[go: up one dir, main page]

JPH1066204A - Power device for air-and motor-driven car - Google Patents

Power device for air-and motor-driven car

Info

Publication number
JPH1066204A
JPH1066204A JP8227612A JP22761296A JPH1066204A JP H1066204 A JPH1066204 A JP H1066204A JP 8227612 A JP8227612 A JP 8227612A JP 22761296 A JP22761296 A JP 22761296A JP H1066204 A JPH1066204 A JP H1066204A
Authority
JP
Japan
Prior art keywords
power
vehicle
speed
regenerative
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8227612A
Other languages
Japanese (ja)
Inventor
Yukio Ota
幸雄 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP8227612A priority Critical patent/JPH1066204A/en
Publication of JPH1066204A publication Critical patent/JPH1066204A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the consumption of fuel and electric power by improving a method for treating kinetic or potential energy relating to the inertial resistance and the grade resistance. SOLUTION: A line receiving device comprising a storage battery 10 and an engine generator 2, or a chopper 30, a transformer 3T and a rectifier 5T, is arranged inside an electric car. Rush overload by the inertial resistance and rush or heavy load by the grade resistance are mainly covered by the charging and discharging of the storage battery 10. Running resistance load and in-car facility load are covered by the engine generator 2 in non-electrified railway zone and by the line receiving device in electrified railway zone. The generator 2 changes over two pairs of three-phase armature windings and rectifiers, and star-delta and series-parallel connections to generate and supply power in the full range of revolutions. A motor-driven device, with two contactors arranged to one side of an electric motor circuit 22 and two choppers 30 arranged in the bridge shape to the other and connected to the positive and negative poles of the storage battery 10, is structured in such a way as to make it possible to perform both motordriving and regenerative operations with the same current direction of the electric motor circuit 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、軌動走行のディーゼル
動車やディーゼル機関車(以下、纒めて気動車両と呼
ぶ)及び電車や電気機関車(以下、纒めて電動車両と呼
ぶ)の動力装置に関するものであり、なお、道路走行の
自動車についても波及するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diesel driven locomotive or a diesel locomotive (hereinafter collectively referred to as a diesel vehicle) and a train or an electric locomotive (hereinafter collectively referred to as an electric vehicle). The present invention relates to a power plant, and also affects a vehicle running on a road.

【0002】[0002]

【従来の技術】鉄道の非電化線区では、旧来の蒸気機関
車に代わって、内燃機関(以下、エンジンと呼ぶ)を原
動機とする気動車両が稼動しており、その動力装置は、
トルクコンバータの如き増力流体接手を介して車両を駆
動する方式(以下、気動直接式と呼ぶ)が主に、大形の
機関車では発電機及び電動機を介して駆動する方式(以
下、気動電気式と呼ぶ)も使用されているが、いずれの
方式においても、加速や登坂の重負荷に見合う容量のエ
ンジンを使用し、降坂抑速や制動にはエンジンの空転抵
抗(以下、エンジンブレーキと呼ぶ)や各車輪に配した
摩擦ブレーキ(以下、車輪ブレーキと呼ぶ)が使用さ
れ、また、道路走行の自動車でも、エンジンで摩擦クラ
ッチまたは増力流体接手を介して駆動する気動直接式で
あり、抑速・制動にはエンジンブレーキと車輪ブレーキ
が使用されている。
2. Description of the Related Art In a non-electrified railway section of a railway, a pneumatic vehicle driven by an internal combustion engine (hereinafter referred to as an engine) is operating instead of a conventional steam locomotive.
A method of driving a vehicle via a booster fluid joint such as a torque converter (hereinafter, referred to as a direct pneumatic type) is mainly used for a large locomotive, and a method of driving via a generator and a motor (hereinafter, a pneumatic type). An electric type is also used, but in either case, an engine with a capacity corresponding to the heavy load of acceleration or climbing uphill is used. ) And friction brakes (hereinafter referred to as wheel brakes) arranged on each wheel are used. Also, in the case of a road running vehicle, a pneumatic direct type driven by an engine through a friction clutch or an intensifying fluid joint is used. Engine braking and wheel braking are used for deceleration and braking.

【0003】鉄道の電化線区では、架線または第3レー
ル(以下、総称して架線と呼ぶ)から集電器で受電して
電動機で車両を駆動する電動車両が使用され、降坂抑速
や制動には、電動機を発電機として抵抗器に電力消費さ
せる方式(以下、発電ブレーキと呼ぶ)と車輪ブレーキ
が使用され、その電力を架線に送出する方式(以下、回
生ブレーキと呼ぶ)も採用されつつあり、その区間の変
電所には逆変換設備が付加されている。
[0003] In the electrification line section of the railway, an electric vehicle is used which receives power from an overhead line or a third rail (hereinafter collectively referred to as an overhead line) by a current collector and drives the vehicle by an electric motor. In the meantime, a method of using a motor as a generator to cause a resistor to consume power (hereinafter referred to as a power generation brake) and a wheel brake are used, and a method of transmitting the power to an overhead wire (hereinafter referred to as a regenerative brake) is being adopted. There is a reverse conversion facility at the substation in that section.

【0003】なお、車両内に蓄電器を搭載して電動走行
の機関車及び電気自動車(以下、蓄電池車と呼ぶ)や、
正・負2条の架線から受電して電動走行のトロリーバス
もあり、特に電気自動車は、都市域の排気ガス規制の見
地から開発・改良が進められている。
A locomotive and an electric vehicle (hereinafter referred to as a storage battery vehicle) that are electrically driven and have a battery mounted therein,
There are also trolley buses that receive electric power from two positive and negative overhead lines and are driven electrically. Especially, electric vehicles are being developed and improved from the viewpoint of emission control in urban areas.

【0004】[0004]

【発明が解決しようとする課題】車両の動力装置は、上
述のいずれの方式においても、平坦路の定常走行では軽
負荷であるが、加速と登坂では重負荷で大きな動力を消
費し、減速・制動と降坂抑速では、車両の運動のエネル
ギと位置のエネルギを、車輪ブレーキやエンジンブレー
キまたは発電ブレーキで熱に戻して大気中に放散してお
り、そのエネルギ損失は消費動力の大半に及び、また、
電化線区では、架線及び変電所に重負荷が及び電圧降下
が大きくそれが電力損失となり、回生ブレーキの効率も
良くない。
In any of the above-described systems, the power unit of a vehicle has a light load during steady running on a flat road, but consumes a large power due to a heavy load during acceleration and climbing a slope. In braking and downhill deceleration, the energy of vehicle motion and the energy of the position are returned to heat by the wheel brake, engine brake or power generation brake and dissipated into the atmosphere, and the energy loss covers most of the power consumed. ,Also,
In the electrification line section, a heavy load is applied to the overhead line and the substation, and a large voltage drop causes a power loss, and the efficiency of the regenerative braking is not good.

【0005】最近は特に、電力需給の逼迫や発電所立地
の制約等の国内問題は勿論、燃料の石油資源枯渇や排気
ガスによる環境汚染や温暖化が地球規模の緊要な問題に
なり、その源を車両分野もかなりの割合を占めており、
電力や燃料の消費量の低減が排気ガスの有害成分の抑制
とともに切実に求められている。
[0005] Recently, not only domestic problems such as tight power supply and demand and restrictions on the location of power plants, but also depletion of fuel oil resources and environmental pollution and global warming due to exhaust gas have become important problems on a global scale. The vehicle field also accounts for a considerable percentage,
There is an urgent need to reduce power and fuel consumption as well as to control harmful components of exhaust gas.

【0006】一般に車両は、各駅間で、発進・加速−力
行−惰行−減速・停止または発進・加速−定常力行−減
速・停止の運転サイクルを、運行区間の登坂・降坂を伴
って、繰り返すが、その車両の運転における主な抵抗
は、車輪の転がり抵抗と車体の空気抵抗を合わせた走行
抵抗Fv 、加速・減速に伴う慣性抵抗Fi 及び登坂・降
坂に伴う勾配抵抗Fs であり、走行抵抗Fv は常に正
(+)の値であるが、慣性抵抗Fi は加速時に正
(+)、減速時に負(−)の値、勾配抵抗Fs は登坂時
に正(+)、降坂時に負(−)の値をとり、走行距離を
Sとすれば、駅間の運転サイクル毎の慣性仕事量ΣWi
=Σ(Fi *S)は運動のエネルギとして、運行区間の
往復サイクル毎の登・降坂仕事量ΣWs =Σ(Fs *
S)は位置のエネルギとして、それぞれ正・負相殺され
てゼロ(Zero)になる無効動力Pn の如く働き、走
行抵抗分の仕事量ΣWv =Σ(Fv *S)が実効動力P
e として働いたことになる。
[0006] Generally, a vehicle repeats a start-up / acceleration-powering-coasting-deceleration / stop or start-up / acceleration-steady powering-deceleration / stop operation cycle between stations, with uphill and downhill in an operation section. However, the main resistances in the operation of the vehicle are a running resistance Fv obtained by combining the rolling resistance of the wheels and the air resistance of the vehicle body, an inertial resistance Fi due to acceleration / deceleration, and a gradient resistance Fs accompanying uphill / downhill. The resistance Fv is always a positive (+) value, the inertia resistance Fi is a positive (+) value during acceleration, a negative (-) value during deceleration, the gradient resistance Fs is positive (+) when going uphill, and negative (+) when going downhill. If the value of-) is taken and the traveling distance is S, the amount of inertial work per station driving cycle ΣWi
= Σ (Fi * S) is the energy of the motion, the work of climbing and descending slopes in each reciprocating cycle of the operation section ΣWs = Σ (Fs *
S) acts as a position energy, such as reactive power Pn, which is positively and negatively offset and becomes zero (Zero), and the work amount ΣWv = Σ (Fv * S) of the running resistance is the effective power P
You have worked as e.

【0007】なお、登・降坂を伴う運行区間において、
途中駅乗降や通勤者の朝・夕の一方向移動があり、往復
サイクル毎の登・降坂仕事量ΣWs は乗客重量の不等分
が正(+)または負(−)の値として残るが、その値は
車両自重分にくらべ格段に小さく、全日サイクル(日毎
の複数の往復)では両方向移動で正・負相殺され、上記
のようにゼロになる無効動力Pn として考えて良い。
[0007] In the operation section with uphill and downhill,
There is one way of getting on and off the station on the way and commuters moving in one direction in the morning and evening, and the work amount of climbing and descending ΣWs in each round-trip cycle remains unequal in passenger weight as a positive (+) or negative (-) value. The value is much smaller than that of the vehicle's own weight, and can be considered as the reactive power Pn which is positive / negatively canceled by bidirectional movement in the full-day cycle (a plurality of round trips per day) and becomes zero as described above.

【0008】エンジンの容量は、加速時及び登坂時の力
行抵抗Fda=Fv +Fi 及びFd =Fv +Fs に動力系
統の過負荷耐量を加味して選定されるが、通常の駅間距
離の運転サイクル及び勾配路での走行速度では、走行抵
抗Fv はエンジンの半負荷以下であり、エンジン出力の
大半は慣性抵抗Fi 及び勾配抵抗Fs が占め、それに費
やしたエネルギを車輪ブレーキやエンジンブレーキで熱
に戻し、消費エネルギの大半を無益に捨てている訳であ
る。
The capacity of the engine is selected in consideration of the power running resistances Fda = Fv + Fi and Fd = Fv + Fs at the time of acceleration and climbing, taking into account the overload capacity of the power system. At a running speed on a sloping road, the running resistance Fv is less than the half load of the engine, and most of the engine output is occupied by the inertial resistance Fi and the slope resistance Fs, and the energy consumed there is returned to heat by the wheel brakes and the engine brakes. That is, most of the consumed energy is wasted.

【0009】電動機は、上記のエンジンと同様に、大き
な容量のものが選定され、発電ブレーキで停止寸前の微
速に至る広い速度域で抑速・制動が可能であるが、出力
の大半を占める慣性抵抗Fi や勾配抵抗Fs に費やした
エネルギを熱に戻して無益に捨てていることに変わりな
く、そのエネルギの回収をする回生ブレーキが採用され
つつあるが、突入負荷や重負荷が架線や変電所に及び電
圧降下が大きく、運転密度が高い区間では数十%に及ぶ
こともあり、それが電力損失に留まらず、車両の運転性
能の低下を来し、回生電力効率も下がり、その対策とし
て給電線銅量の増加や変電所間隔の短縮が施され、ま
た、交流線区では車両内に、直流線区では変電所に逆変
換装置が必要である。
As with the above-mentioned engines, a motor having a large capacity is selected, and the motor can be decelerated and braked in a wide speed range up to a very low speed just before the stop by the power generation brake. The energy used for the resistance Fi and the gradient resistance Fs is returned to heat and discarded unnecessarily, and regenerative brakes are being used to recover the energy. However, inrush loads and heavy loads are reduced by overhead lines and substations. In areas where the operating density is high and the operating density is high, it can reach several tens of percent, which not only causes power loss but also decreases the driving performance of the vehicle and reduces the regenerative power efficiency. An increase in the amount of copper wire and a reduction in the interval between substations are required, and an inverter is required in the vehicle in the AC line section and in the substation in the DC line section.

【0010】なお、蓄電池車では、蓄電池の蓄電原理上
避けられない充放電損失が大きく、充電に長時間の停車
を要し、充電毎の走行距離も小さい。
[0010] In a storage battery vehicle, charge and discharge losses inevitable due to the principle of storage of the storage battery are large, a long stop is required for charging, and the traveling distance for each charge is small.

【0011】本発明は、上述の問題に鑑み、車両の慣性
抵抗及び勾配抵抗に係る運動及び位置のエネルギの処理
方法を改善し、エンジンや給電設備を含み車両の動力装
置の総合的なエネルギ効率を向上し、燃料や電力の消費
量の低減を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides an improved method of processing motion and position energy relating to the inertial resistance and gradient resistance of a vehicle, and provides an overall energy efficiency of a vehicle power unit including an engine and a power supply. It aims to improve fuel consumption and reduce fuel and power consumption.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の車両の動力装置においては、電動車両内
に蓄電器(Capacitor)を搭載し、非電化線区
では、エンジン駆動の発電機(以下、エンジン発電機と
呼ぶ)を車両内に配して気動電気式とし、直流電化線区
では、リアクトル及びチョッパ等の抑流・逆流阻止用制
御素子を受電回路に配し、交流電化線区では受電用変圧
器・整流器を配して、蓄電器に並列接続して主電源を構
成し、車両の加速・減速及び登坂・降坂に伴う無効動力
Pn を主に蓄電器の充放電で処理し、走行抵抗に対する
実効動力Pe と、無効動力Pn の処理に伴う動力系統の
損失pn 及び補機・照明等の車内設備の消費電力を、主
にエンジン発電機または受電電力で賄うような機構を提
供する。
In order to achieve the above-mentioned object, in a power plant for a vehicle according to the present invention, a capacitor is mounted in an electric vehicle, and in a non-electrified line section, an engine-driven power generator is provided. (Hereinafter referred to as engine generator) in the vehicle to be pneumatically driven, and in the DC electrification section, control elements for suppressing and backflow prevention such as reactors and choppers are arranged in the power receiving circuit, In the electrification line section, a power receiving transformer and rectifier are arranged and connected in parallel with the battery to form a main power source.The reactive power Pn associated with vehicle acceleration / deceleration and uphill / downhill is mainly charged and discharged by the battery. A mechanism in which the effective power Pe for the running resistance and the power loss pn of the power system due to the processing of the reactive power Pn and the power consumption of the in-vehicle equipment such as auxiliary equipment and lighting are mainly covered by the engine generator or the received power. I will provide a.

【0013】蓄電器は、直流蓄電用のものを使用し、車
両の運転サイクルにおける加速・減速及び運行区間の登
坂・降坂の無効動力Pn を、電圧変動の許容範囲内の放
電・充電で、処理するに必要且つ充分な静電容量(F)
及び突入電力耐量を有するものとする。
[0013] The storage battery is a DC storage battery, and processes the reactive power Pn of acceleration / deceleration in the driving cycle of the vehicle and uphill / downhill in the operation section by discharging / charging within an allowable range of voltage fluctuation. Necessary and sufficient capacitance (F)
And withstand inrush power.

【0014】エンジン発電機の電機部分は三相交流同期
機とし、2組の電機子巻線と、それぞれにY・Δ切り替
え回路及び整流器を配し、直流側に平滑用リアクトル及
び直・並列切り替え回路を配し、また、2組の電機子巻
線に電機角30度の位相差を持たせ、各整流器はサイリ
スタ等の制御素子で3相ブリッジ形に構成する。
The electric machine part of the engine generator is a three-phase AC synchronous machine, two sets of armature windings, a Y..DELTA. Switching circuit and a rectifier are provided respectively, and a smoothing reactor and a series / parallel switching on the DC side. A circuit is provided, and two sets of armature windings are provided with a phase difference of 30 degrees in the armature angle, and each rectifier is configured in a three-phase bridge type with a control element such as a thyristor.

【0015】2台の三相交流同期機を、その回転界磁が
電気角30度の位相差を持つように連結して、上記の2
組の電機子巻線に代えることができ、また、簡易形とし
て、1台の三相交流同期機にY・Δ切り替え回路及び整
流器を配してもよい。
The two three-phase AC synchronous machines are connected so that their rotating fields have a phase difference of 30 electrical degrees.
A set of armature windings can be used. Alternatively, a simple three-phase AC synchronous machine may be provided with a Y / Δ switching circuit and a rectifier.

【0016】エンジンは、ターボ過給機付き高速ディー
ゼルエンジンが小形・軽量・高出力・高効率を要する車
両用として最適であり、ガスタービンも使用でき、小形
車両ではガソリンエンジンや天然ガスエンジンでもよ
く、また、技術進歩に伴い燃料電池等の採用も考えられ
る。
As the engine, a high-speed diesel engine with a turbocharger is most suitable for a vehicle requiring small size, light weight, high output and high efficiency, and a gas turbine can be used. For a small vehicle, a gasoline engine or a natural gas engine may be used. In addition, the adoption of a fuel cell or the like may be considered in accordance with technological progress.

