体に加減速制御特性を利用した補間
データを作成する機能を持たせるようにするものであ
る。具体的には、NCデータ(補間デ−タを含む) を
基に所望の送り速度でサーボモータを制御するNC装置
として、所望の送り速度制御曲線を表した残距離と送り
速度との関係表を予め作成して用意する残距離・送り速
度関係表作成手段と、LIFOメモリを有する補間デー
タ作成手段とを備える。そして、上記補間データ作成手
段は、補間データの作成に際し、先ず残距離x(j)が0
の時の送り速度F(j)を上記残距離・送り速度関係表作
成手段の作成した関係表より求め、該残距離x(j)と送
り速度F(j)の組み合わせデータをLIFOメモリに貯
え、次に、前回の残距離x(j)及び送り速度F(j)と時定
数Tsを用いて新たに残距離x(j+1)を下記の式 x(j+1)=x(j)+F(j)・Ts より算出するとともに送り速度を上記関係表より求め、
該両者の組み合わせデータをLIFOメモリに貯え、そ
して、このような残距離及び送り速度の算出並びに組み
合わせデータのLIFOメモリへの記憶を関係表より求
めた送り速度が前回のそれと一致するまで繰り返した
後、最後に上記LIFOメモリに貯えた残距離と送り速
度の組み合わせデータから逆に順次読み出し補間データ
を作成するように設けられている。According to a second aspect of the present invention, a conventional NC device is modified so that the NC device itself has a function of creating interpolation data using acceleration / deceleration control characteristics. More specifically, as an NC device that controls a servo motor at a desired feed speed based on NC data (including interpolation data), a relation table between a remaining distance and a feed speed representing a desired feed speed control curve is provided. Are prepared in advance and prepared, and interpolation data generating means having a LIFO memory is provided. Then, the interpolation data creating means sets the remaining distance x (j) to 0 when creating the interpolation data.
The feed speed F (j) at the time is obtained from the relation table created by the above-mentioned remaining distance / feed speed relation table creating means, and the combination data of the remaining distance x (j) and the feed speed F (j) is stored in the LIFO memory. Next, using the previous remaining distance x (j), the feed speed F (j), and the time constant Ts, the remaining distance x (j + 1) is newly calculated as follows: x (j + 1) = x (j ) + F (j) · Ts and the feed rate is obtained from the above relational table.
The combined data of the two is stored in the LIFO memory, and the calculation of the remaining distance and the feed speed and the storage of the combined data in the LIFO memory are repeated until the feed speed obtained from the relation table matches the previous one. Finally, it is provided to sequentially read in reverse from the combination data of the remaining distance and the feed speed stored in the LIFO memory and create interpolation data.
【0013】このような構成のNC装置によれば、補間
データ作成手段により補間デ−タが作成され、該補間デ
ータでは、送り速度が加減速時定数Ts毎に折れ線状に
変化し、残距離と送り速度との関係表における所望の送
り速度制御曲線に近似するようになっているので、上記
補間データを基にサーボモータを制御すれば所望の送り
速度で制御することができることになる。According to the NC device having such a configuration, the interpolation data is created by the interpolation data creation means. In the interpolation data, the feed speed changes in a polygonal line at every acceleration / deceleration time constant Ts, and the remaining distance is obtained. It is designed to approximate a desired feed speed control curve in the relationship table between the feed speed and the feed speed, so that if the servo motor is controlled based on the interpolation data, it is possible to control at a desired feed speed.
【0014】請求項3に係る発明は、請求項2に係る発
明を、切削負荷を一定とする送り速度制御に適用するも
のである。すなわち、上記残距離・送り速度関係表作成
手段において、終点計算以外にピック量やコーナ角度等
のデータを解析する工具経路解析部と、工具半径や工具
物半径等の形状データを予め記憶している形状データ記
憶部とを有し、上記解析データ及び形状データを基に切
削負荷一定の送り速度制御曲線を表した残距離と送り速
度との関係表を作成するように構成する。The invention according to claim 3 applies the invention according to claim 2 to feed speed control in which the cutting load is kept constant. That is, in the above-described remaining distance / feed speed relation table creating means, a tool path analyzing unit that analyzes data such as a pick amount and a corner angle other than the end point calculation, and shape data such as a tool radius and a tool object radius are stored in advance. And a relationship table between the remaining distance and the feed speed, which represents a feed speed control curve with a constant cutting load, based on the analysis data and the shape data.
