[go: up one dir, main page]

JPH1054617A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH1054617A
JPH1054617A JP20857996A JP20857996A JPH1054617A JP H1054617 A JPH1054617 A JP H1054617A JP 20857996 A JP20857996 A JP 20857996A JP 20857996 A JP20857996 A JP 20857996A JP H1054617 A JPH1054617 A JP H1054617A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
water
outdoor heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20857996A
Other languages
Japanese (ja)
Inventor
Koji Kashima
弘次 鹿島
Yoshihiro Ito
芳浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20857996A priority Critical patent/JPH1054617A/en
Publication of JPH1054617A publication Critical patent/JPH1054617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】 【課題】 臨界圧を越えて冷凍サイクルを構成するHC
FC系以外の冷媒を用いて効率のよい冷房性能を確保す
る。 【解決手段】 圧縮機1から吐出された冷媒が、室外熱
交換器3、絞り装置5、室内熱交換器7を通り、再び圧
縮機1に戻る冷凍サイクルを構成する。冷媒には、臨界
圧を越えて冷凍サイクルを流れる冷媒を用いると共に、
冷房運転時に、冷媒冷却手段19によって室外熱交換器
3の出口の冷媒温度を臨界点温度より下げるようにす
る。
(57) [Summary] [Problem] HC constituting refrigeration cycle exceeding critical pressure
Efficient cooling performance is ensured by using a refrigerant other than the FC type. SOLUTION: The refrigerant discharged from the compressor 1 constitutes a refrigeration cycle that returns to the compressor 1 through the outdoor heat exchanger 3, the expansion device 5, and the indoor heat exchanger 7. As the refrigerant, a refrigerant flowing through the refrigeration cycle exceeding the critical pressure is used,
During the cooling operation, the refrigerant temperature at the outlet of the outdoor heat exchanger 3 is made lower than the critical point temperature by the refrigerant cooling means 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、地球環境に悪影
響を与えるといわれるHCFC及びCFC系以外の冷媒
を用いた空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a refrigerant other than HCFC and CFC, which is considered to have a bad influence on the global environment.

【0002】[0002]

【従来の技術】一般に空気調和装置は、冷房運転時に、
圧縮機から吐出された冷媒が、室外熱交換器、絞り装
置、室内熱交換器を通り、再び圧縮機に戻る冷凍サイク
ルを構成する。この冷凍サイクル時において、室内熱交
換器のフィンとフィンの間を空気が通過する際に、冷媒
との間で熱交換が行なわれることで、冷却された空気は
吐出口から吹き出されるようになる。
2. Description of the Related Art Generally, an air conditioner operates during a cooling operation.
The refrigerant discharged from the compressor constitutes a refrigeration cycle that returns to the compressor after passing through the outdoor heat exchanger, the expansion device, and the indoor heat exchanger. During the refrigeration cycle, when air passes between the fins of the indoor heat exchanger, heat exchange is performed with the refrigerant so that the cooled air is blown out from the discharge port. Become.

【0003】[0003]

【発明が解決しようとする課題】HCFC及びCFC系
以外の冷媒、例えばCO2 を用いた冷房運転では図13
に示す如く、臨界圧を越えて冷凍サイクルを構成する場
合があり、その臨界点温度31℃の等温線は、臨界圧で
水平となり変化する。
In a cooling operation using a refrigerant other than HCFC and CFC, for example, CO 2 , FIG.
As shown in (1), the refrigeration cycle may be constructed beyond the critical pressure, and the isotherm at the critical point temperature of 31 ° C. changes horizontally at the critical pressure.

【0004】そのため、例えば、外気温度が35℃と臨
界圧より高い場合は、空冷式の室外熱交換器では冷媒の
放熱性が極端に低下し、冷房性能が悪化するため、冷媒
の選択に制約を受けるようになる。
For example, when the outside air temperature is higher than the critical pressure of 35 ° C., the heat radiation of the refrigerant in the air-cooled outdoor heat exchanger is extremely reduced, and the cooling performance is deteriorated. To receive.

【0005】そこで、この発明は、室外熱交換器の冷媒
出口温度を臨界点温度以下に下げることで、性能向上が
図れることがデータで証明された点に鑑みなされたもの
で、HCFC及びCFC系以外で臨界圧を越えて冷凍サ
イクルを構成する冷媒を用いても十分な冷房性能が得ら
れるようにした空気調和装置を提供することを目的とし
ている。
In view of the above, the present invention has been made in view of the fact that it has been proved by data that the performance can be improved by lowering the refrigerant outlet temperature of the outdoor heat exchanger below the critical point temperature. It is another object of the present invention to provide an air conditioner capable of obtaining sufficient cooling performance even when a refrigerant constituting a refrigeration cycle exceeding a critical pressure is used.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、この発明は、圧縮機から吐出された冷媒が室外熱交
換器、絞り装置、室内熱交換器を通り再び圧縮機に戻る
冷凍サイクルを構成する空気調和装置において、前記冷
媒には、HCFC及びCFC系以外で臨界圧を越えて冷
凍サイクルを流れる冷媒を用いると共に、冷房運転時
に、室外熱交換器の出口の冷媒温度を臨界点温度より下
げる冷媒冷却手段を備える。
In order to achieve the above object, the present invention relates to a refrigeration cycle in which refrigerant discharged from a compressor passes through an outdoor heat exchanger, a throttle device, and an indoor heat exchanger and returns to the compressor again. In the air conditioner, the refrigerant is a refrigerant other than HCFC and CFC and flows through a refrigeration cycle exceeding a critical pressure, and at the time of cooling operation, the refrigerant temperature at the outlet of the outdoor heat exchanger is changed to the critical point temperature. A cooling unit for lowering the temperature is provided.

【0007】冷媒としては、炭酸ガス(CO2 )を用い
る。また、冷媒冷却手段としては、水熱源と、水流量制
御装置とで構成する。
[0007] Carbon dioxide (CO 2 ) is used as the refrigerant. Further, the refrigerant cooling means is constituted by a water heat source and a water flow control device.

【0008】あるいは、空気と水を同時に、又はいずれ
か一方を選択して用いる。あるいは、蓄冷材を用いる。
Alternatively, air and water are used at the same time, or one of them is used. Alternatively, a cold storage material is used.

【0009】かかる空気調和装置によれば、圧縮機から
吐出された冷媒は、室外熱交換器、絞り装置、室内熱交
換器を通り、再び圧縮機に戻る冷凍サイクルを構成す
る。この運転時において、室内熱交換器を通過する空気
と冷媒との間で熱交換が行なわれ、空気は冷却される。
同時に、室外熱交換器の出口の冷媒は、冷媒冷却手段に
よって冷却され、臨界点温度以下まで下げられた状態で
冷凍サイクルを流れるため、臨界点温度を越える外気温
であっても、効率のよい冷房性能が得られる。
According to this air conditioner, the refrigerant discharged from the compressor constitutes a refrigeration cycle that returns to the compressor after passing through the outdoor heat exchanger, the expansion device, and the indoor heat exchanger. During this operation, heat exchange is performed between the air passing through the indoor heat exchanger and the refrigerant, and the air is cooled.
At the same time, the refrigerant at the outlet of the outdoor heat exchanger is cooled by the refrigerant cooling means and flows through the refrigeration cycle in a state where the temperature is lowered to or below the critical point temperature. Cooling performance is obtained.