【0017】エンジン発電機、整流器及び燃料槽は、電
動機を持つ車両(以下、動力車と呼ぶ)に搭載し、電動
客車の場合は床下に搭載するが、列車編成に非動力車を
連結する場合は、その非動力車の床下に装備し電源車と
するのがよい。
The engine generator, the rectifier, and the fuel tank are mounted on a vehicle having an electric motor (hereinafter referred to as a motor vehicle). In the case of an electric passenger car, the engine generator, the rectifier, and the fuel tank are mounted under the floor. It is better to equip it under the floor of the non-powered vehicle as a power supply vehicle.

【0018】コ・ゼネレーションシステム(Co−Ge
neration System)として吸収式冷却機
を含む熱交換器を車両内に配し、エンジンの排熱(冷却
水熱及び排気熱)を冬季暖房及び夏季冷房に利用する。
A co-generation system (Co-Ge)
A heat exchanger including an absorption cooler is disposed in the vehicle as a nation system, and the exhaust heat (cooling water heat and exhaust heat) of the engine is used for winter heating and summer cooling.

【0019】非電化線区ではエンジン発電機の整流器
を、交流電化線区では受電変圧器の整流器を、直流電化
線区では受電回路にLC平滑回路とチョッパを、交・直
流両線区の運行では整流器とチョッパとの切り替え用接
触器を配して、それぞれ回路遮断器を介して蓄電器と並
列に接続し、主電源回路を構成する。
In the non-electrified section, the rectifier of the engine generator, in the AC section, the rectifier of the receiving transformer, in the DC section, an LC smoothing circuit and a chopper in the receiving circuit, and in both the AC and DC sections. Then, a contactor for switching between a rectifier and a chopper is arranged, and each is connected in parallel with a capacitor through a circuit breaker to constitute a main power supply circuit.

【0020】電動機の主電源側に電動・回生用として2
個の接触器と、反対側に平滑用リアクトルを介して制御
用として2個のチョッパまたは各1個のダイオード及び
チョッパを、ブリッジ形に配して主電源回路の正極及び
負極にそれぞれ接続し、電動装置の運転主回路を構成す
る。
The main power supply side of the motor is
Contactors, and two choppers or one diode and one chopper each for control via a smoothing reactor on the opposite side, connected in a bridge form to the positive and negative electrodes of the main power supply circuit, respectively. Constructs a driver circuit of the electric device.

【0021】特別高落差の急勾配の蓄電線区(特願平8
−134091参照)では、上記のチョッパに逆並列に
ダイオードと接触器またはスイッチング素子を付加し、
回生電力送出回路を構成する。
[0021] A steep storage line section with a special high head (Japanese Patent Application No. 8
In the above-mentioned chopper, a diode and a contactor or a switching element are added in anti-parallel to the above chopper,
A regenerative power transmission circuit is configured.

【0022】前述の運転主回路の回生用接触器と負極と
の間に抵抗器及びその側路用接触器を挿入して非常充電
調整用発電ブレーキ回路を構成し、なお、エンジン発電
機または交流受電変圧器の整流器の直流側に接触器また
はスイッチング素子を配して、主電源の正極から電動機
回路に切り替えて、整流器をインバータとして働かせ、
エンジンブレーキ装置または回生電力送出回路を構成す
ることができる。
A resistor and a bypass contactor are inserted between the regenerative contactor and the negative electrode of the above-mentioned operation main circuit to constitute a power generation brake circuit for adjusting an emergency charge. Arranging a contactor or switching element on the DC side of the rectifier of the receiving transformer, switching from the positive pole of the main power supply to the motor circuit, making the rectifier work as an inverter,
An engine braking device or a regenerative power transmission circuit can be configured.

【0023】主電源回路から分岐し、インバータ及び変
圧器を配して、電動機界磁の励磁、補機・照明等の車内
設備の低圧電力を、更に整流器及び蓄電池を配して、制
御装置や拡声・通信等に無停電直流電力を給電する。
A branch from the main power supply circuit, an inverter and a transformer are arranged, the low-voltage power of the in-vehicle equipment such as excitation of the motor field, auxiliary equipment and lighting, and a rectifier and a storage battery are arranged. Supply uninterruptible DC power to loudspeakers and communications.

【0024】一般に、電動客車の動力車では全4軸駆動
であるが、電動機2台を永久直列してその2群を直・並
列切り替えするものとし、蓄電器と組み合わせて、1動
力単位を構成し、非電化線区では、前述のエンジン発電
機・整流器を持つ電源車と連結し、電化線区では、受電
変圧器・整流器またはダイオードやチョッパを含む受電
装置を動力車または非動力車の床下に装備し、それぞれ
最小単位編成を構成し、また、営業密度に応じ複数組連
結して所要の規模の編成を得る。
In general, a motor vehicle of an electric passenger car is driven by all four axes. However, two motors are permanently connected in series to switch between the two groups in a direct / parallel manner. In the non-electrified line section, it is connected to the power supply vehicle with the aforementioned engine generator / rectifier, and in the electrified line section, the power receiving device including the receiving transformer / rectifier or diode or chopper is placed under the floor of the motor vehicle or non-motorized vehicle. Equip, configure the minimum unit knitting, and connect multiple sets according to the business density to obtain knitting of the required size.

【0025】大容量の機関車では、故障時(特に蓄電
器)の安全性を考え、台車毎(例えば2軸毎)に動力単
位を分割し、各動力単位に回路遮断器及びダイオードを
介して発電あるいは受電電力を給電し、共通1組の車内
設備用インバータに各動力単位から回路遮断器及びダイ
オードを介して給電するよう構成するのがよい。
In the case of a large-capacity locomotive, a power unit is divided for each bogie (for example, every two axes) in consideration of safety at the time of failure (in particular, a battery), and power is generated for each power unit via a circuit breaker and a diode. Alternatively, it is preferable that the receiving power is supplied and the common set of in-vehicle facility inverters is supplied with power from each power unit via a circuit breaker and a diode.

【0026】電動機は、回転界磁形三相同期機に分配器
を付し、サイリスタ等のインバータを組み合わせた直流
無整流子電動機を使用するのが、構造、過負荷・過電圧
耐量及び効率について好都合であり、界磁制御(直巻、
分巻及び複巻特性)と電気子巻線のY・Δ切り替え及び
電動機2台または2群の直・並列切り替え回路を配し、
Y直列(1速)、Y並列(2速)及びΔ並列(3速)の
変速段を形成する。
As the electric motor, it is advantageous to use a DC non-commutator motor in which a distributor is attached to a rotating field type three-phase synchronous machine and an inverter such as a thyristor is combined, in terms of structure, overload / overvoltage capability and efficiency. Field control (series winding,
Shunt and compound winding characteristics), Y and Δ switching of the armature winding, and two motors or two groups of series / parallel switching circuits are arranged.
Shift stages of Y series (first speed), Y parallel (second speed), and Δ parallel (3rd speed) are formed.

【0027】機関車等で電動機の単機容量が大きい場合
あるいは上述の電動客車でも必要に応じて、各電動機に
電気角30度の位相差を持つ2組の電気子巻線とそれぞ
れにインバータ、Y・Δ切り替え及び直・並列切り替え
回路を配し、上記の変速段を形成する。
When the single motor capacity of a locomotive or the like is large, or in the above-mentioned electric passenger car, if necessary, each motor has two sets of armature windings having a phase difference of 30 degrees in electrical angle, and an inverter and a Y. -A [Delta] switch and a serial / parallel switch circuit are provided to form the above-mentioned shift speed.

【0028】従来の電動車両を流用して直流整流子電動
機を使用の場合は、上述と同様に、電動機2台の電機子
を永久直列し2群の直列(1速)・並列(2速)切り替
えと電機子群の正・逆転切り替え回路を配し、直巻界磁
は電機子と同様に直・並列切り替え回路を配して、電機
子群と直列に接続し、永久直列2台の電動機の直巻界磁
に更に直・並列切り替え回路を配して半励磁(3速)ま
での変速段を形成する。
In the case of using a DC commutator motor by diverting a conventional electric vehicle, similarly to the above, two armatures are permanently connected in series to form two groups of series (first speed) and parallel (second speed). Switching and forward / reverse switching circuit of armature group are arranged, and series-wound field is arranged with serial / parallel switching circuit like armature, connected in series with armature group, two permanent series motors A series / parallel switching circuit is further arranged on the series-wound field to form a shift stage up to half-excitation (third speed).

【0029】車両編成の両端の運転室に、主幹制御器、
制動空気弁及び各種計器{自動車では、運転席に変速レ
バー、アクセルペダル、ブレーキペダル、舵輪及び各種
計器}を運転操作用として配し、車軸に速度センサ、エ
ンジン発電機・受電・蓄電器・電動機回路に温度・回転
数・電圧・電流等の各種センサ、車輪ブレーキ用圧縮空
気源{自動車では油圧系統}及び主制御装置等の機器を
車両内に配する。
In the cabs at both ends of the train set, a master controller,
Brake air valves and various instruments (in automobiles, gearshift levers, accelerator pedals, brake pedals, steering wheels, and various instruments are provided in the driver's seat for driving operation), speed sensors are provided on the axles, engine generators, power receiving / capacitors, and motor circuits. In addition, various sensors such as temperature, rotation speed, voltage, current, etc., and a compressed air source for wheel brakes (hydraulic system for automobiles) and equipment such as a main control device are arranged in the vehicle.

【0030】{自動車のアクセル・ブレーキのように}
発進・加速・制動操作が高頻度の車両では、発電機・電
動機回路とも、並列用及び電動用接触器の代わりにサイ
リスタ等のスイッチング素子を、直列用及び回生用接触
器の代わりにダイオードを使用するのが望ましい。
[Like an accelerator / brake of a car]
In vehicles where start-up, acceleration, and braking operations are frequent, switching elements such as thyristors are used instead of parallel and electric contactors, and diodes are used instead of series and regenerative contactors in both generator and motor circuits. It is desirable to do.

【0031】[0031]

【作用】以上述べたように構成した本発明の動力装置
は、下記のように働くが、主に電動機4台と蓄電装置で
構成の動力単位を持つ鉄道車両について、自動車につい
ての相違点は{}を付して、説明する。
The power unit according to the present invention constructed as described above operates as follows. The difference between a railway vehicle having a power unit composed mainly of four electric motors and a power storage device is as follows. A description will be given with}.

【0032】[充放電特性] 蓄電器は内部抵抗が極め
て小さく、蓄電池に不可避の分極作用による充放電の電
圧落差やタイムラグ(Time lag)を伴う化学変
化が皆無のため、充放電の電力損失は極めて小さく、車
両の加速・制動時の数秒〜数十秒に集中する慣性抵抗に
よる突入電力や、急勾配登・降坂時の数分〜十数分に集
中する勾配抵抗による大電力を、電圧急変なく円滑且つ
効率良く充放電できる。
[Charge / Discharge Characteristics] Since the internal resistance of the battery is extremely small and there is no chemical change accompanied by a charge / discharge voltage drop or a time lag due to the unavoidable polarization action of the battery, the charge / discharge power loss is extremely small. A sudden change in voltage due to the small inrush power due to inertial resistance concentrated for several seconds to several tens of seconds when accelerating or braking the vehicle, or the large power due to gradient resistance concentrated for several minutes to several tens of minutes when climbing or descending a steep slope. It is possible to charge and discharge smoothly and efficiently.

【0033】[負荷分担] 慣性抵抗による突入負荷や
勾配抵抗による重負荷は、発電機、変圧器や架線・変電
所のインピーダンスに比べ、内部抵抗が格段に小さい且
つ配線が短い車両内の蓄電器に集中するので、発電機、
変圧器や架線の負荷は、定常走行抵抗に近い値に軽減且
つ平準化され、電圧降下も著しく低減される。
[Load Sharing] An inrush load due to inertial resistance and a heavy load due to gradient resistance are applied to a battery in a vehicle having a much smaller internal resistance and shorter wiring compared to the impedance of a generator, a transformer, an overhead wire or a substation. To concentrate on the generator,
The load of the transformer and the overhead wire is reduced and leveled to a value close to the steady running resistance, and the voltage drop is significantly reduced.

【0034】[発電運転] エンジン発電機は、停車中
にはY直列でアイドリングに近い低速回転で、補機・照
明等の車内設備の消費電力を賄い、走行中は負荷に従い
Y並列で中速及びΔ並列で高速回転し、略々全励磁の界
磁制御及び制御整流で、発電電圧を常に蓄電電圧に合わ
せ且つ蓄電器と負荷分担するよう給電するとともに、常
に負荷に見合う出力の回転数で運転し、エンジン回転数
全域で熱効率を保つ。
[Generating operation] The engine generator supplies the power consumption of the in-vehicle equipment such as auxiliary equipment and lighting while the vehicle is stopped at a low speed near the idling in the Y series. And high-speed rotation in parallel with Δ, substantially by full-excitation field control and control rectification, always adjust the generated voltage to the storage voltage and supply power so as to share the load with the storage device, and always run at an output speed that matches the load, Maintains thermal efficiency over the entire engine speed range.

【0035】なお、自動車のように、車内設備の消費電
力がエンジン始動用蓄電池及びその充電用低圧発電機で
賄う場合は、1組の電機子巻線の三相交流同期機とY・
Δ切り替え及び整流器でY接続・中速及びΔ接続・高速
回転し、上記と同様に、走行中に給電する。
In the case where the power consumption of the in-vehicle equipment is supplied by the storage battery for starting the engine and the low-voltage generator for charging the same as in a car, a set of a three-phase AC synchronous machine having an armature winding and a Y.V.
A connection and medium-speed and a connection and high-speed rotation are performed by the Δ switching and the rectifier, and power is supplied during traveling in the same manner as described above.

【0036】[発電出力] 発電機は、上記の各々接続
の高速側では、定格より高い出力電圧を発生し、制御整
流で定格電圧に変成されるので、銅損増加なく定格より
大きい電力出力が可能であり、また、上記の接続切り替
えと界磁制御を併用して、過大な電圧変成比を避け、鉄
損及び及び歪波形による電機子及び整流器の損失増加を
抑える。
[Generation output] On the high-speed side of each connection described above, the generator generates an output voltage higher than the rated voltage and is transformed into the rated voltage by control rectification. It is also possible to use the above connection switching and the field control in combination to avoid an excessive voltage transformation ratio and suppress an increase in the armature and rectifier losses due to iron loss and distortion waveforms.

【0037】[整流出力] 2組の電機子巻線は、それ
ぞれ3相ブリッジ整流により6相として働き電気角30
度の位相差を以て直流側で合成され、恰も12相の如く
作用して脈動率が極めて小さい直流出力を得るが、制御
整流の脈動に対してもリアクトルが両整流器出力の直流
分磁束を相殺して磁気飽和なく有効な平滑作用を持つと
ともに、蓄電器の容量性負荷による尖頭電流を抑制す
る。
[Rectified Output] The two sets of armature windings each function as six phases by three-phase bridge rectification, and the electrical angle is 30.
Are combined on the DC side with a phase difference of two degrees, acting as if they were 12 phases to obtain a DC output with an extremely small pulsation rate, but the reactor also cancels out the DC flux of both rectifiers against the pulsation of control rectification. It has an effective smoothing action without magnetic saturation and suppresses the peak current due to the capacitive load of the battery.

【0038】[架線電力受電] 直流電化線区では受電
回路のチョッパで、交流電化線区では受電変圧器の整流
器で、架線電圧が高いときは異常突入電流を抑制しなが
ら受電して蓄電器を充電し、低いときは蓄電電力の逆流
出を阻止するので、蓄電電圧は架線電圧変動の中央値以
上の高めの値に保持され、常に定格電圧での運転性能を
維持し、勾配路の運行では、勾配抵抗負荷を主に蓄電器
に分担させるよう、蓄電電圧に合わせて、該チョッパや
該変圧器・整流器で受電電力を制御する。
[Overhead power reception] In a DC power supply section, a power receiving circuit chopper is used. In an AC power supply section, a power receiving transformer rectifier is used. When it is low, the reverse flow of the stored power is prevented, so the stored voltage is maintained at a higher value than the median value of overhead line voltage fluctuation, and always maintains the operation performance at the rated voltage. The received power is controlled by the chopper and the transformer / rectifier in accordance with the storage voltage so that the gradient resistance load is mainly shared by the storage device.

【0039】[蓄電器初・補充電] 蓄電器を新設・換
装したときや夜間休止後の運転前に、エンジン発電機で
は界磁制御と制御整流で、直流架線受電ではチョッパ制
御で、交流架線受電では変圧器のタップ切り替えと制御
整流で、ゼロ電圧からの初充電や漏洩電力の補充電を行
なう。
[Initial / Auxiliary Charging of Battery] When a battery is newly installed or replaced, or before operation after a night stop, field control and control rectification are performed for the engine generator, chopper control is performed for DC overhead power receiving, and a transformer is used for AC overhead power receiving. Performs initial charging from zero voltage and supplementary charging of leakage power by tap switching and control rectification.