【0015】これにより、ポケットコーナ部等でも切削
負荷一定の送り速度制御が実現されるので、工具寿命が
改善されるとともに、工具の弾性変形量の変動による加
工精度の低下が抑制されることになる。また、従来は工
具に最も切削負荷がかかるコーナ部を考え、送り速度を
低く抑えた加工が行われていたが、切削負荷一定の送り
速度制御により最良の送り速度を指令することができる
ため、加工時間の短縮化も可能となる。As a result, the feed speed control with a constant cutting load is realized even at the pocket corners and the like, so that the tool life is improved and the reduction in machining accuracy due to the variation in the amount of elastic deformation of the tool is suppressed. Become. In addition, in the past, considering the corner portion where the cutting load is most applied to the tool, machining was performed with the feed speed kept low, but since the cutting speed constant feed speed control can command the best feed speed, Processing time can also be reduced.
【0016】[0016]
【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】図7は補間前加減速制御と補間後加減速制
御とを併用するNC工作機械のNC装置Aを示す。この
NC装置Aは、NCデ−タ10を順次解析して各軸の移
動量及び送り速度に関する位置指令情報を出力するデ−
タ解析部11と、該解析部11からの送り速度を加減速
制御する補間前加減速制御回路12と、該加減速制御回
路12からの加減速指令値及び上記デ−タ解析部11か
ら加減速制御回路12をバイパスして入力する各軸の移
動量を基に補間動作を行いサーボ指令値を出力する補間
器13と、該補間器13からのサーボ指令値を各軸(図
ではX軸とY軸)に分配する分配器14と、該分配器1
4からの各軸のサーボ指令値(詳しくは速度指令分)を
それぞれ加減速制御する各軸の補間後加減速制御回路1
5a,15bと、該各加減速制御回路15a,15bで
加減速制御されたサーボ指令値を基にそれぞれ各軸のサ
ーボモータ17a,17bを駆動させる各軸のサーボ回
路16a,16bとを備えている。各軸のサーボモータ
17a,17bの作動により各軸の送り機構18a,1
8bが送り動作をする。FIG. 7 shows an NC apparatus A of an NC machine tool which uses both the acceleration / deceleration control before interpolation and the acceleration / deceleration control after interpolation. The NC apparatus A sequentially analyzes the NC data 10 and outputs position command information relating to the movement amount and feed speed of each axis.
A data analysis unit 11, an acceleration / deceleration control circuit 12 for controlling acceleration / deceleration of the feed speed from the analysis unit 11, an acceleration / deceleration command value from the acceleration / deceleration control circuit 12, and acceleration / deceleration from the data analysis unit 11. An interpolator 13 that performs an interpolation operation based on the movement amount of each axis input by bypassing the deceleration control circuit 12 and outputs a servo command value, and outputs a servo command value from the interpolator 13 to each axis (X axis in the figure). And the distributor 1 for distributing the signals to the
4 is an acceleration / deceleration control circuit 1 for each axis for performing acceleration / deceleration control of the servo command value (specifically, for the speed command) of each axis from 4
5a, 15b, and servo circuits 16a, 16b of the respective axes for driving the servo motors 17a, 17b of the respective axes based on the servo command values subjected to the acceleration / deceleration control by the respective acceleration / deceleration control circuits 15a, 15b. I have. By the operation of the servo motors 17a, 17b of each axis, the feed mechanisms 18a, 1
8b performs a feeding operation.
【0018】上記補間前加減速制御回路12は、補間器
13の残距離を監視しながらデ−タ解析部11からの送
り速度を加減速制御する本来の機能に加えて、本発明の
一実施形態として、NCデータ10とは別に独自に補間
データを作成する補間データ作成機能を備えている。す
なわち、補間前加減速制御回路12は、図8に示すよう
に、終点計算並びにそれ以外にピック量(取り代)やコ
ーナ角等のデータを解析する工具経路解析部21と、工
具半径や工具物半径等の形状データを予め記憶している
形状データ記憶部22と、上記解析データ(終点計算結
果を含む)及び形状データを基に切削負荷一定の送り速
度制御曲線を表した残距離と送り速度との関係表を作成
する残距離・送り速度関係表作成部23と、LIFO
(Last InFast Out)メモリ24を有する補間データ作
成手段としての補間データ作成部25とを備えている。The pre-interpolation acceleration / deceleration control circuit 12 is an embodiment of the present invention in addition to the original function of controlling the feed speed from the data analysis unit 11 while monitoring the remaining distance of the interpolator 13. As an embodiment, an interpolation data creation function for creating interpolation data independently of the NC data 10 is provided. That is, as shown in FIG. 8, the pre-interpolation acceleration / deceleration control circuit 12 includes a tool path analysis unit 21 for analyzing end point calculation and data such as a pick amount (cut allowance) and a corner angle. A shape data storage unit 22 in which shape data such as an object radius is stored in advance, and a remaining distance and feed representing a feed speed control curve with a constant cutting load based on the analysis data (including the end point calculation result) and the shape data. A remaining distance / feed speed relationship table creating unit 23 for creating a relationship table with speed;
(Last InFast Out) An interpolation data creation unit 25 as an interpolation data creation unit having a memory 24.