【0010】[0010]

【発明の実施の形態】以下、図1乃至図3の図面を参照
しながらこの発明の実施形態を具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIGS.

【0011】図1において、1は圧縮機、3は室外熱交
換器、5は絞り装置、7は室内熱交換器をそれぞれ示し
ている。冷房運転時は、四方弁9を切換えることで、圧
縮機1から吐出された冷媒は、四方弁9を介して実線で
示す如く室外熱交換器3、絞り装置5、室内熱交換器7
を通り、再び圧縮機1に戻る冷凍サイクルを構成する。
あるいは、暖房運転時は、点線で示す如く圧縮機1から
吐出された冷媒は、四方弁9を介して室内熱交換器7、
絞り装置5、室外熱交換器3を通り、再び圧縮機1に戻
る冷凍サイクルを構成する。
In FIG. 1, 1 is a compressor, 3 is an outdoor heat exchanger, 5 is a throttle device, and 7 is an indoor heat exchanger. During the cooling operation, by switching the four-way valve 9, the refrigerant discharged from the compressor 1 passes through the four-way valve 9, as shown by the solid line, the outdoor heat exchanger 3, the expansion device 5, the indoor heat exchanger 7.
And a refrigeration cycle that returns to the compressor 1 again.
Alternatively, during the heating operation, the refrigerant discharged from the compressor 1 as indicated by the dotted line passes through the indoor heat exchanger 7,
A refrigeration cycle that returns to the compressor 1 through the expansion device 5 and the outdoor heat exchanger 3 is configured.

【0012】冷媒には臨界点温度を越えて冷凍サイクル
を構成する炭酸ガス(CO2 )が用いられている。
As the refrigerant, carbon dioxide (CO 2 ) which exceeds the critical point temperature and forms a refrigeration cycle is used.

【0013】圧縮機1は吸込口1aから取入れた冷媒を
圧縮し、高温・高圧のガスとして吐出口1bから吐出す
るよう機能する。
The compressor 1 functions to compress the refrigerant taken in from the suction port 1a and discharge it from the discharge port 1b as a high-temperature and high-pressure gas.

【0014】室外熱交換器3は、図3に示す如く外側の
冷媒管11と内側の水路管13とから成る二重管構造と
なっている。冷媒管11は冷媒が流れる内周面を溝付き
面15となっている。水路管13は外周に多数のフィン
17を有し、水熱源19からの水が流れる内周面は溝付
き面21となっている。
The outdoor heat exchanger 3 has a double pipe structure comprising an outer refrigerant pipe 11 and an inner water pipe 13 as shown in FIG. The refrigerant pipe 11 has a grooved surface 15 on the inner peripheral surface through which the refrigerant flows. The water pipe 13 has a large number of fins 17 on the outer periphery, and an inner peripheral surface through which water from the water heat source 19 flows is a grooved surface 21.

【0015】水路管13は、水熱源19、絞り弁23、
室外熱交換器3を通り再び水熱源19に戻る循環サイク
ルを構成する。水熱源19は、水道水を始めとして、下
水、地下水の他、水であればいずれの水であっても可能
である。
The water pipe 13 includes a water heat source 19, a throttle valve 23,
A circulation cycle is formed through the outdoor heat exchanger 3 and returning to the water heat source 19 again. The water heat source 19 can be any water, such as tap water, sewage, and groundwater.

【0016】絞り弁23は、冷房運転時において、室外
熱交換器3の出口の冷媒温度を検知する冷媒温度検知セ
ンサ25と、外気温検知センサ27からの検知信号に基
づき、作動制御される水流量制御装置となっている。例
えば、外気温、冷媒温度が臨界圧を大きく越える場合に
は、絞り弁23を一杯に開き、水路管13を流れる水量
を最大として冷媒との間で熱交換が行なわれるように
し、以下、検知信号に基づき水路管13を流れる水量の
制御が行なわれるようになる。
During the cooling operation, the throttle valve 23 controls the operation of water based on a detection signal from the refrigerant temperature detection sensor 25 for detecting the refrigerant temperature at the outlet of the outdoor heat exchanger 3 and a detection signal from the outside air temperature detection sensor 27. It is a flow control device. For example, when the outside air temperature and the refrigerant temperature greatly exceed the critical pressure, the throttle valve 23 is fully opened to maximize the amount of water flowing through the water pipe 13 so that heat exchange with the refrigerant is performed. Control of the amount of water flowing through the water pipe 13 is performed based on the signal.

【0017】一方、冷凍サイクルを構成する絞り装置5
はキャピラリーチューブとなっていて、通過時に絞り作
用により冷媒を低温・低圧ガスとするよう機能する。
On the other hand, the expansion device 5 constituting the refrigeration cycle
Is a capillary tube, which functions to convert the refrigerant into a low-temperature and low-pressure gas by a throttling action during passage.

【0018】室内熱交換器7は、冷媒が流れる冷媒管1
1に多数のフィン(図示していない)が設けられると共
に、フィンとフィンの間に風を通過させる送風ファン2
9を有している。
The indoor heat exchanger 7 includes a refrigerant pipe 1 through which a refrigerant flows.
1 is provided with a large number of fins (not shown), and a blower fan 2 for passing wind between the fins.
9.

【0019】このように構成された空気調和装置によれ
ば、冷房運転時に、圧縮機1から吐出された冷媒は、室
外熱交換器3、絞り装置5、室内熱交換器7を通り、再
び圧縮機1に戻る冷凍サイクルを構成する。この運転時
において、室内熱交換器7のフィンとフィンの間を通過
する空気と冷媒との間で熱交換が行なわれ、冷却された
空気は吹き出し口から吹き出されるようになる。
According to the air conditioner configured as described above, during the cooling operation, the refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger 3, the expansion device 5, and the indoor heat exchanger 7, and is compressed again. A refrigeration cycle returning to the machine 1 is configured. During this operation, heat exchange is performed between the refrigerant and the air passing between the fins of the indoor heat exchanger 7, and the cooled air is blown out from the outlet.

【0020】同時に、室外熱交換器3の外気温と冷媒温
度が各検知センサ25,27により検知され、検知信号
に基づき絞り弁23の開口量が制御される。即ち、外気
温及び冷媒温度が臨界点温度を大巾に越える場合には、
絞り弁23は全開となって水路管13を流れる水量は最
大となる。これにより、室外熱交換器3において、冷媒
管11を流れる冷媒との間で熱交換が行なわれ、冷媒出
口温度は臨界点温度を下まわるようになると共に冷媒温
度は冷媒温度検知センサ25によって最適値に管理され
る。
At the same time, the outside air temperature and the refrigerant temperature of the outdoor heat exchanger 3 are detected by the detection sensors 25 and 27, and the opening amount of the throttle valve 23 is controlled based on the detection signals. That is, when the outside air temperature and the refrigerant temperature greatly exceed the critical point temperature,
The throttle valve 23 is fully opened, and the amount of water flowing through the water pipe 13 becomes maximum. Thereby, in the outdoor heat exchanger 3, heat exchange is performed between the refrigerant flowing through the refrigerant pipe 11 and the refrigerant outlet temperature falls below the critical point temperature, and the refrigerant temperature is optimized by the refrigerant temperature detection sensor 25. Managed by value.