【0040】[回生電力送出] 直流電化の特別高落差
の蓄電線区(特願平8−134091参照)の降坂運転
では、送出用接触器が「入」となり、特別高落差の交流
電化線区では整流器がインバータに替わり、運転主回路
のチョッパで制御した回生電力を架線に送出するが、車
両内の蓄電電力は、直流線区ではダイオードで、交流線
区では回生送出用接触器で、阻止されて架線に逆流出せ
ず、架線電圧急落には運転主回路のチョッパが即応し、
急昇したときは直ちに車両内の蓄電器の充電に替わり、
回生電圧・電流即ち回生ブレーキトルクの急変を防ぐ。
[Regenerative power transmission] In the downhill operation of the storage line section (see Japanese Patent Application No. 8-134091) with a special high head of DC electrification, the contactor for sending becomes "on" and the AC power line of special high head In the section, the rectifier is replaced by an inverter, and the regenerative power controlled by the chopper of the driver's main circuit is sent to the overhead line, but the stored power in the vehicle is a diode in the DC section and a regenerative transmission contactor in the AC section. It is blocked and does not flow backward to the overhead line, and the chopper of the driver's main circuit responds immediately to a sudden drop in overhead line voltage,
When it soars, it immediately switches to charging the battery inside the vehicle,
A sudden change in regenerative voltage / current, that is, regenerative brake torque is prevented.

【0041】[運転] 主幹制御器を「力行」ノッチに
入れると{変速レバーを「D」ノッチに入れると}電動
用接触器が「入」、負極側チョッパが制御作動し、電動
機は「1速」で微速発進、「加速」ノッチに押すと{ア
クセルペダルを踏むと}該チョッパが増流作動し加速、
続いて速度に応じ「2速」・「3速」に進段し、所定の
速度に達した時「力行」ノッチに戻すと{アクセルペダ
ルを戻せば}、主制御装置に記憶の速度に対応の変速段
で定速制御を伴う定常力行{抑速}に移り、主幹制御器
を「中立」ノッチ{変速レバーを「N」}に戻せば、上
記の接触器が「切」、チョッパが全閉になって電動機が
空転し、車両は惰力で走行する。
[Operation] When the main controller is inserted into the "power running" notch, {when the shift lever is inserted into the "D" notch}, the electric contactor is turned "on", the negative side chopper is controlled and the electric motor is set to "1". Speed), press the "acceleration" notch and press the accelerator pedal.
Then, proceed to "2nd gear" or "3rd gear" according to the speed, and when it reaches the predetermined speed, return to the "power running" notch. {If you release the accelerator pedal}, it corresponds to the speed stored in the main control unit. If the gear shifts to steady power running with the constant speed control at the gear of gear # 2, the master controller returns to the "neutral" notch and the gear shift lever returns to "N". When the motor is closed, the electric motor runs idle and the vehicle runs by inertia.

【0042】主幹制御器を「制動」ノッチに入れると
{ブレーキペダルを踏むと}、回生用接触器が「入」と
なって力行時と同方向の電動機電流回路を形成し、正極
側チョッパで制御された回生電力を蓄電器に充電し、速
度に対応の変速段と設定減速度{ブレーキペダルの踏
力}に応じたトルクの回生ブレーキが働いて車両を減
速、回生電圧が蓄電電圧まで下がった時、負極側チョッ
パの制御作動に移り、リアクトルの脈動起電力で昇圧し
て充電を続行、回生電圧が更に低下して電機子等主回路
のジュール熱による発電ブレーキに移行し、停止寸前の
微速に至り、所定の停止位置に合わせ制動空気弁を操作
し{ブレーキペダルを踏み}車両を停止させる。
When the master controller is put into the "braking" notch {when the brake pedal is depressed}, the regenerative contactor is turned "on" to form a motor current circuit in the same direction as during power running. When the regenerative power controlled is charged to the battery, the gear stage corresponding to the speed and the regenerative brake with the torque according to the set deceleration (braking pedal depression force) work to decelerate the vehicle, and the regenerative voltage falls to the stored voltage Then, the operation proceeds to the control operation of the negative side chopper, the charging is continued by boosting with the pulsating electromotive force of the reactor, the regenerative voltage further decreases, and it shifts to the power generation brake by Joule heat of the main circuit such as the armature. Then, the brake air valve is operated according to the predetermined stop position, {the brake pedal is depressed}, and the vehicle is stopped.

【0043】降坂路で、主幹制御器を「抑速」ノッチに
入れると{アクセルペダルを戻せば}、上記と同様に回
生接触器が「入」、回生電圧に従い正・負極両側のチョ
ッパの連係作動で回生ブレーキが働いて蓄電器に充電
し、その操作時の速度の記憶値に対応の変速段で界磁制
御し、定速制御を伴う抑速を行なう。
On a downhill road, if the master controller is put into the "slow down" notch {if the accelerator pedal is released}, the regenerative contactor will be "on" in the same manner as described above, and the positive and negative choppers are linked according to the regenerative voltage. When the regenerative brake is activated, the battery is charged, and the electric field is controlled at the speed corresponding to the stored value of the speed at the time of the operation, thereby performing deceleration accompanied by constant speed control.

【0044】電動機は、各変速段において、全励磁の電
動域上限速度までは、チョッパによる電機子電流制御の
定トルク特性、それ以上の速度では界磁制御の定出力特
性を持ち、それぞれ定トルク域では定加速度で、定出力
域では垂下加速度で、車両を加速・減速し、また、速度
に応じて変速段を切り替えて、電機子起電力と蓄電電圧
との落差が過大にならないようにし、リアクトル及びチ
ョッパの平均債務及び損失を軽減する。
The motor has a constant torque characteristic of the armature current control by the chopper up to the upper limit of the electric range of the full excitation in each shift speed, and a constant output characteristic of the field control at a higher speed. The vehicle accelerates and decelerates at a constant acceleration and a droop acceleration in a constant output range, and switches the speed according to the speed so that the head between the armature electromotive force and the storage voltage does not become excessive. Reduce average chopper debt and loss.

【0045】[無整流子電動機] 3相電機子Y接続で
定格を、一般の電動車両の整流子電動機の定格回転数及
び走行速度(例えば1500rpmで50km/h)に合わせば、Δ
接続で 1.732倍(2600rpmで87km/h)まで全励磁電動域
を拡大し、上記の定出力域における励磁を 1.732倍に上
げ、加速・制動の突入負荷においても電機子反作用及び
銅損を低減するので、過負荷におけるトルク特性及び効
率が良く、また、インバータやチョッパ等の制御素子を
強化すれば、Δ接続では銅損増加なく 1.732倍の速度ま
で定トルク・定加速度域を拡大し、定格の 1.732倍の
定常出力も可能となるので、高速域での加速度や勾配限
度を増大できる。
[Non-Commutator Motor] If the rating of the three-phase armature Y connection is adjusted to the rated speed and traveling speed (for example, 50 km / h at 1500 rpm) of a commutator motor of a general electric vehicle, Δ
By connecting, the total excitation motor range is expanded to 1.732 times (87 km / h at 2600 rpm), the excitation in the above constant output range is increased to 1.732 times, and armature reaction and copper loss are reduced even in the inrush load of acceleration and braking. Therefore, if the torque characteristics and efficiency in overload are good, and if the control elements such as inverters and choppers are strengthened, the constant torque / constant acceleration range is expanded to 1.732 times the speed with no copper loss in Δ connection, Since a steady output of 1.732 times is also possible, acceleration and gradient limits in the high-speed range can be increased.

【0046】抑速・制動の際、分配器を切り離しインバ
ータを整流器に替え、電動の場合と同一の主回路電流方
向で回生ブレーキが作動し、また、各変速段の上限速度
では、定格の 1.732〜2倍の電機子起電力を発生する
が、無整流子のためそのような過電圧でもトラブル(T
rouble)なく、また、銅損増加なく定格の 1.732
〜2倍の回生出力も可能であり、高速域でも低・中速域
と同様な制動減速度が得られ、回生ブレーキで急制動も
可能であり、なお、制御整流すれば、運転主回路の正極
側チョッパをダイオードに代えることができる。
At the time of deceleration / braking, the distributor is disconnected, the inverter is replaced with a rectifier, and the regenerative brake is operated in the same main circuit current direction as in the case of electric motor operation. Although an armature electromotive force of ~ 2 times is generated, trouble (T
1.732 rated and without copper loss increase
Up to twice the regenerative output is possible, the same braking deceleration as in the low / medium speed range can be obtained even in the high speed range, and rapid braking can be performed with the regenerative brake. The positive-side chopper can be replaced with a diode.

【0047】位相差30度の2組の電機子巻線を持つ電
動機は、前述[整流出力]の発電機と同様に作動し、1
台の電動機で3段の変速が得られ、脈動トルクは12相
交流の極めて小さいものとなり、特に始動・加速・減速
において車輪の粘着が良い。
A motor having two sets of armature windings having a phase difference of 30 degrees operates in the same manner as the above-mentioned [rectified output] generator.
The three motors can achieve three-stage shifting, and the pulsating torque is extremely small in a 12-phase alternating current, and the wheels have good adhesion especially during starting, acceleration, and deceleration.

【0048】[整流子電動機] 直流整流子電動機の場
合、電動は前述[運転]のように作動し、回生は、電機
子群の逆転切り替えで力行時と同方向の直巻界磁電流
で、残留磁気から回生電圧が立ち上がり、正・負両極側
のチョッパで電圧・電流を連係制御しながら、発電ブレ
ーキに移行まで回生ブレーキが作動し、また、直巻界磁
の直・並列切り替え回路が均圧線となり、全電動機の界
磁を均等に励磁し並列電動機の横流乱調を防止する。
[Commutator Motor] In the case of a DC commutator motor, the electric motor operates as described in the above [Operation], and the regenerative operation is performed by switching the armature group in the reverse direction and using a series winding field current in the same direction as that during power running. The regenerative voltage rises from the residual magnetism, and the regenerative brake operates until the shift to the power generation brake, while the voltage and current are controlled by the choppers on both the positive and negative poles side by side. It becomes a pressure line and evenly excites the field of all the electric motors, thereby preventing the cross-current turbulence of the parallel electric motors.

【0049】直巻電動機の自励増幅的な発電特性から、
負極側チョッパで初期励磁後は、高速域では正極側チョ
ッパで電流制御し、低速域では負極側チョッパの昇圧制
御で停止寸前の微速の発電ブレーキに移行まで回生ブレ
ーキが作動するが、整流子の制約から、高過電圧耐量の
特殊仕様(例えば200%)のものの他、電機子起電力
はあまり大きくとれないので、各変速段とも主に界磁強
さ切り替え即ち直・並列切り替えと正・負両極側のチョ
ッパの連係作動で、定トルク特性域の上限までは、過電
圧耐量以下の蓄電電圧に近い電機子起電力に制御し、定
出力特性の垂下加速度で減速作動する。
From the self-excited amplifying power generation characteristics of the series motor,
After the initial excitation by the negative-side chopper, the current is controlled by the positive-side chopper in the high-speed range. Due to restrictions, in addition to special specifications (for example, 200%) with a high overvoltage capability, the armature electromotive force cannot be taken so large. Therefore, mainly at each speed stage, the field strength is switched, that is, the series / parallel switching and the positive / negative pole are performed. By the cooperative operation of the choppers on the side, up to the upper limit of the constant torque characteristic region, the armature electromotive force is controlled to be close to the storage voltage less than the overvoltage tolerance, and the deceleration operation is performed with the droop acceleration of the constant output characteristic.

【0050】走行速度及び抑速負荷に応じて界磁の直・
並列切り替えを電機子とは別に行ない、できるだけ蓄電
電圧に近い回生電圧でリアクトル及びチョッパの債務と
脈動による損失を低減し、定速制御を伴う抑速を行な
う。
According to the traveling speed and the deceleration load, the field
Parallel switching is performed separately from the armature, and the regenerative voltage as close as possible to the storage voltage reduces the debt and pulsation losses of the reactor and chopper, and performs speed reduction with constant speed control.

【0051】突入負荷や重負荷においても蓄電電圧変動
は緩やかで、架線電圧急変にも影響されないため、回生
ブレーキは過渡乱調なく働き、自励増幅的な発電特性の
直巻電動機でも安定した回生作動が得られる。
The regenerative brake works without transient turbulence because even the inrush load or heavy load has a gradual change in the stored voltage and is not affected by a sudden change in the overhead line voltage, and the regenerative operation is stable even with a series motor having self-excited amplifying power generation characteristics. Is obtained.

【0052】[非常充電調整] 高落差の急勾配の登坂
・降坂において、エンジン発電機の給電や受電電力を増
すよう制御して過放電を避け、発電ブレーキ用抵抗器や
エンジンブレーキに、回生電力を消費させて過充電を避
けることができる。
[Emergency Charging Adjustment] On a steep uphill or downhill with a high head, control is performed so as to increase the power supply or received power of the engine generator to avoid overdischarge, and the regenerative power is supplied to the generator brake resistor and the engine brake. Electricity can be consumed to avoid overcharging.

【0053】[予備充電] 急勾配路では電動機容量の
限度で、急曲線路では速度制限で、中速走行に抑えら
れ、走行抵抗分を給電するエンジン発電機や架線受電は
逆に軽負荷になるので、そのような区間では、発電機や
架線は高めの電圧で発電・受電を制御し予備充電して蓄
電電圧を高めておき、平坦・緩勾配や直線・緩曲線路で
放電して発電容量や受電容量を超える走行抵抗の高速走
行も可能であり、運行区間の路線状況や運転ダイヤに合
わせて予め計画のプログラムに従い、上記も併せ、発電
や受電の電力制御をすることが望ましい。
[Preliminary charging] On a steep road, the capacity of the motor is limited, and on a sharply curved road, the speed is limited to a medium speed, and the engine generator or the overhead line receiving power supply for the running resistance has a light load. In such sections, generators and overhead lines control power generation and power reception at a higher voltage, precharge them to increase the storage voltage, and discharge electricity on flat and gentle slopes and straight and gentle curves to generate electricity. High-speed running with a running resistance exceeding the capacity or the receiving capacity is also possible, and it is desirable to control the power generation and receiving power together with the above in accordance with a plan program in advance according to the route conditions of the operating section and the driving schedule.

【0054】[0054]

【実施励1】実施励1として、主に4台の電動機で全軸
駆動の電動客車を1動力単位とした車両の動力装置を挙
げ、図面を参照し説明する。
Embodiment 1 Embodiment 1 will be described with reference to the drawings, mainly with reference to the drawings, with reference to the drawings, in which a power unit of a vehicle having four electric motors and an electric passenger car driven by all axes as one power unit is mainly used.

【0055】[発電機回路] 図1(a)において、エ
ンジン1で駆動の発電機2の2組の電機子巻線3a、3
bで発生した3相交流電力は、それぞれY・Δ切り替え
用接触器4y、4δを経て3相ブリッジ整流器5a、5
bで3相全波整流され、リアクトル6a、6b、直・並
列切り替え用接触器7S、7P及び回路遮断器8を経て
主電源線9P(正極)、9N(負極、車体接地)に直流
電力を供給する。
[Generator Circuit] In FIG. 1A, two sets of armature windings 3a, 3a of a generator 2 driven by an engine 1 are shown.
The three-phase AC power generated in b. passes through the three-phase bridge rectifiers 5a, 5a,
b, three-phase full-wave rectification, and direct-current power to the main power supply lines 9P (positive electrode) and 9N (negative electrode, vehicle body ground) via the reactors 6a and 6b, the serial / parallel switching contactors 7S and 7P, and the circuit breaker 8. Supply.

【0056】2組の電機子巻線3a、3bが発生する3
相交流電力Ra、Sa、Ta及びRb、Sb、Tbは3
0度の位相差を持ち、それぞれ全波整流で6相整流波
形、直流側で合成されて12相交流の整流波形となり、
また、リアクトル5a、5bは共通鉄芯を持ち、それぞ
れ6相脈流の直流分の磁束を相殺する極性でリアクタン
スの低下なく、制御整流の歪波形による12相脈流を平
滑にし、蓄電器10が成す容量性負荷の尖頭電流を抑制
する。
3 where two sets of armature windings 3a and 3b are generated
The phase AC powers Ra, Sa, Ta and Rb, Sb, Tb are 3
It has a phase difference of 0 degree, each has a 6-phase rectified waveform by full-wave rectification, and a 12-phase AC rectified waveform synthesized on the DC side,
Further, the reactors 5a and 5b have a common iron core, and have a polarity that cancels out the magnetic flux of the DC of the six-phase pulsating flow, and without reducing the reactance, smoothes the 12-phase pulsating flow due to the distorted waveform of the control rectification. Suppresses the peak current of the capacitive load.

【0057】[蓄電器回路] 蓄電器10は、断路器1
1を持ち回路遮断器12を経て主電源線9P、9Nで上
述の発電・整流出力に並列接続する。
[Capacitor circuit] The capacitor 10 is a disconnector 1
1 and connected in parallel to the above-described power generation / rectification output via main circuit lines 9P and 9N via a circuit breaker 12.

【0058】[車内低圧電源] 主電源線9Pより回路
遮断器13で分岐してインバータ14及び変圧器15で
3相交流低圧電力に変換し、電動機界磁の励磁、補機・
照明等に給電し、更に整流器16及び蓄電池17を以て
励磁、制御、通信等に無停電低圧直流を給電する。
[In-vehicle low-voltage power supply] Branched from the main power supply line 9P by a circuit breaker 13 and converted into three-phase AC low-voltage power by an inverter 14 and a transformer 15 to excite the motor field, and
The power is supplied to the lighting and the like, and the uninterruptible low-voltage direct current is supplied to the rectifier 16 and the storage battery 17 for excitation, control, communication, and the like.

【0059】なお、エンジン1は、燃料槽18は勿論、
排熱利用の熱交換器19(吸収式冷却機を含み、)を持
ち、エンジン出力Pe の2倍近い排熱(冷却水熱及び排
気熱)を、車両内設備の消費エネルギの大部分を占める
冷・暖房に利用する。
The engine 1 has a fuel tank 18 as well as
It has a heat exchanger 19 (including an absorption type cooler) that uses exhaust heat, and the exhaust heat (cooling water heat and exhaust heat) almost twice the engine output Pe occupies most of the energy consumption of equipment in the vehicle. Used for cooling and heating.