【0019】上記残距離・送り速度関係表作成部23
は、切削負荷一定の送り速度制御曲線を表した残距離と
送り速度との関係表を作成するに際し、先ず、任意の残
距離xiで径方向切込み量t(xi)を求める。その算出式
は、例えば図9に示す直角コーナ(いわゆるポケットコ
ーナ部)では φ<0°の時 t(xi)=t0 0°≦φ<90°の時 t(xi)=t0+R0(1−COSφ) φ≧90°の時 t(xi)=R+√{R2−(R−t0+xi)2} となる。但し、t0は取り代(定常時の径方向切込み
量)、R0は工作物半径、Rは工具径である。また、The above-mentioned remaining distance / feed speed relation table creating unit 23
In preparing a relation table between the remaining distance and the feed rate, which represents a feed rate control curve with a constant cutting load, first, the radial depth of cut t (xi) is obtained at an arbitrary remaining distance xi. For example, in the right angle corner (so-called pocket corner portion) shown in FIG. 9, when φ <0 °, t (xi) = t0 0 ° ≦ φ <90 ° t (xi) = t0 + R0 (1-COSφ When φ ≧ 90 °, t (xi) = R + {R 2 − (R−t 0 + xi) 2 }. Here, t0 is a removal allowance (radial depth of cut in a steady state), R0 is a workpiece radius, and R is a tool diameter. Also,
【0020】[0020]
【数2】φ=COS-1{(R02+D02−R2)/(2・D0
・R0)}+θ θ=TAN-1{(Y0−xi)/Y0} Y0=R0+t0−R D0=√{Y02+(Y0−xi)2} の関係式も成立する。[Number 2] φ = COS -1 {(R0 2 + D0 2 -R 2) / (2 · D0
· R0)} + θ θ = also holds the relational expression TAN -1 {(Y0-xi) / Y0} Y0 = R0 + t0-R D0 = √ {Y0 2 + (Y0-xi) 2}.
【0021】次に、切削負荷は単位時間当たりの切削断
面積、すなわち残距離xiでの切込み量t(xi)、送り速
度F(xi)とすればF(xi)・t(xi)に略比例するた
め、残距離xiでの切削負荷一定の送り速度は、 Fi=F(xi)=F0・t0/t(xi) で得られる。最終的には加工時の補正後直線加減速制御
(時定数=Ts)による遅れを予想し、下記の補正式 xi=xi−Fi・Ts/2 にて補正を行い、(xi,Fi)の組み合わせで図10に
示すような残距離と送り速度との関係表を作成する。従
って、上記残距離・送り速度関係表作成部23と工具径
路解析部21と形状データ記憶部22とにより、請求項
2に係る発明にいう、所望の送り速度制御曲線(本実施
形態では切削負荷一定の送り速度制御曲線)を表した残
距離と送り速度との関係表を予め作成して用意する残距
離・送り速度関係表作成手段26が構成されている。Next, the cutting load is substantially equal to the cutting sectional area per unit time, that is, the cutting depth t (xi) at the remaining distance xi and the feed speed F (xi) as F (xi) .t (xi). Since it is proportional, a feed rate with a constant cutting load at the remaining distance xi can be obtained by Fi = F (xi) = F0.t0 / t (xi). Eventually, a delay due to the corrected linear acceleration / deceleration control (time constant = Ts) after machining is predicted, and the correction is performed by the following correction formula xi = xi−Fi · Ts / 2, and (xi, Fi) is corrected. A relation table between the remaining distance and the feed speed as shown in FIG. 10 is created by the combination. Therefore, the desired feed speed control curve (the cutting load in the present embodiment) according to the invention according to claim 2 is obtained by the remaining distance / feed speed relationship table creating unit 23, the tool path analyzing unit 21, and the shape data storage unit 22. A remaining distance / feed speed relation table creating means 26 is provided which prepares in advance a relation table between the remaining distance and the feed speed representing a constant feed speed control curve).
【0022】また、上記補間データ作成部25は、上記
残距離・送り速度関係表作成部23で作成された残距離
と送り速度との関係表を用いて補間データを作成する。
この補間データの作成は、図12に示すフローチャート
に従って行われる。The interpolation data creating unit 25 creates interpolation data using the relation table between the remaining distance and the feed speed created by the remaining distance / feed speed relation table creating unit 23.