【0021】この結果、図2の理論計算結果に示す如く
凝縮器圧力が臨界圧力レベル(7.3MPa)では、室
外熱交換器3の出口温度が約35℃の時は、HCFC系
冷媒,R22に比べて理論エネルギー消費効率(冷却能
力と圧縮機仕事の比)が最下位であるが、例えば、出口
温度を約20度まで下げた場合には、R22より大巾に
エネルギー消費効率の向上が図れることがわかる。
As a result, as shown in the theoretical calculation results in FIG. 2, when the condenser pressure is at the critical pressure level (7.3 MPa), when the outlet temperature of the outdoor heat exchanger 3 is about 35 ° C., the HCFC refrigerant, R22 Although the theoretical energy consumption efficiency (ratio between cooling capacity and compressor work) is the lowest in comparison with the above, for example, when the outlet temperature is reduced to about 20 degrees, the energy consumption efficiency is greatly improved compared to R22. It can be seen that it can be achieved.

【0022】この場合、炭酸ガス(CO2 )の凝縮器圧
力が8.5MPa以上になるとエネルギー消費効率がR
22より悪化することから、凝縮器圧力は8.5以下の
条件で使用することが望ましい。
In this case, when the condenser pressure of carbon dioxide (CO 2 ) becomes 8.5 MPa or more, the energy consumption efficiency becomes R
Therefore, it is desirable to use the condenser under a condition of 8.5 or less.

【0023】なお、暖房運転においても外気温度より高
い水熱源19を使用する場合には、絞り弁23を開くこ
とで冷媒に高い温度の水熱源19から熱を与え、蒸発冷
媒温度を上げることが可能となり、蒸発圧力の上昇によ
る暖房効率の向上が図れる。
When a water heat source 19 higher than the outside air temperature is used in the heating operation, the throttle valve 23 is opened to apply heat to the refrigerant from the high-temperature water heat source 19 to increase the temperature of the evaporated refrigerant. As a result, heating efficiency can be improved by increasing the evaporation pressure.

【0024】図4は室外熱交換器3の別の実施形態を示
したものである。
FIG. 4 shows another embodiment of the outdoor heat exchanger 3.

【0025】即ち、室外熱交換器3を、図5に示す如く
冷媒が流れる冷媒管11と、水が流れる水路管13とで
二重管構造としてある。冷媒管11の外周には、送風フ
ァン31によって空気が通過する多数のフィン33が設
けられると共に、内側内周に溝付き面15を形成するこ
とで、伝熱面積の拡大を図っている。水路管13は、水
熱源19、絞り弁23から室外熱交換器3を通り、再び
水熱源19に戻る冷凍サイクルを構成すると共に、外周
に多数のフィン17を有し、水熱源19からの水が流れ
る内周面に、溝付き面21を形成することで伝熱面積の
拡大を図っている。
That is, the outdoor heat exchanger 3 has a double pipe structure including a refrigerant pipe 11 through which a refrigerant flows and a water pipe 13 through which water flows as shown in FIG. A large number of fins 33 through which air is passed by the blower fan 31 are provided on the outer circumference of the refrigerant pipe 11, and the grooved surface 15 is formed on the inner inner circumference to increase the heat transfer area. The water pipe 13 constitutes a refrigeration cycle that returns from the water heat source 19 and the throttle valve 23 to the water heat source 19 through the outdoor heat exchanger 3 and has a large number of fins 17 on the outer periphery. The heat transfer area is increased by forming the grooved surface 21 on the inner peripheral surface through which the air flows.

【0026】送風ファン31は、外気温検知センサ27
又は冷媒温度検知センサ25からの検知信号に基づきオ
ン・オフに制御されるもので、例えば、外気温が臨界点
温度以下の場合は、送風ファン31はオン、絞り弁23
は閉に制御される。
The blower fan 31 includes an outside air temperature detection sensor 27.
Alternatively, on / off control is performed based on a detection signal from the refrigerant temperature detection sensor 25. For example, when the outside air temperature is equal to or lower than the critical point temperature, the blower fan 31 is turned on and the throttle valve 23 is turned on.
Is controlled to be closed.

【0027】また、臨界点温度以上の場合は、送風ファ
ン31はオフ、絞り弁23は開となり、温度に対応して
絞り弁23の開口量が制御される。
When the temperature is equal to or higher than the critical point temperature, the blower fan 31 is turned off and the throttle valve 23 is opened, and the opening amount of the throttle valve 23 is controlled according to the temperature.

【0028】なお、他の構成要素は、図1と同一のため
同一符号を付して詳細な説明を省略する。
The other components are the same as those shown in FIG.

【0029】したがって、この実施形態によれば、例え
ば、冷房運転では、外気温が臨界点温度以下の場合に
は、外気温検知センサ27により室外熱交換器3におい
て、絞り弁23は閉、送風ファン31はオンとなり、送
風ファン31による空気熱源のみで冷媒との間で熱交換
が行なわれ、冷媒温度を臨界点温度以下に下げられる。
これにより、水より安い空気を有効利用でき、かつ、エ
ネルギー消費効率が向上し、効率のよい冷房性能が得ら
れる。
Therefore, according to this embodiment, for example, in the cooling operation, when the outside air temperature is equal to or lower than the critical point temperature, the throttle valve 23 is closed in the outdoor heat exchanger 3 by the outside air temperature detection sensor 27 and the air is blown. The fan 31 is turned on, heat is exchanged with the refrigerant only by the air heat source by the blower fan 31, and the temperature of the refrigerant is lowered to the critical point temperature or lower.
As a result, air that is cheaper than water can be used effectively, energy efficiency can be improved, and efficient cooling performance can be obtained.

【0030】一方、外気温が臨界点温度以上の場合に
は、送風ファン31をオフ、絞り弁23を開とする一
方、室外熱交換器3において、水と冷媒との間で熱交換
が行なわれ、冷媒温度を臨界点温度以下まで下げる。こ
れにより、エネルギー消費効率が向上し、効率のよい冷
房性能が得られる。
On the other hand, when the outside air temperature is equal to or higher than the critical point temperature, the blower fan 31 is turned off and the throttle valve 23 is opened, while the outdoor heat exchanger 3 performs heat exchange between water and the refrigerant. To lower the refrigerant temperature below the critical point temperature. Thereby, energy consumption efficiency is improved, and efficient cooling performance is obtained.

【0031】図6は、室外熱交換器の別の実施形態を示
したものである。
FIG. 6 shows another embodiment of the outdoor heat exchanger.

【0032】即ち、冷房運転時の冷媒回路の上流側に第
1の室外熱交換器37を、下流側に第2の室外熱交換器
39をそれぞれ設ける。
That is, the first outdoor heat exchanger 37 is provided upstream of the refrigerant circuit during the cooling operation, and the second outdoor heat exchanger 39 is provided downstream thereof.

【0033】第1の室外熱交換器37は、外周に多数の
フィンが設けられた冷媒管(図示していない)と冷媒管
のフィンとフィンとの間に空気を通過させる送風ファン
41とから成る空気用熱交換器となっている。
The first outdoor heat exchanger 37 is composed of a refrigerant pipe (not shown) provided with a large number of fins on the outer periphery and a blower fan 41 for passing air between the fins of the refrigerant pipe. Air heat exchanger.