【0060】[複数単位の給電] 機関車または複数の
動力車と電源車1両の編成のように、複数の動力単位に
給電の場合は、点線図示のように上述の回路遮断器8を
動力単位毎に配して分岐し、それぞれダイオード20を
介して各動力単位の主電源線9Pに給電、また、そのダ
イオード20で、蓄電器10をそれぞれ持つ動力単位の
間の蓄電電圧不等による電力横流を阻止し、万一の故障
の波及を防止する。
[Power Supply of Plurality of Units] When power is supplied to a plurality of power units, such as a locomotive or a plurality of power vehicles and a power train, the above-described circuit breaker 8 is driven as shown by a dotted line. The power is supplied to the main power supply line 9P of each power unit via the diode 20, and the power is crossed by the diode 20 due to the inequality of the storage voltage between the power units each having the capacitor 10. To prevent the failure from spreading.

【0061】[共通低圧電源] なお、複数の動力単位
の車内低圧電源を共通1組とする場合は、点線図示のよ
うに各動力単位の主電源線9Pから回路遮断器13で分
岐し、ダイオード21を介してインバータ14に給電、
また、そのダイオード21で各動力単位間の電力横流を
阻止し、蓄電電圧が高い方の電力を消費する。
[Common Low-Voltage Power Supply] When a plurality of in-vehicle low-voltage power supplies of a plurality of power units are used as a common set, a circuit breaker 13 branches from the main power supply line 9P of each power unit as shown by a dotted line, and a diode. 21 to the inverter 14 via
In addition, the diode 21 prevents cross-flow of power between the power units, and consumes power having a higher storage voltage.

【0062】[運転主回路] 電動の際は、電動用接触
器24が「入」、負極側チョッパ27が制御作動して電
動機回路22を働かせ、正極側チョッパ26は全開で還
流ダイオードとして働き、回生の際は、回生用接触器2
5が「入」、回生電圧が主電源電圧Vより高い中・高速
域では正極側チョッパ26が制御作動し負極側チョッパ
27は全閉、主電源電圧Vより低い低速域では負極側チ
ョッパ27が制御作動してリアクトル23に脈動起電力
を発生させて昇圧し、全開の正極側チョッパ26を経
て、蓄電器10に充電する。
[Operating Main Circuit] At the time of electric power operation, the electric contactor 24 is turned on, the negative side chopper 27 is controlled to operate the motor circuit 22, and the positive side chopper 26 is fully opened to function as a return diode. For regeneration, contactor 2 for regeneration
5 is “ON”, the positive side chopper 26 is controlled and operated in the middle / high speed region where the regenerative voltage is higher than the main power supply voltage V, the negative side chopper 27 is fully closed, and the negative side chopper 27 is operated in the low speed region lower than the main power supply voltage V. A control operation is performed to generate a pulsating electromotive force in the reactor 23 to boost the pressure, and charge the electric storage device 10 through the fully opened positive electrode side chopper 26.

【0063】[非常充電調整] 高落差降坂で蓄電器1
0が過充電(過電圧)あるいはそれが予想されるとき、
側路接触器29を「切」にして負極側チョッパ27を制
御作動させ、抵抗器28に回生電力を消費させて発電ブ
レーキとし、蓄電器10の充電調整ができるが、そのよ
うなエネルギ損失を極力避けるため、後述の[予備充放
電]のように充電調整するのがよい。
[Emergency Charge Adjustment] Battery 1 at high head
When 0 is overcharged (overvoltage) or it is expected,
By turning off the bypass contactor 29, the negative side chopper 27 is controlled and operated, the regenerative power is consumed by the resistor 28 to generate electricity, and the charging of the battery 10 can be adjusted. To avoid this, it is preferable to adjust the charge as in [Preliminary charge / discharge] described later.

【0064】[架線電力受電] 直流電化線区では、点
線で図示のように、主電源の正極9P(チョッパ26の
正極側)に受電用チョッパ30を配し、LCろ波回路
(コンデンサ31とリアクトル32で構成)、回路遮断
器33及び集電器34を介して架線35に、主電源線負
極9Nは車軸接地器36を介して軌道37に接続して受
電装置を構成する。
[Overhead Power Receiving] In the DC electrification section, as shown by a dotted line, a power receiving chopper 30 is arranged on the positive electrode 9P of the main power supply (the positive electrode side of the chopper 26), and the LC filtering circuit (the capacitor 31 and the The main power line negative electrode 9N is connected to a track 37 via an axle grounding device 36 to form a power receiving device.

【0065】チョッパ30は、ろ波用リアクトル32と
ともに架線電圧の急昇による蓄電器10への異常突入充
電電流を抑制し、勾配路の運行では勾配抵抗負荷を主に
蓄電器10に分担させるよう蓄電電圧に合わせ受電電力
を制御し、架線電圧が低下したとき蓄電電力の逆流出を
阻止する。
The chopper 30, together with the filtering reactor 32, suppresses an abnormal rush charging current into the battery 10 due to a rapid rise of the overhead line voltage, and stores the battery voltage so as to mainly share the gradient resistance load to the battery 10 when operating on a slope road. The received power is controlled in accordance with, and the backflow of the stored power is prevented when the overhead line voltage drops.

【0066】[回生電力送出] 特別高落差の急勾配の
蓄電線区で回生電力を送出する場合は、点線で図示のよ
うに、上記受電用チョッパー30と逆並列に配した接触
器38Cとダイオード38Dが回生電力の送出に働き、
架線電圧急昇の際はダイオード38Dが逆流阻止し、回
生電力をダイオード39を経て蓄電器10に充電させ、
急落の際はダイオード39で蓄電電力の逆流出を阻止
し、正極側チョッパ26の制御作動で、いずれの際も回
生電力・トルクの急変を防止する。
[Regenerative Power Transmission] When regenerative power is transmitted in a steep storage line section having a special high drop, as shown by a dotted line, a contactor 38C and a diode arranged in anti-parallel with the power receiving chopper 30 are used. 38D works to transmit regenerative power,
When the overhead line voltage suddenly rises, the diode 38D prevents backflow, and the regenerative power is charged in the battery 10 via the diode 39.
In the event of a sudden fall, the diode 39 prevents reverse outflow of the stored power, and the control operation of the positive side chopper 26 prevents sudden changes in regenerative power and torque in any case.

【0067】[電源車] 図1(b)において、電源車
40の床下にエンジン1、発電機2、制御箱4、整流器
箱5、燃料槽18及び熱交換器19を配して、電源ユニ
ットを構成し、制御箱4には前述の接触器4y、4δ、
7s、7p、回路遮断器8等の電源制御装置一切を、整
流器箱5には整流器5a、5b及びリアクトル6a、6
bをそれぞれ格納する。
[Power Supply Vehicle] In FIG. 1B, an engine 1, a generator 2, a control box 4, a rectifier box 5, a fuel tank 18, and a heat exchanger 19 are arranged under the floor of a power supply vehicle 40, and a power supply unit is provided. And the control box 4 has the contactors 4y, 4δ,
7s, 7p, all the power control devices such as the circuit breaker 8, etc., and the rectifier box 5 includes rectifiers 5a, 5b and reactors 6a, 6
b is stored.

【0068】[動力車] 電動機41(M1〜M4)を
各車軸に持つ動力車42の床下に、蓄電器10、制御箱
43、補機44及び抵抗器28を配し、制御箱43には
上述の接触器24、25、29、チョッパ26、27、
車内低圧電源用インバータ14等及び後述の電動機制御
機器を格納し、架線電力受電の場合は、点線で図示のよ
うに、屋根上に集電器34を、床下に受電箱45を配し
てチョッパ30、接触器38C、ダイオード38D、コ
ンデンサ31、リアクトル32、回路遮断器33等の受
電用の機器・素子を格納し、電化線区では、電源車40
の代わりに非動力車を連結し、電動車両編成で運行す
る。
[Powered Vehicle] Under the floor of a powered vehicle 42 having electric motors 41 (M1 to M4) on each axle, the battery 10, the control box 43, the auxiliary device 44 and the resistor 28 are arranged. Contactors 24, 25, 29, choppers 26, 27,
The inverter 14 for the low-voltage power supply in the vehicle and the like and a motor control device to be described later are stored. In the case of overhead power reception, as shown by a dotted line, a current collector 34 is arranged on the roof, and a power receiving box 45 is arranged below the floor, and the chopper 30 is disposed. , A contactor 38C, a diode 38D, a capacitor 31, a reactor 32, a circuit breaker 33, and other power-receiving devices and elements.
In place of, a non-powered vehicle is connected and operated by electric vehicle formation.

【0069】[充放電特性] 図2において、蓄電器1
0の充放電特性を、一般に蓄電装置として使用されてい
る蓄電池と比較するに、蓄電器では、上図(a)に示す
ように、静電容量C(F)と蓄電量Wc (MJ)に応
じ、無負荷電圧Vは直線I・O・GでVo −δVからV
o +δVの間に変動するが、充放電電流Iに対し、充電
は蓄電器の内部抵抗rによる電圧降下I*rだけ高い充
電電圧Vc =V+I*rの直線A・B・Cで、放電は電
圧降下I*rだけ低い放電電圧Vd =V−I*rの直線
D・E・Fで進行し、充放電停止後は、直ちに無負荷の
蓄電電圧Vに戻り水平線G・HまたはI・Jのようにな
る。
[Charge / Discharge Characteristics] In FIG.
In comparison with the charge / discharge characteristics of a storage battery that is generally used as a power storage device, the charge / discharge characteristics of the battery according to the capacitance C (F) and the storage amount Wc (MJ) are as shown in FIG. , And the no-load voltage V is V-δV from the straight line IOG
Although the voltage fluctuates between o + δV, charging is performed by a straight line A, B, and C of a charging voltage Vc = V + I * r, which is higher than the charging / discharging current I by a voltage drop I * r due to the internal resistance r of the capacitor. It proceeds on a straight line DEF of a discharge voltage Vd = VI-r * r lower by the drop I * r, and immediately after charging / discharging stops, returns to the no-load storage voltage V immediately after the horizontal line GH or IJ Become like

【0070】蓄電池では下図(b)に示すように、蓄電
池の内部抵抗rに化学的分極作用による起電力ec 及び
ed が加わり、充電電圧Vc はV+(I*r+ec )の
直線A・B・C、放電電圧Vd はV−(I*r+ed )
の直線C・D・Eで進行し、充放電停止後は、直ちに無
負荷の蓄電電圧Vの点GやJに戻らず、点線曲線C・H
やF・Jのように略々復帰するまで数分遅れ、また、充
電開始の点Aで立ち上がりが数秒遅れる。
In the storage battery, as shown in the following figure (b), the electromotive forces ec and ed due to the chemical polarization action are added to the internal resistance r of the storage battery, and the charging voltage Vc becomes a straight line A, B, C of V + (I * r + ec). , The discharge voltage Vd is V- (I * r + ed)
After stopping charging / discharging, it does not immediately return to the point G or J of the no-load storage voltage V, but instead returns to the dotted line curve C / H.
And F / J, it is delayed by several minutes until it returns substantially, and the rise at the start point A is delayed by several seconds.

【0071】両者とも、点I・O間やO・G間の蓄電電
圧V、電流Iの充放電時間tについての積分値が、中点
Oの定格電圧Vo から電圧変動±δVに対する充放電電
力量Wc であり、充放電の電圧降下(蓄電器ではI*
r、蓄電池ではI*r+ec 及びI*r+ed )が電力
損失となり、充放電効率ηc はVd /Vc の比となる
が、蓄電池では、その蓄電原理に不可避の電圧降下が大
きく、10時間率の緩充放電でも充放電電力効率ηc は
70〜80%、1時間率の急速充放電では、効率ηc は
更に著しく低下するが、蓄電器では、その蓄電原理(静
電容量)及び構造(対向・引出し導体)から考えて、極
めて小さい内部抵抗rのみが充放電損失であり、タイム
ラグも皆無のため、数秒〜数十秒に集中の突入電力や数
分〜十数分に集中の大電力を、極めて効率良く充放電す
ることができる訳である。
In both cases, the integrated value of the storage voltage V between the points I and O and between the points O and G with respect to the charging and discharging time t of the current I is different from the rated voltage Vo of the middle point O with respect to the charging and discharging power with respect to the voltage fluctuation ± δV. And the voltage drop of charging / discharging (I *
r, in the storage battery, I * r + ec and I * r + ed) cause power loss, and the charging / discharging efficiency ηc becomes the ratio of Vd / Vc. In charging and discharging, the charging and discharging power efficiency ηc is 70 to 80%, and the efficiency ηc is further remarkably reduced by rapid charging and discharging at an hourly rate. However, in a capacitor, its storage principle (capacitance) and its structure (facing / leading conductor) ), Only the extremely small internal resistance r is the charge / discharge loss and there is no time lag, so the inrush power concentrated for several seconds to several tens of seconds or the large power concentrated for several minutes to several tens of minutes can be extremely efficient. That is, charge and discharge can be performed well.

【0072】[発電機特性] 図3において、発電機2
は、Y直列、Y並列及びΔ並列の各々接続について、全
励磁Φo で定格電圧Vo を発生する基本回転数Nio、N
yo及びNδo を有し、各々接続の回転数範囲で全励磁Φ
o で起電力特性Ei 、Ey及びEδの各直線と、定格電
圧Vo を発生の所要励磁特性Φi 、Φy及びΦδの各曲
線のように、各基本回転数Nio、Nyo及びNδo の低速
側では過励磁で定格電圧Vo を、高速側では全励磁Φo
と制御整流の電圧変成で定格電圧Vo をそれぞれ給電す
るよう作動し、各々基本回転数Nio、Nyo及びNδo の
基本容量はPio、Pyo 及びPδo で最高回転数Nmax
の出力はPδmax となり、回転数Nに比例の直線Po 上
に並ぶ。
[Generator Characteristics] In FIG.
Are the basic rotation speeds Nio, Nio that generate the rated voltage Vo at full excitation Φo for each of the Y series, Y parallel and Δ parallel connections.
yo and Nδo, and each excitation Φ
o, the respective lines of the electromotive force characteristics Ei, Ey, and Eδ and the required excitation characteristics Φi, Φy, and Φδ for generating the rated voltage Vo are excessive on the low speed side of each of the basic rotational speeds Nio, Nyo, and Nδo. The rated voltage Vo by excitation, and the full excitation Φo on the high-speed side
And the rated voltage Vo is supplied by the voltage conversion of the control rectification, and the basic capacities of the basic rotational speeds Nio, Nyo and Nδo are the maximum rotational speed Nmax at Pio, Pyo and Pδo, respectively.
Is Pδmax and is arranged on a straight line Po proportional to the rotation speed N.

【0073】[エンジン特性] 一般に車両用エンジン
1は、トルク曲線T及び出力曲線Pe のように、略々中
速域から高速域にかけて中高のトルク及び軸出力特性を
持ち、エンジン発電機としての電気出力特性は軸出力P
e に発電機2の効率ηg を乗じた曲線Pg となり、燃料
消費率は中低の曲線Fe で、最大トルクTmax を発生す
る回転数域で最小となり熱効率が良く、また、その回転
数域で発電機2の基本出力Po を幾分上回るよう両者
1、2の定格容量を選定するのが、両者1、2の過負荷
トルク耐量から見て適当であり、また、発電機2の基本
高速定格回転数Nδo より充分上回るNmax を持つエン
ジン1を使用し、銅損増加なくその基本高速定格容量P
δo を大きく超え且つ最高回転数Nmax の鉄損増加を考
え出力Pδmax よりやや低い、電気出力Pgmaxが得るの
がよい。
[Engine Characteristics] Generally, the vehicle engine 1 has a medium-to-high torque and a shaft output characteristic from a medium speed range to a high speed range, as shown by a torque curve T and an output curve Pe, and has an electric power as an engine generator. Output characteristics are shaft output P
e is multiplied by the efficiency ηg of the generator 2 to obtain a curve Pg, and the fuel consumption rate is a medium-low curve Fe, which is minimum in the rotational speed region where the maximum torque Tmax is generated, and has good thermal efficiency. It is appropriate to select the rated capacities of the two units 1 and 2 so as to slightly exceed the basic output Po of the generator 2 in view of the overload torque capability of the two units 1 and 2. Using the engine 1 having Nmax sufficiently higher than the number Nδo, its basic high-speed rated capacity P without increasing copper loss.
It is preferable to obtain an electric output Pgmax slightly exceeding the output Pδmax in consideration of an increase in iron loss at the maximum rotation speed Nmax which greatly exceeds δo.

【0074】[発電作動] 発電機2の負荷Pg に応じ
エンジン回転数Nを増減し、停車中はY直列とアイドリ
ングに近い低速Ni で車内消費電力を、Y並列で中速回
転且つ低騒音で中速走行の軽負荷に、Δ並列の高速回転
で高速走行の高負荷に、それぞれ対応し、界磁制御及び
制御整流で常に蓄電器10の電圧Vに合わせ給電するよ
う、後述の図5に示す主制御装置54で制御する。
[Power Generation Operation] The engine speed N is increased / decreased in accordance with the load Pg of the generator 2, while the vehicle is stopped, the in-vehicle power consumption is reduced at low speed Ni close to idling and idling. The main control shown in FIG. 5 described below so as to correspond to a light load at medium speed running and a high load at high speed running at high speed in parallel with Δ and always supply power in accordance with the voltage V of the battery 10 by field control and control rectification. It is controlled by the device 54.