The creation of the interpolation data is performed according to the flowchart shown in FIG.
【0023】すなわち、補間データの作成においては、
与えられた終点(残距離が0の地点)で関係表から求め
られる送り速度に合わせて出力する必要があるため、先
ず残距離x(j)が0の時の送り速度F(j)を残距離・送り
速度関係表より求め(ステップS1,S2)、該残距離
x(j)と送り速度F(j)の組み合わせデータ(x(j),F
(j))をLIFOメモリ24に貯える(ステップS
4)。That is, in creating interpolation data,
At the given end point (point where the remaining distance is 0), it is necessary to output in accordance with the feed speed obtained from the relation table. First, the feed speed F (j) when the remaining distance x (j) is 0 is stored. It is obtained from the distance-feed speed relation table (steps S1 and S2), and the combination data (x (j), F (j), F (j)) of the remaining distance x (j) and the feed speed F (j).
(j)) is stored in the LIFO memory 24 (step S).
4).
【0024】次に、前回の残距離x(j)及び送り速度F
(j)と時定数Tsを用いて新たに残距離x(j+1)を下記の
式 x(j+1)=x(j)+F(j)・Ts より算出しかつカウンターjをインクリメントするとと
もに(ステップS5)、新たな残距離に対応した送り速
度を残距離・送り速度関係表より求め、その組み合わせ
データを同じくLIFOメモリ24に貯える。ここで、
送り速度を残距離・送り速度関係表より求めるときに
は、図11に示すように、残距離x(j)に対して上記関
係表からx(i)≦x(j)≦x(i+1)なる区間を選び出し、
残距離がx(j)の時の送り速度F(j)を下記の数式3によ
り算出する。Next, the previous remaining distance x (j) and the feed speed F
Using (j) and the time constant Ts, the remaining distance x (j + 1) is newly calculated from the following equation x (j + 1) = x (j) + F (j) · Ts, and the counter j is incremented. At the same time (step S5), the feed speed corresponding to the new remaining distance is obtained from the remaining distance / feed speed relationship table, and the combination data is similarly stored in the LIFO memory 24. here,
When the feed speed is obtained from the remaining distance / feed speed relationship table, as shown in FIG. 11, for the remaining distance x (j), x (i) ≦ x (j) ≦ x (i + 1) from the above relationship table. Section,
The feed speed F (j) when the remaining distance is x (j) is calculated by the following Expression 3.
【0025】[0025]
【数3】F(j)=F(i)+{F(i+1)−F(i)}・{x(j)
−x(i)}/{x(i+1)−x(i)} そして、このような残距離及び送り速度の算出並びに組
み合わせデータのLIFOメモリ24への記憶を関係表
より求めた送り速度が前回のそれと一致する(F(j)=
F(j-1))まで繰り返す(ステップS3)。しかる後、
カウンターjをディクリメントし(ステップS6)、最
後に上記LIFOメモリ24に貯えた残距離と送り速度
の組み合わせデータ(x(j),F(j))から逆に順次読み
出し、残距離x(j)から位置又は移動量を求めて補間デ
ータを作成し出力する(ステップS8)。そして、カウ
ンターjが0以下(j<0)になったとき(ステップS
7)、つまりLIFOメモリ24に貯えられた全ての組
み合わせデータの読み出しが完了したときに、補間デー
タの作成を終了する。## EQU3 ## F (j) = F (i) + {F (i + 1) -F (i)}. Multidot.x (j)
−x (i)} / {x (i + 1) −x (i)} Then, the feed speed obtained by calculating the remaining distance and the feed speed and storing the combined data in the LIFO memory 24 from the relation table. Matches the previous one (F (j) =
F (j-1)) (step S3). After a while
The counter j is decremented (step S6). Finally, the remaining distance x (j) and F (j) are sequentially read in reverse from the combination data (x (j), F (j)) of the remaining distance and the feed speed stored in the LIFO memory 24. ), The position or the movement amount is obtained to create and output interpolation data (step S8). Then, when the counter j becomes 0 or less (j <0) (step S
7) That is, when the reading of all the combination data stored in the LIFO memory 24 is completed, the creation of the interpolation data is completed.