【0034】送風ファン41は、外気温度検知センサ2
7及び冷媒温度検知センサ25からの検知信号、例え
ば、外気温及び冷媒温度が臨界点温度以上の時は弱、以
下の場合は強に制御される。
The blower fan 41 includes an outside air temperature sensor 2
7 and the detection signal from the refrigerant temperature detection sensor 25, for example, when the outside air temperature and the refrigerant temperature are equal to or higher than the critical point temperature, the control is weak.

【0035】第2の室外熱交換器39は、二重管構造の
水用の熱交換器となっている。水用の熱交換器を構成す
る冷媒管11、水路管13、水熱源19、絞り弁23等
は図1及び図3と同一のため同一符号を付して詳細な説
明を省略する。また、他の構成要素も図1と同一のため
同一符号を付して詳細な説明を省略する。
The second outdoor heat exchanger 39 is a double-tube heat exchanger for water. The refrigerant pipe 11, the water pipe 13, the water heat source 19, the throttle valve 23, and the like constituting the heat exchanger for water are the same as those in FIGS. 1 and 3 and are denoted by the same reference numerals and will not be described in detail. Further, other components are the same as those in FIG.

【0036】したがって、この実施形態によれば、例え
ば外気温度が、臨界点温度以上で、かつ、冷媒温度が外
気温以上であれば、送風ファン41による空気熱源によ
る冷媒の熱交換と、水熱源19による冷媒の熱交換との
組合せにより行なわれ冷媒出口温度は、臨界点温度以下
に下げられる。これにより、外気温度以上の冷媒熱は空
気にすてられることから、さらに高い水の利用ひん度が
減り、エネルギー消費効率が向上し、効率のよい冷房性
能が得られる。また、外気温が冷媒臨界点温度以下で
は、水熱源19の絞り弁23を閉じることにより、従来
の空気式エアコンと同様の安価な運転が可能となる。
Therefore, according to this embodiment, for example, if the outside air temperature is equal to or higher than the critical point temperature and the refrigerant temperature is equal to or higher than the external air temperature, the heat exchange of the refrigerant by the air heat source by the blower fan 41 and the water heat source This is performed in combination with the heat exchange of the refrigerant by 19, and the outlet temperature of the refrigerant is lowered to the critical point temperature or lower. As a result, since the heat of the refrigerant having a temperature equal to or higher than the outside air temperature is lost to the air, the frequency of use of water is further reduced, the energy consumption efficiency is improved, and efficient cooling performance is obtained. When the outside air temperature is equal to or lower than the critical temperature of the refrigerant, by closing the throttle valve 23 of the water heat source 19, an inexpensive operation similar to that of a conventional pneumatic air conditioner can be performed.

【0037】図7と図8は室外熱交換器の別の実施形態
を示したものである。
FIGS. 7 and 8 show another embodiment of the outdoor heat exchanger.

【0038】即ち、循環サイクルを構成する水熱源19
と絞り弁23とを有する水路管13に設けられ、冷媒冷
却用の蓄冷材となる水43を一定量貯える水タンク45
と、その水タンク45内に設けられ、ほぼ平行に配置さ
れた連続する冷媒管47と、冷媒管47に設けられた多
数のフィン49とにより室外熱交換器51を構成するも
のである。
That is, the water heat source 19 constituting the circulation cycle
Water tank 45 which is provided in the water pipe 13 having the water and the throttle valve 23 and stores a certain amount of water 43 serving as a cold storage material for cooling the refrigerant.
The outdoor heat exchanger 51 is constituted by a continuous refrigerant pipe 47 provided in the water tank 45 and arranged substantially in parallel, and a number of fins 49 provided in the refrigerant pipe 47.

【0039】水タンク45は、断熱材で覆われ、外気温
の影響を受けないようになっていて、例えば、夏季にあ
っては、水温の低い時間帯に水を貯えることで、大きな
蓄熱エネルギーの確保が可能となっている。
The water tank 45 is covered with a heat insulating material so as not to be affected by the outside temperature. For example, in the summer season, storing water in a time period when the water temperature is low allows a large amount of heat storage energy to be stored. Can be secured.

【0040】なお、他の構成要素は図1と同一のため、
同一符号を付して詳細な説明を省略する。
The other components are the same as those in FIG.
The same reference numerals are given and the detailed description is omitted.

【0041】かかる実施形態によれば、外気温が臨界点
温度を越えて大巾に高い場合、あるいは、負荷変動が大
きい場合にも、水タンク45内に設けられた水43によ
り、冷媒温度を臨界点温度以下の状態に保つことが可能
となる。これにより、エネルギー消費効率の向上が図れ
ると共に、効率のよい冷房性能が得られる。
According to this embodiment, even when the outside air temperature is significantly higher than the critical point temperature, or when the load fluctuation is large, the coolant temperature is reduced by the water 43 provided in the water tank 45. It is possible to keep the temperature below the critical point temperature. Thereby, energy consumption efficiency can be improved, and efficient cooling performance can be obtained.

【0042】なお、蓄冷材となる水43にかえて、潜熱
の大きなパラフィンを用いてもよい。このパラフィンを
用いることで、大きな潜熱の利用が可能となるため、水
タンク45に比べてパラフィンを入れる容器は小さな形
状で済むため、室外熱交換器51全体のコンパクト化が
図れる。
Note that paraffin having a large latent heat may be used in place of the water 43 serving as a cold storage material. By using this paraffin, a large amount of latent heat can be used, and the container for containing the paraffin can be made smaller in size than the water tank 45, so that the entire outdoor heat exchanger 51 can be made compact.

【0043】また、水タンク45にかえて、図9に示す
如く、水道等の水熱源19からの水が開閉弁52を開と
することで底部に送り込まれ、上方から給湯部54へ取
り出せる電気温水器56を利用してもよい。
Also, as shown in FIG. 9, water from a water heat source 19 such as tap water is sent to the bottom by opening the on-off valve 52 instead of the water tank 45, and the water can be taken out to the hot water supply unit 54 from above. A water heater 56 may be used.

【0044】即ち、電気温水器56の底部側に、冷媒パ
イプ47と、冷媒パイプ47に設けられた冷却フィン4
9とで構成された熱交換部58を配置する。熱交換部5
8となる冷媒パイプ47の一方は、電気温水器56から
外方へ延長され、絞り装置5と、他方は電気温水器56
から外方へ延長され、四方弁19とそれぞれ接続してい
る。熱交換部58の上下には、深夜電力Wによりオンと
なる第1電気ヒータと第2電気ヒータH−1,H−2が
設けられ、上位側の第2電気ヒータH−2は熱交換部5
8から離れた上方に位置している。
That is, on the bottom side of the electric water heater 56, the refrigerant pipe 47 and the cooling fins 4
9 is disposed. Heat exchange unit 5
8, one of the refrigerant pipes 47 extends outward from the electric water heater 56, and the expansion device 5 and the other are connected to the electric water heater 56.
, And are connected to the four-way valve 19, respectively. Above and below the heat exchange unit 58, a first electric heater and second electric heaters H-1 and H-2, which are turned on by the late-night power W, are provided. 5
8 and above.

【0045】なお、他の構成要素は図1と同一のため同
一符号を付して詳細な説明を省略する。
The other components are the same as those shown in FIG.