【0075】[電動機主回路] 図4において、サイリ
スタ等の制御素子で3相ブリッジ回路に構成のインバー
タ46は、電動機41の軸に装着の分配器47の位相信
号で作動し、回転界磁41Fの回転位相に同期した3相
交流電力に変換し、Y・Δ切り替え回路48を経て電機
子41Aの電動トルクを発生させる直流無整流子電動機
を構成し、また、2台づつ永久直列の電動機2組を接触
器49S、49Pで直・並列切り替えし、Y直列(1
速)、Y並列(2速)、Δ並列(3速)の変速段を形成
する。
[Electric Motor Main Circuit] In FIG. 4, an inverter 46 configured as a three-phase bridge circuit using a control element such as a thyristor is operated by a phase signal of a distributor 47 mounted on the shaft of the electric motor 41 to generate a rotating field 41F. To a three-phase AC power synchronized with the rotation phase of the motor, and a DC-less commutator motor for generating an electric torque of the armature 41A via the Y / Δ switching circuit 48. The set is switched between serial and parallel with the contactors 49S and 49P, and the Y series (1
Speed), Y parallel (2nd speed), and Δ parallel (3rd speed).

【0076】[電動機界磁回路] 3相ブリッジ整流器
50の直流出力で、正・逆転切り替え用接触器51F、
51Rを経て、各電動機41の回転界磁41F(スリッ
プリングは図示省略)を励磁し、還流ダイオード52で
界磁41Fのリアクタンスと共働し整流器50の直流出
力の脈流を平滑にする。
[Electric motor field circuit] The DC output of the three-phase bridge rectifier 50 is used to contact the forward / reverse switching contactor 51F.
After passing through 51R, the rotating field 41F (slip ring is not shown) of each motor 41 is excited, and the return diode 52 cooperates with the reactance of the field 41F to smooth the pulsating flow of the DC output of the rectifier 50.

【0077】[運転制御] 図5において、主幹制御器
53がDノッチ(力行)またはAノッチ(加速)のと
き、電動用接触器24が「入」、分配器47の位相信号
に合わせインバータ46が整流子作用、チョッパ27で
電機子電流Ia を制御、Y・Δ切り替え回路48ととも
に、ゲートパルスの位相転移(30度)が作動し、主幹
制御器53がSノッチ(抑速)またはBノッチ(制動)
のとき、回生用接触器25が「入」、分配器47の位相
信号を切り離し、インバータ46を整流器として働か
せ、回生電圧(電機子電圧E)に応じチョッパ26、2
7で主回路電流Im及び電機子電流Ia を制御するよ
う、主制御装置54が作動する。
[Operation Control] In FIG. 5, when the master controller 53 is in the D notch (power running) or A notch (acceleration), the electric contactor 24 is “on” and the inverter 46 is adjusted to the phase signal of the distributor 47. , The armature current Ia is controlled by the chopper 27, the phase transition (30 degrees) of the gate pulse is operated together with the Y / Δ switching circuit 48, and the main controller 53 sets the S notch (suppressed) or the B notch (braking)
At this time, the regenerative contactor 25 is "ON", the phase signal of the distributor 47 is cut off, the inverter 46 is operated as a rectifier, and the choppers 26, 2 according to the regenerative voltage (armature voltage E).
At 7, the main controller 54 operates to control the main circuit current Im and the armature current Ia.

【0078】なお、回生作動において、インバータ46
で制御整流し電機子起電力を主電源電圧Vに変成した回
生電圧を得る場合は、チョッパ26の代わりにダイオー
ド26Dを配することができる。
In the regenerative operation, the inverter 46
In order to obtain a regenerative voltage in which the armature electromotive force is transformed into the main power supply voltage V by performing control rectification by using the above-described method, a diode 26D can be provided instead of the chopper 26.

【0079】他励分巻界磁41Fは、電機子電流Ia に
比例の直巻成分を加えるよう、整流器50にゲートパル
スを与えて励磁電流制御を行ない、直巻、複巻及び分巻
のトルク特性を得、定出力速度域で減磁、力行・抑速ノ
ッチにおいて速度センサ55の速度信号により励磁調整
して定速制御を行ない、軌道勾配の変化で各定速制御と
反対方向に速度変化ある時は、表示器56に警報・表示
し逆操作等の処置を促すよう、主制御装置54が作動す
る。
The separately-excited winding field 41F controls the exciting current by applying a gate pulse to the rectifier 50 so as to add a series-wound component proportional to the armature current Ia. Characteristics are obtained, demagnetization is performed in the constant output speed range, excitation is adjusted by the speed signal of the speed sensor 55 in the power running / deceleration notch, and constant speed control is performed, and speed changes in the opposite direction to each constant speed control due to changes in orbit gradient. At a certain time, the main controller 54 operates so that an alarm is displayed and displayed on the display 56 to urge the user to take a countermeasure or the like.

【0080】[電流センサ] 発電出力Ig 、充放電電
流Ic 、電動装置主回路電流Im 、電機子電流Ia 及び
受電電流It のそれぞれ電流センサ57、58、59、
60及び61を配し、主制御装置54を介して、それぞ
れの制御を上述のように行ない、表示盤56の電流計
(図示省略)で表示する。
[Current Sensors] The current sensors 57, 58, 59 of the power generation output Ig, charging / discharging current Ic, motor main circuit current Im, armature current Ia, and receiving current It, respectively.
60 and 61 are arranged, and the respective controls are performed as described above via the main control device 54, and are displayed on the ammeter (not shown) of the display panel 56.

【0081】[2組の電機子巻線] 図6において、3
0度の位相差の2組の電機子巻線41a、41b及び共
通の回転界磁41Fを有する電動機41を使用する場合
は、共通1個の分配器47でそれぞれの3相ブリッジ形
インバータ46a、46bを整流子作動させ、Y・Δ切
り替え回路48a、48bを持ち、接触器49S、49
Pで直・並列切り替えで、前述の図1(a)の発電機2
と同様に、位相差30度の2つの6相脈動を合成し、1
2相交流の極めて小さい脈動トルクを得る他は、前述の
図4のものと同様である。
[Two Sets of Armature Windings] In FIG.
When using a motor 41 having two sets of armature windings 41a and 41b having a phase difference of 0 degree and a common rotating field 41F, each of the three-phase bridge type inverters 46a, 46b is operated as a commutator, and has Y and Δ switching circuits 48a and 48b.
By switching between direct and parallel at P, the generator 2 shown in FIG.
Similarly, two 6-phase pulsations having a phase difference of 30 degrees are synthesized, and 1
It is the same as that of FIG. 4 described above except that a very small pulsating torque of two-phase alternating current is obtained.

【0082】[整流子電動機回路] 図7において、整
流子電動機を使用の場合は、各電動機41(M1〜M
4)の電機子41Aは2台づつ永久直列で接触器49
S、49Pで直・並列切り替え、接触器51F、51R
で正・逆転切り替えし、直巻界磁41Fは接触器62
S、62Pで2群の直・並列切り替え、接触器63S、
63Pで台車毎に直・並列切り替えして全・半励磁切り
替えし、電動機群全体として直列(1速)、並列(2
速)、半励磁(3速)の変速段を形成する。
[Commutator Motor Circuit] In FIG. 7, when a commutator motor is used, each motor 41 (M1 to M
The armature 41A of 4) is a permanent contact in series with two
S / 49P, direct / parallel switching, contactors 51F, 51R
To switch between forward and reverse, and the series winding field 41F is contactor 62
S, 62P, two groups of direct / parallel switching, contactor 63S,
At 63P, direct / parallel switching is performed for each bogie, and full / semi-excitation switching is performed.
Speed) and half-excitation (third speed).

【0083】接触器24「入」とチョッパ27の作動
で、直巻電動機として上記の変速段で電動に働き、接触
器25「入」、接触器51F、51Rの逆転作動とチョ
ッパ27の制御作動により、電動と同一の電流方向と界
磁41Fの残留磁気で初期励磁され、直巻発電機として
自励増幅し、走行速度と電機子電流に見合う電機子起電
力Eが立ち上がり、蓄電電圧Vより高いときはチョッパ
26が制御作動しチョッパ27は全閉、低いときはチョ
ッパ26が全開しチョッパ27が制御作動して、回生電
力を蓄電器10に充電する。
When the contactor 24 is turned on and the chopper 27 is operated, the series motor is electrically operated at the above-mentioned shift speed, and the contactor 25 is turned on, the contactors 51F and 51R are rotated in reverse and the chopper 27 is controlled. As a result, the motor is initially excited in the same current direction as the electric motor and in the remanence of the field 41F, self-excited and amplified as a series-winding generator, and an armature electromotive force E commensurate with the traveling speed and the armature current rises. When it is high, the chopper 26 is controlled and the chopper 27 is fully closed, and when it is low, the chopper 26 is fully opened and the chopper 27 is controlled to charge the regenerative power to the battery 10.

【0084】抑速及び制動では、走行速度及び回生負荷
に応じ、界磁回路の直・並列切り替え(接触器62S、
62P、63S、63P)が電機子回路の直・並列切り
替え(接触器49S、49P)とは別に作動し、抑速で
はできるだけ電源電圧に近い、制動では電動機の過電圧
耐量以下のできるだけ高い回生電圧を得て、チョッパ2
6、27及びリアクトルの制御作動損失を軽減する。
In deceleration and braking, the series / parallel switching of the field circuit (contactor 62S,
62P, 63S, 63P) operate separately from the direct / parallel switching of the armature circuit (contactors 49S, 49P), and the regenerative voltage as close as possible to the power supply voltage for deceleration, and the overvoltage withstand voltage of the motor for braking is as low as possible. Get, chopper 2
6, 27 and the control operation loss of the reactor are reduced.

【0085】[運転サイクル] 図8において、一般に
車両は上図(a)に示すように各駅間で、短距離では中
間が一部点線で示す曲線vL のように発進・加速−力行
−惰行−制動・停止、長距離では加速終期が一部点線で
示す曲線vh のように発進・加速−定常力行−制動・停
止の運転サイクルを繰り返しすが、実線折線α−v−β
(加速−定常力行−制動)のようにモデル化して走行抵
抗Fv および慣性抵抗Fi 並びにそれぞれの動力及び仕
事量について、表1及び表2と対照しながら説明する。
[Driving Cycle] In FIG. 8, the vehicle is generally started and accelerated-powered-coasted between the stations as shown in FIG. In the case of braking / stopping and long distance, the end of acceleration repeats the start / acceleration-steady powering-braking / stopping operation cycle as indicated by a dotted line curve vh, but with a solid broken line α-v-β
The running resistance Fv and the inertial resistance Fi and the respective powers and work amounts are modeled as (acceleration-steady powering-braking) and described in comparison with Tables 1 and 2.

【0086】[0086]

【表1】 [Table 1]

【0087】[0087]

【表2】 [Table 2]

【0088】[走行抵抗] 走行抵抗Fv は、ゼロ速度
で最小値、走行速度vに従い増減し、常に正(+)の値
をとり、加速距離Sa 、定常走行距離Sv 及び減速距離
Sbにおけるそれぞれ仕事量はWea、Wev及びWeb、そ
の合計値ΣWe が駅間の運転に費やされる実効仕事量で
ある。
[Running Resistance] The running resistance Fv has a minimum value at zero speed, increases and decreases in accordance with the running speed v, and always takes a positive (+) value. The running resistance Fv has a work value at the acceleration distance Sa, the steady running distance Sv and the deceleration distance Sb. The amount is We, Wev, and Web, and the total value thereof ΣWe is the effective work consumed for driving between stations.

【0089】[慣性抵抗] 発進・加速においては、電
動機の定トルク限度速度vcaまでは定加速度αで、以後
定常速度まではαとvの積が一定値の定出力加速度で車
両を加速し、また、制動・停止においては、定トルク限
度速度vcaまではβとvとの積が一定値の定出力減速度
で、以後停止までは定減速度βで車両を減速し、それぞ
れ慣性抵抗Fia(正の値)及びFib(負の値)を、加速
距離Sa 及び減速距離Sb について積分した値Wia(正
の値)及びWib(負の値)がそれぞれの慣性仕事量であ
り、運転サイクル毎の総和ΣWi =Wia+Wibはゼロと
なる無効仕事量である。
[Inertia Resistance] In starting and accelerating, the vehicle is accelerated at a constant acceleration α up to a constant torque limit speed vca of the electric motor, and thereafter, at a constant output acceleration where a product of α and v is a constant value until a steady speed. In braking / stopping, the product of β and v is a constant output deceleration with a constant value up to the constant torque limit speed vca, and thereafter, the vehicle is decelerated at the constant deceleration β until the stop, and the inertia resistance Fia ( The values Wia (positive value) and Wib (negative value) obtained by integrating the positive value) and Fib (negative value) with respect to the acceleration distance Sa and the deceleration distance Sb are the respective inertia work amounts. The sum ΣWi = Wia + Wib is an invalid work amount that becomes zero.

【0090】[牽引力・制動力・仕事量] 電動機の軸
負荷となる牽引力及び制動力は、走行抵抗Fv と慣性抵
抗Fi との和であるが、前述の表1に示すように、加速
及び定常力行時の牽引力Fda=Fv +Fia及びFdv=F
v 、減速時の制動力Fb =Fv +Fib(負の値)とな
り、表2に示すように、それぞれが作用した距離Sa 、
Sv 、Sb についての積分値がそれぞれの仕事量Wda、
Wdv、Wb 、牽引に消費する仕事量はΣWd =Wda+W
dvとなり、その内εe (%)=ΣWe /ΣWd が実効仕
事量として働いたことになる。
[Traction Force / Brake Force / Work] The traction force and the braking force, which are the axial loads of the motor, are the sum of the running resistance Fv and the inertial resistance Fi. Traction force during power running Fda = Fv + Fia and Fdv = F
v, braking force during deceleration Fb = Fv + Fib (negative value), and as shown in Table 2, the distances Sa,
The integrated values for Sv and Sb are the respective workloads Wda,
Wdv, Wb, the amount of work consumed for towing is = Wd = Wda + W
dv, of which εe (%) = ΣWe / ΣWd worked as the effective work.

【0091】[回収エネルギ] 上記の消費仕事量ΣW
d から実効仕事量ΣWe を差し引いた残りの制動仕事量
Wb は、従来の気動車両や回生ブレーキを持たない電動
車両では、車輪ブレーキ、エンジンブレーキや発電ブレ
ーキで無益に捨てられており、前述の表2に示すよう
に、その割合εb (%)=Wb /ΣWd は、駅間短距離
・中速の運転サイクルでは略々70〜40%の如き大半
を占め、長距離・高速でも略々40〜20%の如くかな
りの値で且つ仕事量は大きく、また、回生ブレーキ末期
に移行の発電ブレーキ(停止寸前の微速まで作動)及び
車輪ブレーキ(以下、両者を纒め単に車輪ブレーキとし
て扱う)を除いた有効な回生ブレーキ下限速度vb を想
定した車輪ブレーキ損失率εwbと、動力装置の効率ηp
も加味して電力回収率εr (%)を示すように、本発明
によるその回収と次サイクルでの再利用が、電動機、制
御装置及び蓄電器の効率ηm 、ηi 及びηc を総合した
動力装置の過負荷効率ηp 次第で、エネルギ効率を大き
く改善することが判る。
[Recovered energy] The above-mentioned work consumption ΣW
The remaining braking work Wb obtained by subtracting the effective work ΣWe from d is discarded by wheel brakes, engine brakes and power generation brakes in conventional pneumatic vehicles and electric vehicles without regenerative brakes. As shown in FIG. 2, the ratio εb (%) = Wb / ΣWd occupies almost 70% to 40% in the short-to-medium-speed driving cycle between stations, and approximately 40% to 40% in the long-distance / high-speed driving cycle. It is a considerable value such as 20% and the work load is large. Except for the power generation brake (operating to a very low speed just before stopping) and wheel brake (hereafter, both are combined and simply treated as wheel brake) at the end of regenerative braking Wheel brake loss rate εwb assuming the effective regenerative brake lower limit speed vb, and power plant efficiency ηp
Taking into account the power recovery rate εr (%), the recovery and reuse in the next cycle according to the present invention is based on the efficiency of the electric motor, the control device, and the power unit integrated with the efficiency ηm, ηi, and ηc of the battery. It can be seen that the energy efficiency is greatly improved depending on the load efficiency ηp.

【0092】[曲線抵抗] なお、軌道の曲線半径によ
り曲線抵抗Fr が、表1の注(*1)に示すように、実
効分として走行抵抗Fv に加わり、曲線長%は一定でな
いので駅間全距離が直線路と曲線路の両者について、上
記の諸量を前述の表2に示すが、地方線区では両者の中
間、幹線区では前者に近い値になると考える。
[Curve resistance] The curve resistance Fr is added to the running resistance Fv as an effective component as shown by the note (* 1) in Table 1 according to the radius of the curve of the track, and the curve length% is not constant. The above-mentioned various quantities are shown in Table 2 above for both the straight road and the curved road for the total distance, and are considered to be intermediate between the two in the local line section and close to the former in the main line section.

【0093】[電動機・発電機負荷] 図8の下図
(b)において、電動機の軸負荷は、上述の加速、定常
力行、制動でそれぞれPda、Pdv、Pb (電気負荷でP
mda、Pmdv、Pmb)、特にPda及びPb は電動機の瞬時
過負荷耐量(例えば300%、1分)に近い突入負荷で
あるが、主に蓄電器の充放電で賄われ、それに伴う動力
装置の損失pd 及びpb を平準化して定常走行負荷Pmd
v=Pdv /ηp に加えた値が発電機の負荷Pg であり、
発電機は蓄電電圧Vの変動に合わせ、主に定出力加・減
速及び定常走行中(tap+tv +tbp)に均等給電し、
定トルク加・減速中(tat、tbt)に暫増・減で給電す
るよう、モデル化して求めた発電機の負荷Pg は、前述
の表2に示すように、定常走行負荷Pmdv に近い軽負荷
である。
[Motor / Generator Load] In the lower diagram (b) of FIG. 8, the shaft load of the motor is Pda, Pdv, and Pb in the above-described acceleration, steady power running, and braking, respectively.
mda, Pmdv, Pmb), especially Pda and Pb, are inrush loads close to the instantaneous overload capability (for example, 300%, 1 minute) of the electric motor, but are mainly covered by charging and discharging of the battery, and the loss of the power plant associated therewith. By normalizing pd and pb, the steady running load Pmd
The value added to v = Pdv / ηp is the generator load Pg,
The generator supplies power evenly during constant output acceleration / deceleration and steady running (tap + tv + tbp) in accordance with the fluctuation of the storage voltage V,
As shown in Table 2 above, the generator load Pg obtained by modeling so that power is supplied at a temporary increase / decrease during constant torque acceleration / deceleration (tat, tbt) is a light load close to the steady running load Pmdv. It is.