【0026】このようにして補間前加減速制御回路12
の補間データ作成部25で作成された補間データは、補
間器13及び分配器14を介して各軸の補間後加減速制
御回路15a,15bに入力し、該加減速制御回路15
a,15bで加減速制御された後、サーボ指令値として
サーボ回路16a,16bに送られる。その際、上記補
間データでは、補間後加減速制御の時定数Ts毎に送り
速度F(j)が、切削負荷一定の送り速度制御曲線を表し
た残距離と送り速度との関係表より求められているた
め、各軸のサーボモータ17a,17bは、例えばポケ
ットコーナ部では図13に示すように、切削負荷一定の
送り速度制御曲線(図6参照)に近似した折れ線状に調
整制御されることになる。この結果、工具寿命を改善で
きるとともに、工具の弾性変形量の変動による加工精度
の低下を抑制することができる。また、従来は工具に最
も切削負荷がかかるコーナ部を考え、送り速度を低く抑
えた加工が行われていたが、切削負荷一定の送り速度制
御により最良の送り速度を指令することができるので、
加工時間の短縮化も可能となる。Thus, the acceleration / deceleration control circuit 12 before interpolation
The interpolation data created by the interpolation data creation section 25 is input to the post-interpolation acceleration / deceleration control circuits 15a and 15b of each axis via the interpolator 13 and the distributor 14.
After acceleration / deceleration control is performed at a and 15b, the signals are sent to the servo circuits 16a and 16b as servo command values. At this time, in the interpolation data, the feed speed F (j) is obtained from the relationship table between the remaining distance and the feed speed, which represents the feed speed control curve with a constant cutting load, for each time constant Ts of the post-interpolation acceleration / deceleration control. Therefore, the servo motors 17a and 17b of the respective axes are adjusted and controlled in a polygonal line shape approximating a feed speed control curve with a constant cutting load (see FIG. 6), for example, as shown in FIG. become. As a result, the tool life can be improved, and a decrease in machining accuracy due to a change in the amount of elastic deformation of the tool can be suppressed. Also, in the past, considering the corner part where the cutting load is applied most to the tool, machining was performed with the feed speed kept low, but since the cutting speed constant feed speed control can command the best feed speed,
Processing time can also be reduced.
【0027】図14はポケットコーナ部において本発明
例の切削負荷一定制御(実線)と従来例の高速高精度制
御(破線)とを行った場合の速度パターンを示し、図1
5は同じく形状誤差を示す。尚、図14には、参考とし
て工具の半径方向切込み量の変化パターンを二点鎖線
で、切削体積一定の速度パターンを一点鎖線で、本発明
例の切削負荷一定制御の指令点変化パターンをプロット
点付き実線でそれぞれ示す。図14から分かるように、
本発明例の速度パターンは従来例のものに比べて切削体
積一定速度パターンに非常に近似することになり、理想
的な速度パターンが得られる。また、図15から分かる
ように、本発明例ではコーナ部での形状誤差が従来例の
ものに比べて約半分に低減する。FIG. 14 shows a speed pattern when the cutting load constant control (solid line) of the embodiment of the present invention and the high-speed high-precision control (broken line) of the conventional example are performed in the pocket corner portion.
Reference numeral 5 indicates a shape error. In FIG. 14, the reference point change pattern of the cutting load constant control of the present invention is plotted by using a two-dot chain line for a change pattern of the cutting depth in the radial direction of the tool and a one-dot chain line for a constant cutting volume as a reference. These are indicated by dotted solid lines. As can be seen from FIG.
The speed pattern of the example of the present invention is much closer to the constant cutting volume speed pattern than that of the conventional example, and an ideal speed pattern can be obtained. Further, as can be seen from FIG. 15, in the example of the present invention, the shape error at the corner portion is reduced to about half as compared with the conventional example.
【0028】尚、本発明は上記実施形態に限定されるも
のではなく、その他種々の実施形態を包含するものであ
る。例えば上記実施形態では、補間前加減速制御と補間
後加減速制御とを併用したNC装置について述べたが、
本発明は、図3に示す補間後加減速方式のNC装置にも
同様に適用することができる。It should be noted that the present invention is not limited to the above embodiment, but includes various other embodiments. For example, in the above embodiment, the NC device using both the pre-interpolation acceleration / deceleration control and the post-interpolation acceleration / deceleration control has been described.
The present invention can be similarly applied to the NC device of the post-interpolation acceleration / deceleration system shown in FIG.
【0029】また、本発明のNCデ−タ作成方法は、N
C装置自体を変更することなく、CAD/CAM等でN
Cデ−タ10を作成する場合に適用することができる。
すなわち、NCデ−タ10の作成過程において、切削負
荷を一定とするなど所望の送り速度制御曲線を表した残
距離と送り速度との関係表を予め用意し、上述した図1
2と同様のフローチャートに従ってNCデータを作成す
るようにすればよい。図16はこの方法で作成した、直
角コ−ナ部で切削負荷一定の送り速度制御をするための
NCデ−タ例を示す。Also, the NC data creation method of the present invention
Without changing the C device itself, N
This can be applied to the case where the C data 10 is created.