【0046】したがって、この実施形態によれば、四方
弁9を切換えることで、実線で示す冷房運転が、又、点
線で示す暖房運転が行なえるようになる。一方、冷房運
転のシーズンに入った夏は、給湯負荷は減るので第1,
第2電気ヒータH−1、H−2の内、熱交換部58の上
方に位置する第2電気ヒータH−2のみ使用し電気温水
器として利用する。
Therefore, according to this embodiment, by switching the four-way valve 9, the cooling operation indicated by the solid line and the heating operation indicated by the dotted line can be performed. On the other hand, in the summer, when the cooling operation season has started, the hot water supply load decreases,
Of the second electric heaters H-1 and H-2, only the second electric heater H-2 located above the heat exchange section 58 is used and used as an electric water heater.

【0047】これにより、第2電気ヒータH−2によっ
て加熱された温水は上方へ上昇し、貯湯される。一方、
底部側は水熱源19から送り込まれる水により低い水温
状態が1日中確保されるため、冷房運転時に、熱交換部
58を通過することで、冷媒温度は、臨界点温度以下に
下げられるようになり、エネルギー消費効率が向上する
と共に、電気温水器56を利用するため、水タンク等の
設備が不用となり、システム全体のコンパクト化が図れ
る。また、深夜電力を利用するためコストの面で大変好
ましいものとなる。
Thus, the hot water heated by the second electric heater H-2 rises upward and is stored. on the other hand,
On the bottom side, a low water temperature state is secured throughout the day due to the water sent from the water heat source 19, so that the refrigerant temperature can be lowered to the critical point temperature or lower by passing through the heat exchange unit 58 during the cooling operation. As a result, the energy consumption efficiency is improved, and since the electric water heater 56 is used, equipment such as a water tank is not required, and the entire system can be made compact. In addition, the use of midnight power is very favorable in terms of cost.

【0048】図10は、室外熱交換器の別の実施形態を
示したものである。
FIG. 10 shows another embodiment of the outdoor heat exchanger.

【0049】即ち、冷凍サイクル内に、第1,第2,第
3の室外熱交換器51,53,55を設ける。第1の室
外熱交換器51は、冷媒との熱交換に水を用いる水用の
熱交換器となっていて、図3に示す如く、冷媒が流れる
外側の冷媒管11と水が流れる内側の水路管13とから
成る二重管構造となっている。
That is, the first, second and third outdoor heat exchangers 51, 53 and 55 are provided in the refrigeration cycle. The first outdoor heat exchanger 51 is a water heat exchanger that uses water for heat exchange with the refrigerant. As shown in FIG. 3, the first outdoor heat exchanger 51 has an outer refrigerant pipe 11 through which the refrigerant flows and an inner refrigerant pipe 11 through which the water flows. The water pipe 13 has a double pipe structure.

【0050】水路管13は外周に多数のフィン17を有
し、水熱源19からの水が流れる内周面を溝付き面21
として伝熱面積の拡大を図っている。水路管13は水熱
源19、絞り弁23、第1の室外熱交換器51を通り、
再び水熱源19に戻る循環サイクルを構成し、外周は断
熱材により覆われ、氷点下でも外気温の影響が小さく抑
えられるようになっている。
The water pipe 13 has a large number of fins 17 on the outer periphery, and the inner peripheral surface through which water from the water heat source 19 flows has a grooved surface 21.
The aim is to increase the heat transfer area. The water pipe 13 passes through the water heat source 19, the throttle valve 23, the first outdoor heat exchanger 51,
A circulation cycle returning to the water heat source 19 is constituted again, and the outer periphery is covered with a heat insulating material so that the influence of the outside air temperature is suppressed even below the freezing point.

【0051】第2の室外熱交換器53は、冷媒との熱交
換を、空気によって行なわれる空気用の熱交換器となっ
ていて、フィンを有する冷媒管に空気を通過させる送風
ファン57を有する冷房用室外熱交換器となっている。
The second outdoor heat exchanger 53 is a heat exchanger for air in which heat exchange with the refrigerant is performed by air, and has a blower fan 57 for passing air through a refrigerant pipe having fins. It is an outdoor heat exchanger for cooling.

【0052】第3の室外熱交換器55は、冷媒との熱交
換を、空気によって行なわれる空気用の熱交換器となっ
ていて、フィンを有する冷媒管に空気を通過させる送風
ファン60を有する暖房用室外熱交換器となっている。
The third outdoor heat exchanger 55 is a heat exchanger for air in which heat exchange with the refrigerant is performed by air, and has a blower fan 60 for passing air through a refrigerant pipe having fins. It is an outdoor heat exchanger for heating.

【0053】第1,第2,第3の室外熱交換器51,5
3,55は、それぞれパラレルに各開閉弁59,61,
63を有するバイパス回路65,67,69を有し、前
記各開閉弁59,61,63は冷房運転モード時及び暖
房運転モード及び外気温度のレベルに対応して図外の制
御部からの信号により組合せた開閉が行なわれるように
なっている。これにより、冷房運転時には、冷媒は実線
又はで示す如く流れると共に、暖房運転時には、冷
媒は破線の又はで示す如く流れるようになってい
て、第1の熱交換器51に対して上流側に第2の室外熱
交換器53が、暖房運転時には、上流側に第3の室外熱
交換器55がそれぞれ配置される構造となっている。な
お、室外熱交換器51と53を、1つの室外熱交換器に
2つのパスで構成してもかまわない。又、バイパス回路
65,67,69と開閉弁59,61,63の代わりに
送風ファン57,60及び水回路の絞り弁23のON,
OFF制御で対応してもかまわない。
The first, second and third outdoor heat exchangers 51 and 5
3, 55 are open / close valves 59, 61,
Each of the on-off valves 59, 61, and 63 has a bypass circuit 65, 63, and 63. The on-off valves 59, 61, and 63 correspond to the cooling operation mode, the heating operation mode, and the level of the outside air in response to a signal from a control unit (not shown). Combined opening and closing is performed. Thus, during the cooling operation, the refrigerant flows as indicated by the solid line or as indicated by the solid line, and during the heating operation, the refrigerant flows as indicated by the broken line or as indicated by the arrow, and the refrigerant flows upstream with respect to the first heat exchanger 51. The second outdoor heat exchanger 53 has a structure in which the third outdoor heat exchanger 55 is arranged on the upstream side during the heating operation. Note that the outdoor heat exchangers 51 and 53 may be configured with two paths in one outdoor heat exchanger. Also, instead of the bypass circuits 65, 67, 69 and the on-off valves 59, 61, 63, the blowers 57, 60 and the throttle valve 23 of the water circuit are turned on and off.
The OFF control may be used.

【0054】なお、他の構成要素は、図1と同一のた
め、同一符号を付して詳細な説明を省略する。
The other components are the same as those shown in FIG. 1, and thus the same reference numerals are given and the detailed description is omitted.