【0094】[架線負荷] 電化線区で架線35より受
電の場合は、鎖線曲線Pt で示すように、蓄電電圧Vが
定格架線電圧Vo より下がる加速後期から緩やかに負荷
が移行し、主に定常走行中(tv )に受電し、その時間
tv が上記の発電給電より短いため、その電力Pt は上
記の発電機負荷Pg よりも幾分大きくなるが、それでも
加速・制動時の電気負荷Pmda 、Pmbに比し格段に軽
く、蓄電器の充放電による慣性抵抗負荷の処理で、架線
負荷Pt にも低減と平準化が及ぶ。
[Overhead line load] In the case of receiving power from the overhead line 35 in the electrification line section, as shown by the chain line curve Pt, the load gradually shifts from the latter stage of acceleration when the storage voltage V falls below the rated overhead line voltage Vo, and the load is mainly steady. Since the power is received during traveling (tv) and the time tv is shorter than the above-described power generation and supply, the power Pt is somewhat larger than the generator load Pg, but still the electric loads Pmda and Pmb during acceleration and braking The load is much lighter than that of the above, and the overhead wire load Pt can be reduced and leveled by the processing of the inertial resistance load by charging and discharging the battery.

【0095】[蓄電電圧変動] 運転サイクル毎の慣性
抵抗負荷の充放電処理による蓄電電圧Vの変動δVを前
述の表2及示すように、駅間短距離・中速運転では小波
で高頻度に、長距離・高速では大波で低頻度に上下す
る。
[Storage Voltage Fluctuation] As shown in Table 2 above, the variation δV of the storage voltage V due to the charging / discharging process of the inertial resistance load in each operation cycle is small and frequently occurs in short-distance and medium-speed operation between stations. At long distances and at high speeds, it fluctuates infrequently with large waves.

【0096】[勾配抵抗負荷] 図9(a)において、
車両が平坦路(s=0)、登坂(+s)、降坂(−
s)、平坦路(s=0)を速度vで走行する運行サイク
ルを実線折線で、平坦路、降坂(−s)、登坂(+
s)、平坦路の運行サイクルを点線折線で示せば、電動
機の軸負荷は、勾配路では走行抵抗負荷Pv 及び勾配抵
抗負荷Ps の和が登坂力行負荷Pd 及び降坂抑速負荷P
b であるが、勾配抵抗負荷Psは、登坂時に正(+)、
降坂時に負(−)の値となり、高度差Hがある2地点間
距離Sの往復運行では、その運行サイクル毎の位置のエ
ネルギとして登・降坂の仕事量Ws の総計値ΣWs はゼ
ロとなる無効動力であり、実効動力として常に正(+)
の値を取る前述の走行抵抗負荷Pv との和が、登坂力行
負荷Pd 及び降坂抑速負荷Pb となるが、その比Pb /
Pd を抑速動力率εs (%)として、また、電気負荷は
それぞれ電動入力Pmd=Pd /ηp 、回生出力Pmb=P
b *ηp のため、その比Pmb/Pmd=εs *ηp^2 が回
収電力率εr (%)であり、各走行速度v及び各勾配s
における値を、それぞれ表3に示せば、従来の気動車両
や回生ブレーキを持たない電動車両は、特に中勾配(s
=15o/oo)以上の中速走行(v=50〜85km/
h)において略々80%〜25%のように、登坂力行の
重負荷に費やしたエネルギの大半を、降坂でエンジンブ
レーキや発電ブレーキにより無益に捨てており、本発明
によるその回収と登坂力行での再利用が、動力装置の定
常負荷効率ηp 次第で、エネルギ効率を大きく改善する
ことが判る。
[Gradient resistance load] In FIG.
If the vehicle is on a flat road (s = 0), uphill (+ s), downhill (-
s), an operation cycle traveling on a flat road (s = 0) at a speed v is indicated by a solid broken line, and a flat road, downhill (-s), uphill (+)
s) If the operation cycle of a flat road is indicated by a broken line, the shaft load of the motor is represented by the sum of the running resistance load Pv and the slope resistance load Ps on the slope road, the uphill power running load Pd and the downhill stabilizing load P
b, the slope resistance load Ps is positive (+) when going uphill,
When going downhill, the value becomes a negative (-) value, and in the reciprocating operation at the point-to-point distance S where there is an altitude difference H, the total value ΣWs of the work amount Ws of the uphill and downhill as the energy at the position in each operation cycle is zero. The reactive power is always positive (+) as the effective power.
The sum of the above-described running resistance load Pv and the above-mentioned running resistance load Pv is the uphill power running load Pd and the downhill speed-controlling load Pb, and the ratio Pb /
Let Pd be the deceleration power factor εs (%), and the electric loads are electric input Pmd = Pd / ηp and regenerative output Pmb = P
b * ηp, the ratio Pmb / Pmd = εs * ηp ^ 2 is the recovered power factor εr (%), and each traveling speed v and each gradient s
Is shown in Table 3, the conventional pneumatic vehicle and the electric vehicle having no regenerative brake are particularly suitable for the medium gradient (s
= 15o / oo) Medium speed running (v = 50-85km /
In h), most of the energy used for the heavy load of the climbing power, such as approximately 80% to 25%, is uselessly discarded by the engine brake or the power generation brake on the downhill, and the recovery and the climbing power according to the present invention are performed. It can be seen that the re-use of the power greatly improves the energy efficiency depending on the steady load efficiency ηp of the power plant.

【0097】[0097]

【表3】 [Table 3]

【0098】[電動機負荷] 上記の表3に、各勾配s
と各走行速度vについて、登坂力行及び降坂抑速での電
動機の軸負荷Pd 及びPb を示し、なお、重負荷の登坂
力行では前述の表1に示す加速度αを採りうる限度負荷
Pdmax及び限度勾配(+smax )、降坂では急制動能力
を考えて限度勾配(−smax )とし、各々走行速度vの
登・降坂の勾配限度を「←、→」及び「△、▽」印を付
けて示し、また、表4に、電動機の電気負荷Pmd=Pd
/ηp 及びPmb=Pb *ηp を示す。
[Electric motor load] In Table 3 above, each gradient s
For each traveling speed v, the axial loads Pd and Pb of the electric motor during uphill power running and downhill deceleration are shown. Note that in heavy uphill power running, the limit load Pdmax and the limit at which the acceleration α shown in Table 1 can be taken. The gradient (+ smax) and the descent are set to the limit gradient (-smax) in consideration of the sudden braking ability, and the gradient limits of the ascent and descent of the traveling speed v are marked with “←, →” and “△, ▽”, respectively. Table 4 shows the electric load Pmd = Pd of the motor.
/ Ηp and Pmb = Pb * ηp.

【0099】[0099]

【表4】 [Table 4]

【0100】[負荷分担・Case−I] 図9(a)
のように、平坦路・勾配路とも同じ速度vで走行し、勾
配負荷Ps =蓄電器充放電Pc で処理し、登坂・降坂と
も略々均等に発電給電する場合をCase−Iとして、
図9(b)に、蓄電電圧Vの変化δV及び電動入力Pmd
及び回生出力Pmbにおける動力装置の損失pd 及びpb
を分離して発電給電Pg と蓄電器充放電Pc の電力勘定
を示せば、平坦路ではPmd=走行抵抗負荷Pv +pd に
給電しPg =Pmd、登坂路ではPmd=Pv +pd +放電
Pc の内のPv +pd を給電しPg =Pmd−Ps 、降坂
路ではPmb=制動負荷Pb −pb であるがPv +pd を
給電しPg =Pmb+Ps (Pmbは負の値)、各々の発電
給電Pg は損失pd 及びpb に不同があるが略々均等、
登・降坂とも蓄電器充放電Pc =Ps であり、表4にそ
れぞれの値を示す。
[Load Sharing / Case-I] FIG. 9 (a)
As shown in Case-I, the vehicle travels at the same speed v on both flat roads and gradient roads, processes with gradient load Ps = capacitor charge / discharge Pc, and generates and supplies power almost uniformly on both ascending and descending slopes.
FIG. 9B shows the change δV of the storage voltage V and the electric input Pmd.
And power plant losses pd and pb at regenerative output Pmb
Can be separated to show the power account of the power generation power supply Pg and the battery charge / discharge Pc. On a flat road, Pmd = power is supplied to the running resistance load Pv + pd, and Pg = Pmd, and on an uphill road, Pmd = Pv + pd + Pv of the discharge Pc. + Pd, and Pg = Pmd-Ps. On downhill roads, Pmb = braking load Pb-pb. However, Pv + pd is supplied and Pg = Pmb + Ps (Pmb is a negative value). Each power generation Pg is reduced to losses pd and pb. There is disparity, but almost equal,
The charge / discharge of the battery Pc = Ps for both uphill and downhill. Table 4 shows the respective values.

【0101】[負荷分担・Case−II] 図10
(a)のように、勾配路では電動機の限度負荷に見合う
速度vs に減速、平坦路では増速して速度vo で走行
し、降坂抑速負荷Pb =蓄電器充放電Pc で処理し、発
電機は、登坂力行時に最大容量Pgmaxの限度内で増力給
電し、降坂抑速時に無給電とする場合をCase−II
として、図10(b)に、蓄電電圧Vの変化δV、電動
・回生における損失pd 、pb 及び発電電力Pg 及び蓄
電器充放電Pc の電力勘定を示せば、平坦路の速度vo
では上記Case−Iと同様、降坂路では、回生出力P
mb=Pb −pb が充電Pc となり給電Pg =0、登坂路
では、Pmd=Pd +pd 、放電Pc は回生充電に同じ、
給電Pg =Pmd−Pc =2*Pv +pd+pb<Pgmaxで
あるが、高速域の登坂力行でPmd−Pc >Pgmaxを避け
るため、降坂抑速でその超過分を調整給電して充電Pc
を増し、前述の表4にその値を示すように、緩勾配・高
速走行では、Case−Iに近くする。
[Load Sharing / Case-II] FIG.
As shown in (a), on a slope road, the vehicle is decelerated to a speed vs. corresponding to the limit load of the motor, and on a flat road, the vehicle speed is increased and the vehicle runs at a speed vo. The power-supply unit increases power supply within the limit of the maximum capacity Pgmax during power running uphill and does not supply power during downhill speed reduction in Case-II.
FIG. 10 (b) shows the change δV of the storage voltage V, the losses pd and pb in electric and regenerative power, and the power account of the generated power Pg and the charge / discharge Pc of the battery.
Then, as in Case-I above, on a downhill road, the regenerative output P
mb = Pb-pb becomes the charging Pc, and the power supply Pg = 0. On an uphill road, Pmd = Pd + pd, and the discharging Pc is the same as the regenerative charging.
Power supply Pg = Pmd-Pc = 2 * Pv + pd + pb <Pgmax, but in order to avoid Pmd-Pc> Pgmax in high-speed uphill powering, the excess is adjusted by downhill speed control to supply power.
As shown in Table 4 above, the value is close to Case-I in gentle slope and high speed running.

【0102】[充放電電力・最大高度差] 前述の表4
に、上記のCase−I、Case−IIの両者につい
て、各勾配s及び各速度vでの蓄電器の充放電の電力P
c を示し、表5に、電圧変動δV=0〜±10%での充
放電電力量Wcm(=112.5MJ)で登・降坂可能な
最大高度差Hmax 並びに各速度vの限度勾配smax につ
いて最大運転距離Smax 及び運転時間tmax を示すが、
その電力量Wcm(蓄電池では24V*21AH*63個
直列)を数分〜十数分で充放電する極めて重債務である
ことを示している。
[Charge / Discharge Power / Maximum Altitude Difference]
In addition, for both Case-I and Case-II, the electric power P for charging and discharging the battery at each gradient s and each speed v
Table 5 shows the maximum altitude difference Hmax that can be climbed and descended with the charge / discharge power amount Wcm (= 112.5 MJ) at the voltage fluctuation δV = 0 to ± 10% and the limit gradient smax of each speed v. The maximum driving distance Smax and the driving time tmax are shown.
This shows that the power amount Wcm (24 V * 21 AH * 63 batteries in series) is extremely heavy debt to charge / discharge in several minutes to several tens of minutes.

【0103】[0103]

【表5】 [Table 5]

【0104】[予備充放電] 図10(b)に鎖線で示
すように、高落差の登坂勾配路の手前では距離Sadj
を、発電機の最大容量Pgmax以内の給電余裕で、力行負
荷Pmdを上回る出力Pg =Pmd+Pgadjで調整給電しな
がら走行して、蓄電電圧をV+δV/2まで予備充電
し、降坂路の手前では距離Sadj を、蓄電器の放電Pca
dj=Pmdだけで走行して、蓄電電圧をV−δV/2まで
予備放電し、勾配路では、蓄電電圧Vの変動範囲を両振
り(+δV/2〜−δV/2)に利用し、勾配路通過後
の距離Sadj でδVがゼロになるよう調整充放電を予備
充放電と同様に行なえば、電圧変動範囲が±δV/2=
±5%で上記と同様な充放電電力量Wcmが得られ、ま
た、それを±10%にして充放電電力量Wcmを倍増すれ
ば、表5に示す高度差Hの2倍の勾配路を運行すること
ができる。
[Preliminary Charge / Discharge] As shown by a chain line in FIG. 10 (b), the distance Sadj is in front of the high-fall uphill gradient road.
With a power supply margin within the maximum capacity Pgmax of the generator, while adjusting and supplying power at an output Pg = Pmd + Pgadj exceeding the powering load Pmd to precharge the storage voltage to V + δV / 2, and the distance Sadj before the downhill road. Is the capacitor discharge Pca
The vehicle travels only at dj = Pmd, and the stored voltage is pre-discharged to V-δV / 2. On the slope road, the fluctuation range of the stored voltage V is used for both swings (+ δV / 2 to -δV / 2), If the adjustment charging and discharging is performed in the same manner as the preliminary charging and discharging so that δV becomes zero at the distance Sadj after passing the road, the voltage fluctuation range becomes ± δV / 2 =
A charge / discharge power amount Wcm similar to the above can be obtained at ± 5%, and if the charge / discharge power amount Wcm is doubled by setting it to ± 10%, a gradient path twice as high as the altitude difference H shown in Table 5 can be obtained. Can be operated.

【0105】なお、前述の表2で計算した、慣性抵抗F
i による蓄電電圧変動δVの高度差換算値δHを、上述
の登・降坂最大標高差Hmax と対照して示し、蓄電器1
0の容量選定の参考とする。
The inertial resistance F calculated in Table 2 above was used.
i, the altitude difference converted value δH of the storage voltage fluctuation δV is shown in comparison with the above-described maximum altitude difference Hmax of uphill / downhill, and
This is used as a reference when selecting a capacity of 0.

【0106】低高度差勾配の起伏を持つ程度の平坦な線
区では、定常走行負荷Pv が軽い曲線路または駅間短距
離の中速走行時に、上記の如く蓄電器の予備充電を行な
い蓄電電圧Vを高め、直線路または緩曲線路で小駅通過
等の高速走行時に放電電力Pc を発電給電Pg に加え、
再び曲線路または駅間短距離の中速走行に戻ってから上
記の如く調整充電を行なえば、表6に記号「>、◇」で
示すように定常走行負荷Pv が発電給電Pg の最大容量
を超える高速での運転も可能であり、運行区間の曲線、
勾配及び駅間距離の路線状況及び通過駅等の運転ダイヤ
により予めプログラムして、エンジン発電機の給電電力
Pg を制御するのがよい。
In a flat line section having a low-altitude gradient, the storage battery is precharged as described above when the steady running load Pv is running on a curved road or a short distance between stations at medium speed. The discharge power Pc is added to the power generation Pg during high-speed driving such as passing a small station on a straight road or a gentle curve,
If the charging is performed as described above after returning to the medium speed running on a curved road or short distance between stations again, as shown by the symbol “>, ◇” in Table 6, the steady running load Pv decreases the maximum capacity of the power generation feed Pg. It is also possible to drive at higher speeds,
It is preferable to control the power supply power Pg of the engine generator in advance by programming the slope and the route conditions of the distance between stations and the operation schedule of the passing station.

【0107】[0107]

【表6】 [Table 6]

【0108】以上は、前述の表1の要目欄に記載の各1
両の動力車と電源車の編成(1M・1G)について前述
の表1〜表5に示したが、増結して長編成にすると、走
行抵抗Fv は、表1の注(*1)の計算式において、第
1・2項の転がり抵抗分は総重量Wd ・Wf に比例する
が、第3項の空気抵抗分は、編成の後続車は先頭車に比
べ、それぞれに対応の定数値0.0078、0.028
の如く小さい(約1/3.6)ため、動力単位毎の走行
抵抗負荷Pv は、上記の表6に示すように長編成程軽
く、その差は高速域で顕著であり、それだけ前述制動・
抑速動力率εb 及び電力回収率εr が大きくなる。
The above description is based on each 1 described in the summary column of Table 1 above.
Tables 1 to 5 above show the formation of both motor vehicles and power supply vehicles (1M and 1G). However, if the length is increased by adding, the running resistance Fv is calculated by the note (* 1) in Table 1. In the equation, the rolling resistance of the first and second terms is proportional to the total weight Wd · Wf, but the air resistance of the third term indicates that the following vehicle in the formation has a corresponding constant value of 0.1 in comparison with the leading vehicle. 0078, 0.028
As shown in Table 6 above, the running resistance load Pv for each power unit is lighter for the longer knitting, and the difference is remarkable in the high speed region.
The suppression power factor εb and the power recovery ratio εr increase.