That is, in the process of preparing the NC data 10, a relation table between the remaining distance and the feed speed, which represents a desired feed speed control curve such as keeping the cutting load constant, is prepared in advance, and FIG.
The NC data may be created according to the same flowchart as in the second embodiment. FIG. 16 shows an example of NC data created by this method for controlling the feed rate at a constant cutting load at a right-angled corner.
【0030】さらに、本発明は、上記実施形態の如く二
軸のサーボモータを備えたNC工作機械に限定されるも
のではなく、三軸又はそれ以上のサーボモータを備えた
NC工作機械にも適用することができるのは言うまでも
ない。Further, the present invention is not limited to an NC machine tool having a two-axis servomotor as in the above embodiment, but is also applicable to an NC machine tool having a three-axis or more servomotor. It goes without saying that you can do it.
【0031】[0031]
【発明の効果】以上の如く、本発明のNCデータ作成方
法及びNC装置によれば、送り速度が加減速時定数毎に
折れ線状に変化し、残距離と送り速度との関係表におけ
る所望の送り速度制御曲線に近似するようになるので、
所望の送り速度制御を確実に実現することができ、実用
的に優れた効果を有する。As described above, according to the NC data generating method and the NC apparatus of the present invention, the feed speed changes in a polygonal line for each acceleration / deceleration time constant, and the desired value in the relation table between the remaining distance and the feed speed is obtained. Since it will approximate the feed rate control curve,
Desired feed speed control can be reliably realized, and has a practically excellent effect.
【0032】特に、請求項3に係る発明の如く切削負荷
一定の送り速度制御に適用した場合には、工具寿命の改
善及び工具の弾性変形量の変動による加工精度の低下抑
制を図ることができるとともに、最良の送り速度を指令
して加工時間の短縮化を図ることができる。In particular, when the present invention is applied to the feed rate control with a constant cutting load as in the invention according to the third aspect, it is possible to improve the tool life and suppress a decrease in machining accuracy due to a change in the amount of elastic deformation of the tool. At the same time, it is possible to shorten the machining time by instructing the best feed speed.
【図1】補間前加減速方式のNC装置のブロック構成図
である。FIG. 1 is a block diagram of an NC apparatus of an acceleration / deceleration system before interpolation.
【図2】補間前加減速制御の速度パターン図である。FIG. 2 is a speed pattern diagram of acceleration / deceleration control before interpolation.
【図3】補間後加減速方式のNC装置のブロック構成図
である。FIG. 3 is a block diagram of an NC apparatus of an acceleration / deceleration system after interpolation.
【図4】補間後加減速制御の速度パターン図である。FIG. 4 is a speed pattern diagram of post-interpolation acceleration / deceleration control.
【図5】ポケットコーナ部を示す模式図である。FIG. 5 is a schematic view showing a pocket corner portion.
【図6】ポケットコーナ部での切込み量の変化と切削負
荷一定送り速度を示す図である。FIG. 6 is a diagram showing a change in a cutting amount at a pocket corner portion and a constant cutting load feed speed.
【図7】補間前加減速方式と補間後加減速方式とを併用
するNC装置のブロック構成図である。FIG. 7 is a block diagram of an NC device that uses both an acceleration / deceleration method before interpolation and an acceleration / deceleration method after interpolation.
【図8】補間前加減速制御回路の補間デ−タ作成機能を
発揮する部分のブロック構成図である。FIG. 8 is a block diagram of a portion of the acceleration / deceleration control circuit before interpolation that exhibits an interpolation data creation function.
【図9】直角コーナ部での切込み量を説明するための図
である。FIG. 9 is a diagram for explaining a cutting amount at a right angle corner portion.
【図10】残距離と送り速度との関係表を示す図であ
る。FIG. 10 is a diagram showing a relation table between a remaining distance and a feed speed.
【図11】残距離がx(j)の時の送り速度F(j)を算出す
る方法を説明するための図である。FIG. 11 is a diagram for explaining a method of calculating a feed speed F (j) when the remaining distance is x (j).
【図12】補間データ作成のフローチャート図である。FIG. 12 is a flowchart of creating interpolation data.
【図13】コーナ部における本発明の切削負荷一定制御
の送り速度の変化を示す図である。FIG. 13 is a diagram showing a change in the feed rate of the cutting load constant control of the present invention in a corner portion.
【図14】ポケットコーナ部において本発明例の切削負
荷一定制御と従来例の高速高精度制御とを行った場合の
速度パターンを示す図である。FIG. 14 is a diagram showing a speed pattern when the cutting load constant control of the example of the present invention and the high-speed and high-precision control of the conventional example are performed in the pocket corner portion.