【0055】かかる実施形態によれば、冷房:外気温
度が臨界点温度以上では図10の実線のようにサイク
ル制御を行う。これにより、圧縮機1から出た高温の冷
媒から外気温度まで放熱でき、外気を放熱に有効に使え
ることから、水熱源19の熱負荷が少なくでき、空気よ
りコスト的に高い水の消費を減らすことが出来、より効
率的である。外気温度が臨界点温度以下では従来の空
気式エアコンと同様に、室外熱交換器では冷媒の熱を外
気に放出する(図10の実線の運転)。
According to this embodiment, cooling: when the outside air temperature is equal to or higher than the critical point temperature, the cycle control is performed as shown by the solid line in FIG. Accordingly, heat can be radiated from the high-temperature refrigerant discharged from the compressor 1 to the outside air temperature, and the outside air can be effectively used for heat radiation. Therefore, the heat load of the water heat source 19 can be reduced, and the cost of water that is higher in cost than air can be reduced. Can be more efficient. When the outside air temperature is equal to or lower than the critical point temperature, the heat of the refrigerant is released to the outside air in the outdoor heat exchanger similarly to the conventional air-type air conditioner (operation indicated by the solid line in FIG. 10).

【0056】暖房:外気温度が約5〜7℃以下では室
外熱交換器は外気と水を併用して吸熱する(図10の破
線の運転)。第3の室外熱交換器55に着霜しないレ
ベルで送風ファン60の回転を調整し、外気で冷媒を1
部加熱する。その後、水熱源19で完全に冷媒を加熱
し、蒸気化して、圧縮機1に冷媒を戻す。空気熱源を1
部用いるため、水の熱負荷が低減でき、空気よりコスト
の高い水の量を減らすことが出来、効率的である。外
気温度が約5〜7℃以上では通常の空気熱源エアコンと
同様に室外熱交換器では冷媒を外気で加熱する(図10
の破線の運転)。
Heating: When the outside air temperature is about 5 to 7 ° C. or lower, the outdoor heat exchanger absorbs heat using both the outside air and water (operation indicated by a broken line in FIG. 10). The rotation of the blower fan 60 is adjusted to a level that does not cause frost on the third outdoor heat exchanger 55, and the refrigerant is cooled to 1 by the outside air.
Heat the part. Thereafter, the refrigerant is completely heated by the water heat source 19, vaporized, and returned to the compressor 1. 1 air heat source
Because of the use of parts, the heat load of water can be reduced, and the amount of water that is more costly than air can be reduced, which is efficient. When the outside air temperature is about 5 to 7 ° C. or higher, the refrigerant is heated by the outside air in the outdoor heat exchanger in the same manner as a normal air heat source air conditioner (FIG. 10).
Dashed line operation).

【0057】図11は、室外熱交換器の別の実施形態を
示したものである。
FIG. 11 shows another embodiment of the outdoor heat exchanger.

【0058】即ち、冷凍サイクル内に、第1,第2,第
3の室外熱交換器71,72,73を設ける。第1の室
外熱交換器71は、冷媒との熱交換に水と蓄冷材とを用
いる熱交換器となっていて、図3に示す如く冷媒が流れ
る外側の冷媒管11と水が流れる内側の水路管13とか
ら成る二重管構造となっている。
That is, the first, second and third outdoor heat exchangers 71, 72 and 73 are provided in the refrigeration cycle. The first outdoor heat exchanger 71 is a heat exchanger that uses water and a cold storage material for heat exchange with the refrigerant. As shown in FIG. 3, the first outdoor heat exchanger 71 has an outer refrigerant pipe 11 through which the refrigerant flows and an inner refrigerant pipe 11 through which the water flows. The water pipe 13 has a double pipe structure.

【0059】冷媒管11は冷媒が流れる内周面を溝付き
面15として伝熱面積の拡大を図っている。水路管13
は外周に多数のフィン17を有し、水熱源19からの水
が流れる内周面を溝付き面21として伝熱面積の拡大を
図っている。水路管13は水熱源19、絞り弁23、第
1の室外熱交換器71を通り、再び水熱源19に戻る循
環サイクルを構成し、第1の室外熱交換器71は、蓄冷
材となるパラフィンが充填された容器を構成している。
The heat transfer area of the refrigerant pipe 11 is increased by using the inner peripheral surface through which the refrigerant flows as the grooved surface 15. Water pipe 13
Has a large number of fins 17 on the outer periphery, and uses the inner peripheral surface through which water from the water heat source 19 flows as a grooved surface 21 to increase the heat transfer area. The water pipe 13 constitutes a circulation cycle that passes through the water heat source 19, the throttle valve 23, the first outdoor heat exchanger 71, and returns to the water heat source 19 again. The first outdoor heat exchanger 71 is a paraffin that serves as a cold storage material. Constitute a container filled with.

【0060】第1の室外熱交換器71は、全体が断熱材
で覆われ、外気温の影響を受けないようになっていて、
通常の電力とは別に夜間の深夜電力W1により圧縮機1
を駆動することで、冷房の蓄冷運転時には1点鎖線で示
す冷凍サイクルが構成され、絞り装置5からの低温・低
圧のガスが開閉弁75を開くことで第1の室外熱交換器
71内を流れて蓄冷材を冷却するバイパス回路77を備
えた構造となっている。
The first outdoor heat exchanger 71 is entirely covered with a heat insulating material so that it is not affected by the outside air temperature.
In addition to normal power, the compressor 1
, A refrigeration cycle indicated by a one-dot chain line is configured at the time of the cold storage operation of the air conditioner, and the low-temperature and low-pressure gas from the expansion device 5 opens the on-off valve 75 so that the inside of the first outdoor heat exchanger 71 is opened. It has a structure including a bypass circuit 77 for flowing and cooling the cold storage material.

【0061】第2の室外熱交換器72は、冷媒との熱交
換を、空気によって行なわれる空気用の熱交換器となっ
ていて、フィンを有する冷媒管に空気を通過させる送風
ファン79を有する冷房用室外熱交換器となっている。
The second outdoor heat exchanger 72 is an air heat exchanger for performing heat exchange with the refrigerant by air, and has a blower fan 79 for passing air through a refrigerant pipe having fins. It is an outdoor heat exchanger for cooling.

【0062】第3の室外熱交換器73は、冷媒との熱交
換を、空気によって行なわれる空気用の熱交換器となっ
ていて、フィンを有する冷媒管に空気を通過させる送風
ファン81を有する暖房用室外熱交換器となっている。
The third outdoor heat exchanger 73 is a heat exchanger for air that exchanges heat with the refrigerant by air, and has a blower fan 81 for passing air through a refrigerant pipe having fins. It is an outdoor heat exchanger for heating.

【0063】第1,第2,第3の室外熱交換器71,7
2,73は、それぞれパラレルに各開閉弁83,85,
87を有するバイパス回路89,91,93を有し、前
記各開閉弁83,85,87と、第1,第2の室外熱交
換器71,72の間に設けられた開閉弁95は、冷房運
転モード時及び暖房運転モード及び外気温度のレベルに
対応して、図外の制御部からの信号により組合せた開閉
が行なわれるようになっている。これにより冷房運転時
及び暖房運転時には、図10で示すように冷媒は実線
と点線で示す流れが確保されるようになってい
て、第1の熱交換器71に対して上流側に第2の室外熱
交換器72が、暖房運転時には、上流側に第3の室外熱
交換器73がそれぞれ配置される構造となっている。
The first, second and third outdoor heat exchangers 71 and 7
2, 73 are each open / close valve 83, 85,
An on-off valve 95 provided between each of the on-off valves 83, 85, 87 and the first and second outdoor heat exchangers 71, 72 is provided with a cooling circuit. In accordance with the operation mode, the heating operation mode, and the level of the outside air temperature, combined opening and closing are performed by a signal from a control unit (not shown). Thereby, at the time of the cooling operation and the heating operation, the flow of the refrigerant shown by the solid line and the dotted line is secured as shown in FIG. 10, and the second flow is provided upstream of the first heat exchanger 71. The outdoor heat exchanger 72 has a structure in which a third outdoor heat exchanger 73 is arranged on the upstream side during the heating operation.