【0109】[発電装置−別例] 図11のように、2
台の3相交流発電機2を、その回転界磁2Fが位相差ψ
=30度を持つよう軸接手64で連結し、それぞれの電
機子2Aを前述の図1(a)の2組の電機子巻線3a、
3bに代えることができ、また、車内電力をエンジンの
始動用蓄電池及びその充電用発電機で賄う場合は、1台
の発電機2の単一電機子巻線3Aと、1組のY・Δ切り
替え接触器4y、4δ及び整流器5aで簡易型(図示省
略)に構成し、主動力負荷だけの給電としてもよい。
[Generator-Another Example] As shown in FIG.
Of the three three-phase AC generators 2 whose rotational field 2F has a phase difference of ψ
= 30 degrees, and each armature 2A is connected to the two sets of armature windings 3a, shown in FIG.
3b, and when the in-vehicle power is supplied by the storage battery for starting the engine and the generator for charging the same, a single armature winding 3A of one generator 2 and one set of Y · Δ The switching contactors 4y, 4δ, and the rectifier 5a may be configured in a simple type (not shown), and power may be supplied only to the main power load.

【0110】[エンジンブレーキ] 前述の[非常充電
調整]の抵抗器28及び側路接触器29の代わりに、図
12のように、発電機2の整流器5a、5bの直流出力
を接触器65で電動機回路22に(電流センサ60経
由)直結して回生電流を整流方向に受け、電機子3a、
3bの起電力に同期または分配器(図示省略)により整
流器5a、5bをインバータとして作動させ、発電機2
を電動作動させてエンジン1をエンジンブレーキとする
こともできる。
[Engine Brake] As shown in FIG. 12, instead of the resistor 28 and the bypass contactor 29 of the above-mentioned [emergency charge adjustment], the DC output of the rectifiers 5a and 5b of the generator 2 is contacted by the contactor 65. Directly connected to the motor circuit 22 (via the current sensor 60), receives the regenerative current in the rectifying direction,
The rectifiers 5a and 5b are operated as inverters synchronously with the electromotive force of the electromotive force 3b or by a distributor (not shown), and the generator 2
Can be electrically operated to make the engine 1 an engine brake.

【0111】[架線受電・回生送出−別例] 交流電化
線区では図13に示すように、図11の電機子3A及び
整流器5a、5bを受電用変圧器3T及び整流器5T
(単相ブリッジ)に置き換え、変圧器3Tのインピーダ
ンスで異常突入充電を抑制し、勾配路の運行では勾配抵
抗負荷を主に蓄電器10に分担させるよう変圧器3Tの
タップ切り替え(図示省略)と整流器5Tの制御整流で
受電電力を制御し、上記と同様に整流器5Tを架線周波
数に同期のインバータとして働かせ変圧器3Tを経て、
回生電力を交流架線35に送出することができる。
[Overhead Power Receiving / Regenerative Transmission-Another Example] In the AC electrification line section, as shown in FIG. 13, the armature 3A and the rectifiers 5a and 5b in FIG. 11 are replaced with the power receiving transformer 3T and the rectifier 5T.
(Single-phase bridge) to suppress abnormal inrush charging by the impedance of the transformer 3T, and to switch the tap of the transformer 3T (not shown) and the rectifier so that the gradient resistance load is mainly shared by the battery 10 during the operation of the slope road. The received power is controlled by control rectification of 5T, and the rectifier 5T operates as an inverter synchronized with the overhead line frequency through the transformer 3T in the same manner as described above.
The regenerative electric power can be sent to the AC overhead line 35.

【0112】直流電化線区では、図14で点線で図示の
ように、前述の図1(a)の受電用チョッパ30に代わ
りダイオード30Dと接触器30Cを配し、電動装置主
回路の受電点と送出点の間に正極用チョッパ26を移し
て受電充電の抑流および受電電力制御に兼用し、それに
代わってダイオード26Dをリアクトル23との間に挿
入して構成することもでき、定トルク加速中に架線電圧
が急昇した時、接触器30Cを一時的に「切」にし、チ
ョッパ26の還流ダイオード作用の中断を避けるのがよ
く、また、架線電圧変動が小さい軽負荷の線区の車両で
は、図15のように、受電用チョッパ30に代わりダイ
オード30D、接触器30C、電流遮断器30I及び抵
抗器30Rを、送出用接触器38Cに常時閉接点を追加
してダイオード39の代わりに配してもよい。
In the DC electrification line section, as shown by a dotted line in FIG. 14, a diode 30D and a contactor 30C are arranged in place of the above-described power receiving chopper 30 in FIG. The positive electrode chopper 26 can be moved between the power transmission point and the transmission point to serve both for suppressing the received charging and for controlling the received power. Alternatively, a diode 26D can be inserted between the reactor 23 and the constant torque acceleration. When the overhead line voltage suddenly rises, the contactor 30C is temporarily turned off to avoid interruption of the freewheeling diode operation of the chopper 26, and a vehicle in a light-load line section where overhead line voltage fluctuation is small. 15, a diode 30D, a contactor 30C, a current breaker 30I, and a resistor 30R are provided in place of the power receiving chopper 30, and a normally closed contact is added to the sending contactor 38C to provide a diode 3D. It may be arranged in place of.

【0113】[0113]

【実施例2】実施例2として、自動車の動力装置を挙
げ、図16に示せば、上図(a)のように、エンジン
1、発電機2、制御箱4を床下に(大形バスでは、点線
図示のように車両後部に)搭載、整流器5、制御箱4
3、蓄電器10及び燃料槽18も床下空所に搭載し、電
動機41は変速歯車66(急勾配では半速G1、通常は
全速G2)、伝導軸67及び差動歯車68を介して動輪
69を駆動、前輪70は遊輪、各車輪に車輪ブレーキ7
1を配しブレーキペダルで油圧操作、運転席には舵輪7
3、変速レバー74、アクセルペダル75及びパーキン
グブレーキレバー76を配する。
[Embodiment 2] As a second embodiment, a power unit of an automobile is shown. In FIG. 16, as shown in FIG. 16A, the engine 1, the generator 2, and the control box 4 are placed under the floor (for a large bus, Mounted on the rear of the vehicle as shown by the dotted line), rectifier 5, control box 4
3. The battery 10 and the fuel tank 18 are also mounted in the underfloor space, and the electric motor 41 drives the driving wheel 69 via the speed change gear 66 (half speed G1 when steep, normally full speed G2), the transmission shaft 67 and the differential gear 68. Drive, front wheel 70 is idle wheel, wheel brake 7 on each wheel
1 and hydraulic operation with brake pedal, steering wheel 7 in driver's seat
3. The shift lever 74, the accelerator pedal 75, and the parking brake lever 76 are arranged.

【0114】下図(b)において、エンジン1、発電機
2及び整流器5a、5bに係る回路は図1(a)及び図
12に同一につき図示省略、電動用及び並列用接触器2
4及び49Pがそれぞれサイリスタ等のスイッチング素
子24S及び49P(同符号)に、回生用及び直列用接
触器25及び49Sがそれぞれダイオード25D及び4
9S(同符号)に、界磁用整流器50がチョッパ50
(同符号)に代えた他は、前述の図1(a)及び図6と
同様であり、トロリーバスのように正(+)、負(−)
2条の架線35P、35Nから集電器34P、34Nを
介して受電の場合は、点線図示のように、回生送出用接
触器38Cとダイオード38Dの代わりにスイッチング
素子38を、負極集電器34Nにスイッチング素子38
Nとダイオード77を配する他は、前述の図1(a)の
点線図示と同様である。
In the lower drawing (b), the circuits relating to the engine 1, the generator 2 and the rectifiers 5a and 5b are the same as those shown in FIGS.
4 and 49P are connected to switching elements 24S and 49P (same symbols) such as thyristors, respectively, and contactors 25 and 49S for regeneration and series are connected to diodes 25D and 4D, respectively.
9S (same sign), the field rectifier 50
1 (a) and 6 described above, except that (same sign) is used. Positive (+) and negative (-) like a trolley bus.
In the case of receiving power from the two overhead lines 35P and 35N via the current collectors 34P and 34N, as shown by a dotted line, the switching element 38 is switched to the negative electrode current collector 34N instead of the regenerative transmission contactor 38C and the diode 38D. Element 38
Except for arranging N and the diode 77, it is the same as the dotted line illustration in FIG.

【0115】大形車両で軸負荷が大きい場合は、図17
のように電動機41を2台使用し、図(a)、(b)の
ように、差動歯車68の前後(動輪1軸)または各差動
歯車(後輪2軸)に配し、あるいは、図(c)のよう
に、左右の車輪を各々独立の減速歯車78を介して駆動
し、左右の電動機に、Y直列(低速)で等電流・異速の
差動機能を、Y並列(中速)及びΔ並列(高速)では舵
角に応じた励磁差制御で当電圧・異速の差動機能を与え
る。
In the case of a large vehicle having a large axial load, FIG.
(A) and (b) are arranged before and after the differential gear 68 (one driving wheel shaft) or at each differential gear (two rear wheel shafts) as shown in FIGS. As shown in FIG. 3 (c), the left and right wheels are driven via independent reduction gears 78, and the left and right electric motors are provided with a Y-series (low-speed) equal-current / different-speed differential function in a Y-parallel ( In medium speed) and Δ parallel (high speed), a differential function of the same voltage and different speed is provided by excitation difference control according to the steering angle.

【0116】変速レバーの「D」、「2」及び「L」の
各ノッチが電動機回路のΔ並列(3速)、Y並列(2
速)及びY直列(1速)に対応し、いずれかのノッチで
微速発進、アクセルペダル75を踏めば加速し操作ノッ
チの変速段まで自動進段し力行、足を離せば定速制御の
回生抑速、ブレーキペダルを踏めば自動戻段を伴う回生
制動、その下限速度で車輪ブレーキ71で停止、強く踏
めば直ちに車輪ブレーキで急停止、「R」ノッチで逆転
用接触器51Rを介し界磁極生反転し後進の他は、実施
例1のものと同様であり、高落差急勾配路での非常充電
調整は、前述の図12に示すエンジンブレーキが望まし
く、トロリーバスの場合は、集電器34P、34Nが架
線35P、35Nから外れたとき、チョッパ30及びダ
イオード77の逆流阻止は勿論、スイッチング素子38
P、38Nの遮断作動で、地絡や車体の帯電防止の他
は、実施例1の[架線受電]及び[回生送出]と同様で
ある。
The notches "D", "2", and "L" of the shift lever correspond to the Δ parallel (3rd speed) and Y parallel (2
Speed) and Y series (1st speed), starting at a very low speed with one of the notches, accelerating by depressing the accelerator pedal 75, automatically proceeding to the gear position of the operating notch, powering, and releasing the foot to regenerate constant speed control Suppression, regenerative braking with automatic return when the brake pedal is depressed, stop at the wheel brake 71 at its lower limit speed, suddenly stop with the wheel brake immediately if depressed strongly, field pole via reverse contactor 51R at "R" notch Except for the reversal and reverse, the operation is the same as that of the first embodiment. For the emergency charging adjustment on the steep high-drop road, the above-described engine brake shown in FIG. 12 is preferable. , 34N deviate from the overhead lines 35P, 35N, not only the blocking of the chopper 30 and the diode 77 but also the switching element 38.
The operation is the same as that of [Electric power line receiving] and [Regenerative transmission] in the first embodiment, except that the P, 38N shutoff operation prevents ground faults and vehicle body electrification.

【0117】運転サイクルにおける慣性抵抗Fi や運行
サイクルにおける勾配抵抗Fs の充放電処理は、前述の
図8、図9及び図10と同様に働き、実施例1の鉄道車
両に比べ走行抵抗と車両重量との比Fv /Wが大きい
が、駅間距離Sが鉄道の数分の一で且つ道路交通状況に
より途中の加速・減速や停止・再発進も加わって慣性抵
抗負荷は高頻度であり、勾配sも一桁大きい(%表示)
ので、制動動力率εb や抑速動力率εs が鉄道車両と同
様に大きく、動力装置の過負荷・定常負荷の効率ηp 次
第で高い電力回収率εr が得られ、本発明の効果として
エネルギ効率の著しい改善が自動車にも充分及ぶと考え
る。
The charging / discharging processing of the inertial resistance Fi in the operation cycle and the gradient resistance Fs in the operation cycle works in the same manner as in FIGS. 8, 9 and 10 described above. Fv / W is large, but the inter-station distance S is a fraction of that of a railway, and acceleration / deceleration, stop / restart on the way is added depending on the road traffic conditions, and the inertial resistance load is high. s is also one digit larger (% display)
Therefore, the braking power factor εb and the deceleration power factor εs are as large as railway vehicles, and a high power recovery rate εr can be obtained depending on the efficiency ηp of overload and steady load of the power plant. We believe that significant improvements will be fully made in cars.

【0118】[0118]

【発明の効果】本発明の動力装置では、鉄道車両や自動
車において、突入負荷の慣性抵抗Fiと重負荷の勾配抵
抗Fs を無効負荷Pn と考え主に蓄電器の充放電で処理
し、軽負荷の走行抵抗Fv (曲線抵抗Fr を含む)を実
効負荷Pe と考え主にエンジン発電機または架線電力で
賄うよう負荷分担し、従来の車両が無益に捨てている車
両の運動・位置のエネルギの殆どを、回生ブレーキで蓄
電器に回収し次サイクルでの再利用により、燃料や電力
の消費量が半減し、発電または給電・受電設備が著しく
軽負荷になることは前述したが、その効果は下記にも波
及している。
According to the power plant of the present invention, the inertial resistance Fi of the inrush load and the gradient resistance Fs of the heavy load are regarded as the reactive load Pn in a railway vehicle or an automobile, and are processed mainly by charging / discharging of the battery. The running resistance Fv (including the curve resistance Fr) is regarded as the effective load Pe, and the load is shared so that it is mainly covered by the engine generator or overhead power. As mentioned above, the use of regenerative braking to recover the battery and reusing it in the next cycle halves the consumption of fuel and electric power, and significantly reduces the load on the power generation or power supply / reception equipment. Is spreading.

【0119】上記の蓄電器は、主に数分〜十数分で走破
の勾配落差(百数十m)に見合う容量で充分のため、蓄
電池車の如き数時間分の大容量を必要とせず、小形軽量
で済むので車両重量増加は少なく、また、蓄電原理は静
止・静電的で単純、電力損失が極めて小さく(交流電力
蓄電器の約0.3%から見て1%位は可能と推定)、電
力回収率εr 向上に極めて有効で、重債務・高頻度の充
放電を繰り返しても寿命は半永久的であり、蓄電池の如
き劣化や旧品処理の問題はないので、資源・環境保全上
も誠に好都合である。
[0119] The above-mentioned storage device has a capacity sufficient for several minutes to several tens of minutes to match the slope drop (one hundred and several tens of meters) of the running, and therefore does not require a large capacity for several hours such as a storage battery vehicle. Small and lightweight, the vehicle weight increase is small, and the principle of power storage is static and electrostatic, simple, and the power loss is extremely small (approximately 1% is possible, considering about 0.3% of AC power storage). It is extremely effective in improving the power recovery rate εr, has a semi-permanent life even if it is repeatedly charged and discharged with heavy debt, and does not have the problem of deterioration of storage batteries and disposal of old products. It is very convenient.

【0120】動力車は非電化・電化(交流・直流)を問
わず全線区に共通であり、電動装置は標準化が可能、そ
れにエンジン発電機や架線受電装置を搭載あるいは搭載
の非動力車との編成でいずれの線区にも運行可能であ
り、非電化線区でも(自動車も同様に)、電化線区と同
様な車両の走行性能(特に加速度、制御性、低騒音)を
発揮して運行効率を向上し、また、燃料給油毎の運行距
離を倍増でき、なお、蓄電池車の如き運行距離の制約は
軽く、長時間の停車を伴う充電が不要である。
Powered vehicles are common to all railway lines regardless of electrification or electrification (AC / DC), and electric equipment can be standardized. In addition, it is possible to use an engine generator or an overhead power line receiving device or a non-powered vehicle equipped with it. It is possible to operate in any line section by knitting, and in non-electrified line section (as well as in cars), it operates with the same running performance (especially acceleration, controllability, low noise) of vehicles as in electrified line section Efficiency can be improved, and the operating distance for each fuel supply can be doubled. In addition, the operating distance is less limited as in the case of a battery-powered vehicle, and it is not necessary to charge the battery with a long stop.

【0121】駅間短距離や急勾配では、電動機の突入・
重負荷とは逆に、エンジン発電機や架線の負荷が軽くな
るので、発電機、変圧器、整流器等の設備容量を低減で
き、特に、中速走行が主になる駅間短距離の市街線区
や、急曲線・急勾配が多い地方線区では半容量で済み、
また、緩曲線・緩勾配や直線・平坦の区間は、その手前
の予備充電を利用して、発電・受電の設備容量を超える
走行抵抗の高速走行も可能である。
In short distances between stations and on steep slopes, the motor
Contrary to heavy loads, the load on engine generators and overhead lines is reduced, so the installed capacity of generators, transformers, rectifiers, etc. can be reduced. Districts and district lines with many sharp curves and steep slopes need only half capacity.
In addition, in a section with a gentle curve / slope or a straight line / flat section, high-speed running with a running resistance exceeding the installed capacity for power generation and power reception is possible by using the pre-charging before the section.