【図15】同じく形状誤差を示す図である。FIG. 15 is a diagram showing a shape error.
【図16】本発明の方法で作成したNCデ−タ例を示す
図である。FIG. 16 is a diagram showing an example of NC data created by the method of the present invention.
A NC装置 21 工具経路解析部 22 形状データ記憶部 23 残距離・送り速度関係表作成部 24 LIFOメモリ 25 補間データ作成部(補間データ作成手段) 26 残距離・送り速度関係表作成手段 A NC unit 21 Tool path analysis unit 22 Shape data storage unit 23 Remaining distance / feed speed relationship table creation unit 24 LIFO memory 25 Interpolation data creation unit (interpolation data creation unit) 26 Remaining distance / feed speed relationship table creation unit
Claims (3)
るためのNCデータを作成するNCデータ作成方法であ
って、 所望の送り速度制御曲線を表した残距離と送り速度との
関係表を予め用意し、 先ず残距離x(j)が0の時の送り速度F(j)を上記関係表
より求め、該残距離x(j)と送り速度F(j)の組み合わせ
データをLIFOメモリに貯え、 次に、前回の残距離x(j)及び送り速度F(j)と時定数T
sを用いて新たに残距離x(j+1)を下記の式 x(j+1)=x(j)+F(j)・Ts より算出するとともに送り速度を上記関係表より求め、
該両者の組み合わせデータをLIFOメモリに貯え、 そして、このような残距離及び送り速度の算出並びに組
み合わせデータのLIFOメモリへの記憶を関係表より
求めた送り速度が前回のそれと一致するまで繰り返した
後、最後に上記LIFOメモリに貯えた残距離と送り速
度の組み合わせデータから逆に順次読み出しNCデータ
を作成することを特徴とするNCデータ作成方法。1. An NC data creating method for creating NC data for controlling a servo motor at a desired feed speed, wherein a relationship table between a remaining distance and a feed speed representing a desired feed speed control curve is prepared in advance. First, the feed speed F (j) when the remaining distance x (j) is 0 is obtained from the above relation table, and the combination data of the remaining distance x (j) and the feed speed F (j) is stored in the LIFO memory. Next, the previous remaining distance x (j), feed speed F (j) and time constant T
Using s, the remaining distance x (j + 1) is newly calculated from the following equation x (j + 1) = x (j) + F (j) · Ts, and the feed rate is obtained from the above relation table.
The combined data of the two is stored in the LIFO memory, and the calculation of the remaining distance and the feed speed and the storage of the combined data in the LIFO memory are repeated until the feed speed obtained from the relation table matches the previous one. And NC data is sequentially read in reverse from the combination data of the remaining distance and the feed speed stored in the LIFO memory.
ボモータを制御するNC装置であって、 所望の送り速度制御曲線を表した残距離と送り速度との
関係表を予め作成して用意する残距離・送り速度関係表
作成手段と、 LIFOメモリを有する補間データ作成手段とを備えて
おり、 上記補間データ作成手段は、補間データの作成に際し、
先ず残距離x(j)が0の時の送り速度F(j)を上記残距離
・送り速度関係表作成手段の作成した関係表より求め、
該残距離x(j)と送り速度F(j)の組み合わせデータをL
IFOメモリに貯え、次に、前回の残距離x(j)及び送
り速度F(j)と時定数Tsを用いて新たに残距離x(j+1)
を下記の式 x(j+1)=x(j)+F(j)・Ts より算出するとともに送り速度を上記関係表より求め、
該両者の組み合わせデータをLIFOメモリに貯え、そ
して、このような残距離及び送り速度の算出並びに組み
合わせデータのLIFOメモリへの記憶を関係表より求
めた送り速度が前回のそれと一致するまで繰り返した
後、最後に上記LIFOメモリに貯えた残距離と送り速
度の組み合わせデータから逆に順次読み出し補間データ
を作成するように設けられていることを特徴とするNC
装置。2. An NC device for controlling a servo motor at a desired feed speed based on NC data, wherein a relationship table between a remaining distance and a feed speed representing a desired feed speed control curve is prepared and prepared in advance. And an interpolation data creating means having a LIFO memory. The interpolation data creating means, when creating the interpolation data,
First, the feed speed F (j) when the remaining distance x (j) is 0 is obtained from the relationship table created by the above-described remaining distance / feed speed relationship table creating means.
The combination data of the remaining distance x (j) and the feed speed F (j) is represented by L
The remaining distance x (j + 1) is stored in the IFO memory, and then the remaining distance x (j + 1) is calculated using the previous remaining distance x (j), the feed speed F (j), and the time constant Ts.