【0064】なお、他の構成要素は、図1と同一のため
同一符号を付して詳細な説明を省略する。
The other components are the same as those shown in FIG. 1, and thus are denoted by the same reference numerals and will not be described in detail.

【0065】かかる実施形態によれば、図10で示した
効果に加えて、第1の室外熱交換器71内に充填された
蓄冷材をコストの安い深夜電力W1で蓄冷することがで
きるため、運転コストの低減が図れると共に、水熱源1
9との組合せにより、より確実に臨界点温度以下に冷媒
温度を下げることができる。
According to this embodiment, in addition to the effect shown in FIG. 10, the cold storage material filled in the first outdoor heat exchanger 71 can be stored with the low-cost late-night power W1. The operation cost can be reduced and the water heat source 1
In combination with 9, the temperature of the refrigerant can be more reliably lowered to the critical point temperature or lower.

【0066】図12は、室外熱交換器の別の実施形態を
示したものである。
FIG. 12 shows another embodiment of the outdoor heat exchanger.

【0067】即ち、冷凍サイクル内に、第1,第2,第
3の室外熱交換器97,98,99を設ける。第1の室
外熱交換器97は、電気温水器101を利用しており、
電気温水器101の下部に、水道等水熱源103からの
水が開閉弁105を開とすることで送り込まれ、上方か
ら給湯部107へ取り出せるようになっている。
That is, the first, second, and third outdoor heat exchangers 97, 98, and 99 are provided in the refrigeration cycle. The first outdoor heat exchanger 97 uses the electric water heater 101,
Water from a water heat source 103 such as tap water is sent into the lower part of the electric water heater 101 by opening the on-off valve 105 and can be taken out to the hot water supply unit 107 from above.

【0068】電気温水器101の底部側には、冷媒パイ
プと、冷媒パイプに設けられた冷却フィンとで構成され
た熱交換部109が配置され、熱交換部109となる冷
媒パイプの一方は、電気温水器101から外方へ延長さ
れ開閉弁95を介して第2の室外熱交換器98と、他方
は、電気温水器101から外方へ延長され第3の室外熱
交換器99とそれぞれ接続している。
On the bottom side of the electric water heater 101, a heat exchanging section 109 composed of a refrigerant pipe and cooling fins provided on the refrigerant pipe is disposed. One of the refrigerant pipes serving as the heat exchanging section 109 is: The second outdoor heat exchanger 98 is extended outward from the electric water heater 101 via an on-off valve 95, and the other is connected to the third outdoor heat exchanger 99 extended outward from the electric water heater 101, respectively. doing.

【0069】熱交換部109の上下には、深夜電力W2
によりオンとなる第1電気ヒータH−1と第2電気ヒー
タH−2が設けられ、上位側の第2電気ヒータH−2は
熱交換部109から離れた上方に位置している。
Above and below the heat exchange section 109, the late-night power W2
Are provided, a first electric heater H-1 and a second electric heater H-2 are provided, and the upper second electric heater H-2 is located above and away from the heat exchange unit 109.

【0070】なお、第2,第3の室外熱交換器98,9
8及び他の構成要素は図11と同一のため同一符号を付
して詳細な説明を省略する。
The second and third outdoor heat exchangers 98, 9
8 and the other components are the same as those in FIG.

【0071】したがって、この実施形態によれば、図1
0,図11の効果に加えて次のような効果を奏する。即
ち、冷房運転のシーズンに入った夏は、第1,第2電気
ヒータH−1,H−2の内、熱交換部109の上方に位
置する第2電気ヒータH−2のみ使用し電気温水器10
1として利用する。
Therefore, according to this embodiment, FIG.
0, the following effects are obtained in addition to the effects of FIG. That is, in the summer when the season of the cooling operation is started, only the second electric heater H-2 located above the heat exchanging section 109 is used among the first and second electric heaters H-1 and H-2 to use the electric hot water. Vessel 10
Use as 1.

【0072】これにより、第2電気ヒータH−2によっ
て加熱された温水は上方へ上昇し、底部側は水熱源10
3から送り込まれる水により低い水温状態が1日中確保
されるため、冷房運転時に、熱交換部109を通過する
ことで、冷媒温度は、臨界点温度以下に下げられる。こ
の場合、外気温が臨界点温度より低い時、実線の如く
流れると共に、外気温が臨界点温度より以上の時は実線
の如く流れるようになり、エネルギー消費効率が向上
すると共に、電気温水器101を利用するため、水タン
ク等の設備が不用となり、システム全体のコンパクト化
が図れる。
As a result, the warm water heated by the second electric heater H-2 rises upward, and the bottom side is the water heat source 10.
Since a low water temperature state is ensured throughout the day by the water sent from 3, the refrigerant temperature is lowered to the critical point temperature or lower by passing through the heat exchange unit 109 during the cooling operation. In this case, when the outside air temperature is lower than the critical point temperature, the air flows as indicated by the solid line, and when the outside air temperature is higher than the critical point temperature, the air flows as indicated by the solid line, so that the energy consumption efficiency is improved and the electric water heater 101 is improved. Therefore, equipment such as a water tank is unnecessary, and the whole system can be made compact.

【0073】また、暖房運転時は、第1電気ヒータH−
1による電気温水器101の底部の温水により、熱交換
部109において冷媒に熱が与えられ、効率のよい暖房
運転が可能となる。
During the heating operation, the first electric heater H-
By the hot water at the bottom of the electric water heater 101, heat is given to the refrigerant in the heat exchange section 109, and efficient heating operation is possible.

【0074】[0074]

【発明の効果】以上、説明したように、この発明の空気
調和装置によれば、臨界圧を越えて冷凍サイクルを構成
する冷媒を用いても、冷媒冷却手段によって冷媒温度を
臨界点温度以下に下げることができるため、エネルギー
消費効率の向上が図れると共に効率のよい冷房性能が得
られる。これにより、HCFC及びCFC系以外の冷媒
の選択巾が広がるようになる。
As described above, according to the air conditioner of the present invention, even if a refrigerant constituting a refrigeration cycle exceeding the critical pressure is used, the refrigerant temperature is kept below the critical point temperature by the refrigerant cooling means. Since it can be reduced, energy consumption efficiency can be improved and efficient cooling performance can be obtained. As a result, the selection range of the refrigerant other than the HCFC and the CFC system is expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明にかかる空気調和装置全体の回路図。FIG. 1 is a circuit diagram of an entire air conditioner according to the present invention.

【図2】各冷媒の室外熱交換器出口温度における理論エ
ネルギー消費効率の説明図。
FIG. 2 is an explanatory diagram of the theoretical energy consumption efficiency of each refrigerant at the outdoor heat exchanger outlet temperature.

【図3】二重管構造とした室外熱交換器の断面図。FIG. 3 is a sectional view of an outdoor heat exchanger having a double pipe structure.

【図4】室外熱交換器の別の実施形態を示した図1と同
様の回路図。
FIG. 4 is a circuit diagram similar to FIG. 1, showing another embodiment of the outdoor heat exchanger.