Is calculated from the following equation x (j + 1) = x (j) + F (j) · Ts, and the feed rate is obtained from the above relational table.
The combined data of the two is stored in the LIFO memory, and the calculation of the remaining distance and the feed speed and the storage of the combined data in the LIFO memory are repeated until the feed speed obtained from the relation table matches the previous one. NC is provided so as to sequentially read in reverse order from the combination data of the remaining distance and the feed speed stored in the LIFO memory and finally create interpolation data.
apparatus.
は、終点計算以外にピック量やコーナ角度等のデータを
解析する工具経路解析部と、工具半径や工具物半径等の
形状データを予め記憶している形状データ記憶部とを有
し、上記解析データ及び形状データを基に切削負荷一定
の送り速度制御曲線を表した残距離と送り速度との関係
表を作成するように設けられている請求項2記載のNC
装置。3. The remaining distance / feed speed relation table creating means includes a tool path analysis unit for analyzing data such as a pick amount and a corner angle in addition to end point calculation, and a shape data such as a tool radius and a tool object radius in advance. A shape data storage unit that stores therein, and is provided so as to create a relation table between a remaining distance and a feed speed that expresses a feed speed control curve with a constant cutting load based on the analysis data and the shape data. The NC according to claim 2,
apparatus.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21302996A JPH1039913A (en) | 1996-07-23 | 1996-07-23 | Nc data preparing method and nc device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP21302996A JPH1039913A (en) | 1996-07-23 | 1996-07-23 | Nc data preparing method and nc device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH1039913A true JPH1039913A (en) | 1998-02-13 |
Family
ID=16632337
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP21302996A Withdrawn JPH1039913A (en) | 1996-07-23 | 1996-07-23 | Nc data preparing method and nc device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH1039913A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000068745A1 (en) * | 1999-05-06 | 2000-11-16 | Kabushiki Kaisha Yaskawa Denki | Programmable controller |
| CN113721547A (en) * | 2021-08-27 | 2021-11-30 | 中原内配集团安徽有限责任公司 | Cylinder jacket processing cutter compensation control system |
-
1996
- 1996-07-23 JP JP21302996A patent/JPH1039913A/en not_active Withdrawn
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2000068745A1 (en) * | 1999-05-06 | 2000-11-16 | Kabushiki Kaisha Yaskawa Denki | Programmable controller |
| US6842651B1 (en) | 1999-05-06 | 2005-01-11 | Kabushiki Kaisha Yaskawa Denki | Programmable controller having plural speed pattern generators |
| CN113721547A (en) * | 2021-08-27 | 2021-11-30 | 中原内配集团安徽有限责任公司 | Cylinder jacket processing cutter compensation control system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Sencer et al. | High speed cornering strategy with confined contour error and vibration suppression for CNC machine tools | |
| US4963805A (en) | Numerical control apparatus for machining non-circular workpieces | |
| WO2008053601A1 (en) | Working control device, and its program | |
| EP0357778B1 (en) | Method of speed control for servomotor | |
| JP2935713B2 (en) | Numerical control unit | |
| JPH11338530A (en) | Controller for working machine | |
| US6223095B1 (en) | Numeric control command generator and method | |
| US7392110B2 (en) | Method and device for milling freeform surfaces | |
| JPH1039913A (en) | Nc data preparing method and nc device | |
| JPH0354610A (en) | Involute interpolation error correcting system | |
| US5132913A (en) | Method and apparatus for creating a three-dimensional space curve by smoothly connecting a three-dimensional sequence of discretely given paints | |
| JPH07210225A (en) | Numerical controller | |
| JP2006227701A (en) | Circular machining command creation device, method and program | |
| JP3188396B2 (en) | Feed rate control method and apparatus in numerical control | |
| US5027045A (en) | High-precision pulse interpolation method | |
| JPH11194813A (en) | How to create operation commands for industrial machines | |
| JPH06332512A (en) | Method and device machining curved surface using nc machine tool | |
| JP3164512B2 (en) | Numerical control unit | |
| JP2919424B2 (en) | Numerical controller with deviation monitoring function | |
| JPH09288509A (en) | Numerical control device block data processing method | |
| JP2001166807A (en) | Machining command method of numerical controller | |
| JPH0573128A (en) | Feed rate control method for numerical controller | |
| JP2505382B2 (en) | Feed rate control method and device in numerical control | |
| JPH0561517A (en) | Numerical control device | |
| JPH06282323A (en) | Method for controlling servo motor for compensating interpolated acceleration/deceleration |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20031007 |