【図5】図4の室外熱交換器の断面図。FIG. 5 is a cross-sectional view of the outdoor heat exchanger of FIG.

【図6】室外熱交換器の別の実施形態を示した図1と同
様の回路図。
FIG. 6 is a circuit diagram similar to FIG. 1, showing another embodiment of the outdoor heat exchanger.

【図7】室外熱交換器の別の実施形態を示した図1と同
様の回路図。
FIG. 7 is a circuit diagram similar to FIG. 1, showing another embodiment of the outdoor heat exchanger.

【図8】図7の室外熱交換器の概要切断説明図。8 is a schematic cutaway explanatory view of the outdoor heat exchanger of FIG. 7;

【図9】室外熱交換器を電気温水器を利用する実施形態
とした図1と同様の回路図。
FIG. 9 is a circuit diagram similar to FIG. 1 in which the outdoor heat exchanger is an embodiment using an electric water heater.

【図10】室外熱交換器の別の実施形態を示した図1と
同様の回路図。
FIG. 10 is a circuit diagram similar to FIG. 1, showing another embodiment of the outdoor heat exchanger.

【図11】室外熱交換器の別の実施形態を示した図1と
同様の回路図。
FIG. 11 is a circuit diagram similar to FIG. 1, showing another embodiment of the outdoor heat exchanger.

【図12】室外熱交換器の別の実施形態を示した図1と
同様の回路図。
FIG. 12 is a circuit diagram similar to FIG. 1, showing another embodiment of the outdoor heat exchanger.

【図13】縦軸に圧力、横軸にエンタルピとした時の冷
凍サイクルを示した説明図。
FIG. 13 is an explanatory diagram showing a refrigeration cycle when pressure is on the vertical axis and enthalpy is on the horizontal axis.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器 5 絞り装置 7 室内熱交換器 19 水熱源(冷媒冷却手段) DESCRIPTION OF SYMBOLS 1 Compressor 3 Outdoor heat exchanger 5 Throttle device 7 Indoor heat exchanger 19 Water heat source (refrigerant cooling means)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機から吐出された冷媒が室外熱交換
器、絞り装置、室内熱交換器を通り再び圧縮機に戻る冷
凍サイクルを構成する空気調和装置において、前記冷媒
には、HCFC及びCFC系以外で臨界圧を越えて冷凍
サイクルを流れる冷媒を用いると共に、冷房運転時に、
室外熱交換器の出口の冷媒温度を臨界点温度より下げる
冷媒冷却手段を備えることを特徴とする空気調和装置。
1. An air conditioner comprising a refrigeration cycle in which refrigerant discharged from a compressor passes through an outdoor heat exchanger, a throttling device, and an indoor heat exchanger and returns to a compressor again, wherein the refrigerant includes HCFC and CFC. In addition to using refrigerant flowing beyond the critical pressure and flowing through the refrigeration cycle outside the system, during cooling operation,
An air conditioner comprising a refrigerant cooling means for lowering a refrigerant temperature at an outlet of an outdoor heat exchanger below a critical point temperature.
【請求項2】 冷媒は、炭酸ガス(CO2 )であること
を特徴とする請求項1記載の空気調和装置。
2. The air conditioner according to claim 1, wherein the refrigerant is carbon dioxide (CO 2 ).
【請求項3】 冷媒冷却手段は、水熱源と、水流量制御
装置とで構成されることを特徴とする請求項1記載の空
気調和装置。
3. The air conditioner according to claim 1, wherein the refrigerant cooling unit includes a water heat source and a water flow control device.
【請求項4】 冷媒冷却手段は、空気と水を同時に、又
はいずれか一方を選択して用いることを特徴とする請求
項1記載の空気調和装置。
4. The air conditioner according to claim 1, wherein the refrigerant cooling means uses air and water at the same time or selects one of them.
【請求項5】 冷媒冷却手段に、蓄冷材を用いることを
特徴とする請求項1記載の空気調和装置。
5. The air conditioner according to claim 1, wherein a regenerative material is used for the refrigerant cooling means.
JP20857996A 1996-08-07 1996-08-07 Air conditioner Pending JPH1054617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20857996A JPH1054617A (en) 1996-08-07 1996-08-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20857996A JPH1054617A (en) 1996-08-07 1996-08-07 Air conditioner

Publications (1)

Publication Number Publication Date
JPH1054617A true JPH1054617A (en) 1998-02-24

Family

ID=16558530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20857996A Pending JPH1054617A (en) 1996-08-07 1996-08-07 Air conditioner

Country Status (1)

Country Link
JP (1) JPH1054617A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130896A (en) * 1998-10-29 2000-05-12 Sanden Corp Air conditioner equipped with safety device
EP0945290A3 (en) * 1998-03-27 2002-05-29 DaimlerChrysler AG Method and device for heating and cooling a utility space of an automotive vehicle
JP2006145056A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Heat exchanger
US7526924B2 (en) 2003-11-28 2009-05-05 Mitsubishi Denki Kabushiki Kaisha Refrigerator and air conditioner
JP2013002799A (en) * 2011-06-22 2013-01-07 Chemical Grouting Co Ltd Heat exchange system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945290A3 (en) * 1998-03-27 2002-05-29 DaimlerChrysler AG Method and device for heating and cooling a utility space of an automotive vehicle
JP2000130896A (en) * 1998-10-29 2000-05-12 Sanden Corp Air conditioner equipped with safety device
US7526924B2 (en) 2003-11-28 2009-05-05 Mitsubishi Denki Kabushiki Kaisha Refrigerator and air conditioner
US7752857B2 (en) 2003-11-28 2010-07-13 Mitsubishi Denki Kabushiki Kaisha Refrigerator and air conditioner
JP2006145056A (en) * 2004-11-16 2006-06-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2013002799A (en) * 2011-06-22 2013-01-07 Chemical Grouting Co Ltd Heat exchange system

Similar Documents

Publication Publication Date Title
JP5121922B2 (en) Air conditioning and hot water supply complex system
JP5615381B2 (en) Hot water supply and air conditioning complex equipment
CN102245983B (en) Operation method of heat pump hot water supply device
JP4486133B2 (en) Cooling device for communication device and cooling control method thereof
JP3702855B2 (en) Heat pump floor heating air conditioner
JP2006283989A (en) Cooling/heating system
JP3702724B2 (en) Heat pump system and heat pump system installation method
US7386984B2 (en) Refrigerator
WO2006114983A1 (en) Refrigeration cycle device
CN102753916B (en) Air-conditioning hot-water-supply system
JP4229881B2 (en) Heat pump system
JP4661908B2 (en) Heat pump unit and heat pump water heater
JP2004218943A (en) Heating and cooling water heater
JP2004003825A (en) Heat pump system, heat pump water heater
JPH1054617A (en) Air conditioner
JP4155334B2 (en) vending machine
JP2001263848A (en) Air conditioner
JP2004251557A (en) Refrigeration system using carbon dioxide as refrigerant
JP4419475B2 (en) Heating system and housing
JPH1019409A (en) Air conditioner
JPS5932767A (en) Air-conditioning hot-water supply device
JP4429960B2 (en) Vending machine with cooling and heating system
JP2002061897A (en) Heat storage type air conditioner
JPH04257660A (en) Two-stage compression refrigeration cycle equipment
JP3009481B2 (en) Heat pump type air conditioner