【0122】電化線区では、架線負荷の著しい軽減及び
平準化と単一方向の電力流で、架線の電圧降下とその電
力損失が激減(直流線区の+20%、−40%や交流線
区の±20%が数%に)するので、給電線の銅量や変電
所の設備容量を半減あるいは運転容量を倍増でき、回生
ブレーキでは架線は無負荷で電力損失ゼロ、その好影響
は関連の電力系統にも及ぶ。
In the electrification line section, the voltage drop and the power loss of the overhead line are drastically reduced due to the remarkable reduction and leveling of the overhead line load and the unidirectional power flow (+ 20% and -40% of the DC line section and the AC line section). ± 20% to several%), so that the amount of copper in the power supply line and the installed capacity of the substation can be reduced by half or the operating capacity can be doubled. In the case of regenerative braking, the overhead wire has no load and no power loss. It extends to power systems.

【0123】蓄電線区が必要な数百mに及ぶ如き特別高
落差の急勾配区間は日本全国でもその箇所は少なく、上
述の車両内蓄電器の容量を幾分増大すれば、殆どの線区
の急勾配路でも回生電力を車両内処理して運行でき、回
生電力送出回路や変電所の逆変換設備が不要となり変電
所・架線・受電とも回路は簡潔になる。
There are few steep sections with extraordinary high heads, such as the required storage line section of several hundred meters, all over Japan. If the capacity of the above-mentioned in-vehicle battery is somewhat increased, most of the section of the line section is required. Even on steep roads, regenerative power can be processed inside the vehicle for operation, eliminating the need for regenerative power transmission circuits and reverse conversion equipment for substations, and simplifying circuits for substations, overhead lines, and power reception.

【0124】エンジン発電機は、走行負荷に見合う出力
の回転数で、停車中はアイドリングに近い低速回転数で
車内負荷に給電するので、負荷の大小の全域に亘り熱効
率が良く、また、負荷が平準化されるので、排熱利用の
コ・ゼネレーションシステムの作動が安定し、車内消費
エネルギの大部分を占める冷・暖房を賄い、エンジン自
体の総合的熱効率を更に向上できる。
The engine generator supplies power to the in-vehicle load at a rotational speed of an output corresponding to the running load, and at a low rotational speed near idling when the vehicle is stopped, so that the thermal efficiency is good over the entire range of the load and the load is low. Since the leveling is performed, the operation of the co-generation system using the exhaust heat is stabilized, and the cooling and heating which occupies most of the energy consumed in the vehicle can be covered, and the overall thermal efficiency of the engine itself can be further improved.

【0125】鉄道車両や大形バス等は、1車あたり軸出
力200KW前後に及ぶ設備容量に対し、相応の容量の
発電プラントとして排熱利用は肝要であり、特に冷房用
として、吸収式等の冷却機を含む車載型の熱交換器の出
現を期待する。
For railway vehicles and large buses, etc., it is essential to use exhaust heat as a power generation plant of a corresponding capacity, while the installed capacity reaches about 200 kW of shaft output per vehicle. We expect the on-board heat exchanger including the cooler.

【0126】なお、高速ディーゼルエンジンで発電機の
定格を超える回転数で駆動し、定格を超える発電電圧を
制御整流すれば、銅損増加なく定格を超える電力出力が
得られるので、エンジン発電機は著しく小形・軽量にで
き、例えば、前述の表1に示すY接続定格120KW、
1500rpmの無整流子電動機の過電圧・過速度耐量
が大きな電機部分を利用し、Δ接続、3600rpmで
単機定常出力300KWが得られ、前述の表4の「発電
給電」に示すように、電動機4台の動力車を100km
/hまで運転可能となる。
If a high-speed diesel engine is driven at a rotation speed exceeding the rating of the generator and the generated voltage exceeding the rating is controlled and rectified, a power output exceeding the rating can be obtained without an increase in copper loss. It can be extremely compact and lightweight, for example, the Y connection rating of 120 KW shown in Table 1 above,
Utilizing an electric machine part having a large overvoltage and overspeed withstand capability of a 1500 commutatorless commutator motor, Δ connection, a single-unit steady output of 300 KW at 3600 rpm, and four motors as shown in “Power generation and power supply” in Table 4 described above. 100km of powered vehicle
/ H.

【0127】直流無整流子電動機は、他励界磁で制御性
良く、トルク特性は整流子電動機と同様に強力、特に高
速域で突入負荷にも低損失で回生効率を高め、過電圧や
過負荷耐量が大きく車両用として最適であり、鉄道車
両、自動車とも、制御装置を含み略々共通の電機設計で
標準シリーズ化し量産効果を期待する。
The DC non-commutator motor has good controllability by separately exciting field, and has strong torque characteristics similar to the commutator motor, especially in the high-speed region, with low loss to inrush load, high regenerative efficiency, overvoltage and overload. It has high durability and is ideal for vehicles, and it is expected that mass production effects will be achieved in railway cars and automobiles, which will be standard series with almost common electric design including control devices.

【0128】従来の整流子電動機を持つ電動車両を流用
し、本発明の如く制御装置を改造して動力車42とし、
電源車40を組み合わせて非電化線区を、受電装置の改
造を加えて電化線区を運行すれば、著しい省エネと旧車
両の活性化が期待できる。
A motorized vehicle having a conventional commutator motor is diverted, and the control device is modified as in the present invention to form a motor vehicle 42.
If the non-electrified line section is operated in combination with the power supply vehicle 40 and the electric line section is operated by modifying the power receiving device, remarkable energy saving and activation of the old vehicle can be expected.

【0129】蓄電器は、最近の電気自動車の開発に伴
い、低圧(15〜120V)では静電容量100〜33
0F級ものが出現し、既に単独または蓄電池との併用で
試用段階にあり、本発明の実施例では、前述の表1に示
す如き500F(750〜1500V)の如き大容量・
高耐圧のものも、その分野の技術開発・進歩次第で充分
可能と考える。
With the recent development of electric vehicles, capacitors having a capacitance of 100 to 33 at low voltage (15 to 120 V) have been developed.
In the embodiment of the present invention, a large capacity such as 500F (750-1500V) as shown in Table 1 above has been used, alone or in combination with a storage battery.
It is considered that a high voltage type is possible depending on the technological development and progress in the field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の動力装置の全体を示し、(a)は主
回路図、(b)は機器配置図である。
FIG. 1 shows the entire power unit according to a first embodiment, in which (a) is a main circuit diagram and (b) is a device layout diagram.

【図2】蓄電器の充放電特性を蓄電池と比較して示す線
図で、(a)は蓄電器、(b)は蓄電池のものを示す。
FIGS. 2A and 2B are diagrams showing charge / discharge characteristics of a battery in comparison with a battery; FIG. 2A shows a battery; FIG. 2B shows a battery;

【図3】実施例1のエンジン発電機の、回転数全域に亘
る出力、トルク、燃料消費率や各種の作動特性を示す線
図である。
FIG. 3 is a diagram showing the output, torque, fuel consumption rate, and various operating characteristics of the engine generator according to the first embodiment over the entire rotation speed range.

【図4】直流無整流子電動機を使用した実施例1の、電
動装置の主回路を示す回路図。
FIG. 4 is a circuit diagram showing a main circuit of the electric device according to the first embodiment using the DC non-commutator motor.

【図5】直流無整流子電動機を使用した実施例1の、動
力装置の制御機構を示す系統図。
FIG. 5 is a system diagram showing a control mechanism of the power unit according to the first embodiment using the DC non-commutator motor.

【図6】実施例1で、2組の電機子巻線を持つ直流無整
流子電動機を使用した場合の、電動装置の主回路を示す
回路図。
FIG. 6 is a circuit diagram showing a main circuit of the electric device when a DC non-commutator motor having two sets of armature windings is used in the first embodiment.

【図7】実施例1で、直流直巻電動機を使用した場合
の、電動機主回路を示す回路図。
FIG. 7 is a circuit diagram showing a motor main circuit when a DC series motor is used in the first embodiment.

【図8】車両の駅間の運転サイクルにおける慣性抵抗に
関する諸量の状態を示す線図で、(a)は物理的諸量
を、(b)は電気的諸量を示す。
FIGS. 8A and 8B are diagrams showing states of various quantities related to inertial resistance in a driving cycle between stations of a vehicle, wherein FIG. 8A shows physical quantities and FIG. 8B shows electrical quantities.

【図9】平坦路と勾配路を等速走行する場合(Case
−I)の、勾配抵抗に関する諸量の状態を示す線図で、
(a)は物理的諸量を、(b)は電気的諸量を示す。
FIG. 9 shows a case in which the vehicle travels at a constant speed on a flat road and a gradient road (Case).
-I) is a diagram showing the state of various quantities related to the gradient resistance,
(A) shows physical quantities and (b) shows electrical quantities.

【図10】勾配路では平坦路より減速して走行する場合
(Case−II)の、勾配抵抗に関する諸量の状態を
示す線図で、(a)は物理的諸量を、(b)は電気的諸
量を示す。
FIGS. 10A and 10B are diagrams showing the state of various quantities relating to the slope resistance when traveling at a reduced speed from a flat road (Case-II), where FIG. 10A shows physical quantities and FIG. Shows various electrical quantities.

【図11】図1の2組の電機子巻線の代わりに、エンジ
ン発電機2台を連結して使用する場合の、電機子及び回
転界磁の位相を示す図。
FIG. 11 is a diagram showing phases of an armature and a rotating field when two engine generators are connected and used instead of the two sets of armature windings of FIG. 1;

【図12】図1のエンジン発電機にエンジンブレーキ機
能を付加した場合の回路図。
FIG. 12 is a circuit diagram when an engine brake function is added to the engine generator of FIG. 1;

【図13】実施例1の車両の動力装置に、交流架線電力
受電装置を配した場合の回路図。
FIG. 13 is a circuit diagram in a case where an AC overhead power receiving device is provided in the power device of the vehicle according to the first embodiment.

【図14】図1の架線受電関係回路の別案を示す回路
図。
FIG. 14 is a circuit diagram showing another alternative of the overhead line power receiving related circuit of FIG. 1;

【図15】図1の架線受電関係回路の別案を示す回路
図。
FIG. 15 is a circuit diagram showing another alternative of the overhead line power receiving related circuit of FIG. 1;

【図16】実施例2の動力装置の全体を示し、(a)は
機器配置図、(b)は主回路図である。
FIGS. 16A and 16B show the entire power unit according to the second embodiment, in which FIG. 16A is a device layout diagram and FIG. 16B is a main circuit diagram.

【図17】実施例2の動力装置に2台の電動機を配した
場合の動輪軸系統図で、(a)、(b)、(c)の3様
について示す。
FIG. 17 is a system diagram of a driving wheel shaft when two electric motors are arranged in the power unit according to the second embodiment, and shows three cases (a), (b) and (c).

【符号の説明】[Explanation of symbols]

1 エンジン、 2 発電機 3F 界磁 3a、3b、3A 電機子巻線 3T 受電変圧器 4 制御箱 4y、4δ 接触器(Y、Δ) 5 整流器箱 5a、5b、5T 整流器 6a、6b 6T リアクトル 7S、7P 接触器(直列、並列) 8、12、13、33 回路遮断器 9P、9N 主電源線(正極、負極) 10、蓄電器 11 断路器 14、インバータ 15 変圧器 16 整流器 17 蓄電池 18 燃料槽 19 熱交換器 20、21、26D、30D、38D、39 ダイオー
ド 22 電動機回路 23 リアクトル 24、25、29 接触器(電動、回生、発電ブレー
キ) 24S スイッチング素子(電動) 25D ダイオード(回生) 26、27、30 チョッパ 28 抵抗器 31 コンデンサ(ろ波用) 32 リアクトル(ろ波用) 34、34P、34N 集電器 35、35P、35N 架線 36 車軸接地器 37 軌道 38、38N スイッチング素子(回生送出) 30C、38C 接触器(受電、回生送出) 41 電動機 41A、41a、41b 電機子巻線 41F 界磁 40 電源車 42 動力車 43 制御箱 44 補機 45 受電箱 46、46a、46b インバータ 47 分配器 48、48a、48b Y・Δ切り替え回路 49 直・並列切り替え回路 49S 接触器、ダイオード(直列) 49P 接触器、スイッチング素子(並列) 50 整流器 52 還流ダイオード 51 正・逆転切り替え回路 51F、51R 接触器(正転、逆転) 53 主幹制御器 54 主制御装置 55 速度センサ 56 表示盤 57、58、59、60、61電流センサ 62S、62P、63S、63P 接触器 64 軸接手 65 接触器(エンジンブレーキ、回生送出) 66 変速歯車 67 伝導軸 68 差動歯車 69 動輪 70 遊輪 71 車輪ブレーキ 72 ブレーキペダル 73 舵取ハンドル 74 変速レバー 75 アクセルペダル 76 パーキングブレーキレバー 77 ダイオード 図3の符号 N 回転数 T トルク P 出力 Fe 燃料消費率 Po 発電機容量 Pe エンジン出力 Pg 発電機出力 Nio、Nyo、Nδo 回転数 Nymin、Nδmin 最低回転数 Nimax、Nymax、Nmax 最高回転数 Φi 、Φy 、Φδ 磁束 Φo 定格磁束 Φimax、Φymax、Φδmax 過励磁磁束 Ei 、Ey 、Eδ 起電力 Eio、Eyo、Eδo 定格起電力 Eimax、Eymax、Eδmax 最高起電力 Vo 定格電圧 δV 電圧変動 V 蓄電電圧 Pio、Pyo、Pδo 発電機基本定格容量 Pmax 発電機最大容量 Pemin エンジン最低出力 Pgmin 発電機最低出力 Pemax エンジン最大出力 Pgmax 発電機最大出力 Tmax 最大トルク Tpm 最大出力トルク 図2、図8、図9及び図10の符号 Vo 、V、δV 図3に同じ I 充放電電流 r 内部抵抗 ec 、ed 分極作用起電力 Wc 充放電電力量 ηc 充放電効率 v、vL 、vH 、vo 、vs 走行速度 vca 定加速度上限速度 vb 回生下限速度 α 加速度 β 減速度 s 勾配 H 高度差(勾配落差) ta 加速時間 tv 定常走行時間 tb 制動時間 t 走行時間、 充放電時間 tst 停車時間 tat、tbt 定トルク加速・減速時間 tap、tbp 定出力加速・減速時間 Sa 加速距離 Sv 定常走行距離 Sb 制動距離 Fv 走行抵抗 Fi 、Fia、Fib 慣性抵抗 Fs 勾配抵抗 Fda 加速牽引力 Fdv 定常牽引力 Fb 制動力、抑速抵抗 Fd 力行抵抗、 Wea、Wev、Web 実効仕事量(加速時、定常走行時、
制動時) Wi 、Wia、Wib 慣性仕事量 We 実効仕事量 慣性仕事量 Wd 消費仕事量 Wda、Wdv、Wb 仕事量(加速時、定常走行時、制動
時) Wmd 電動入力電力量 Wmb 回生出力電力量、 Wc 充放電電力量 Wca 放電電力量 Wcb 充電電力量 Wwb 車輪ブレーキ損失 Wg 発電電力量 Pg 発電電力 Pc 充放電電力 Pi 車内消費電力 Pd 力行負荷 Pb 抑速負荷 Pv 定常走行負荷 Ps 勾配抵抗負荷 Pmd 力行電力 Pmb 回生電力 pd 電動損失 pb 回生損失 Pmda 加速電動電力 Pca 加速放電電力 Pcb 制動充電電力 Pmdv 定常走行電動電力 Pcv 定常走行充電電力 Pt 架線受電電力 Pgadj 調整給電電力 Pcadj 予備・調整充放電電力 Sadj 予備・調整充放電距離
Reference Signs List 1 engine, 2 generator 3F field 3a, 3b, 3A armature winding 3T power receiving transformer 4 control box 4y, 4δ contactor (Y, Δ) 5 rectifier box 5a, 5b, 5T rectifier 6a, 6b 6T reactor 7S , 7P contactor (series, parallel) 8, 12, 13, 33 circuit breaker 9P, 9N main power line (positive electrode, negative electrode) 10, capacitor 11 disconnector 14, inverter 15 transformer 16 rectifier 17 storage battery 18 fuel tank 19 Heat exchanger 20, 21, 26D, 30D, 38D, 39 Diode 22 Motor circuit 23 Reactor 24, 25, 29 Contactor (Electric, regenerative, power generation brake) 24S Switching element (electric) 25D Diode (regeneration) 26, 27, Reference Signs List 30 Chopper 28 Resistor 31 Capacitor (for filtering) 32 Reactor (for filtering) 34, 34P, 34N Device 35, 35P, 35N Overhead wire 36 Axle grounding device 37 Track 38, 38N Switching element (regenerative transmission) 30C, 38C Contactor (power reception, regeneration transmission) 41 Motor 41A, 41a, 41b Armature winding 41F Field 40 Power supply vehicle 42 Power car 43 Control box 44 Auxiliary equipment 45 Power receiving box 46, 46a, 46b Inverter 47 Distributor 48, 48a, 48b Y / Δ switching circuit 49 Direct / parallel switching circuit 49S Contactor, diode (series) 49P Contactor, switching Element (parallel) 50 Rectifier 52 Reflux diode 51 Forward / reverse switching circuit 51F, 51R Contactor (forward / reverse) 53 Master controller 54 Main controller 55 Speed sensor 56 Display panel 57, 58, 59, 60, 61 Current Sensor 62S, 62P, 63S, 63P Contactor 64 Shaft joint 65 Tactile device (engine brake, regenerative transmission) 66 transmission gear 67 transmission shaft 68 differential gear 69 driving wheel 70 idle wheel 71 wheel brake 72 brake pedal 73 steering handle 74 transmission lever 75 accelerator pedal 76 parking brake lever 77 diode N in FIG. Rotation speed T Torque P output Fe Fuel consumption rate Po Generator capacity Pe Engine output Pg Generator output Nio, Nyo, Nδo Rotation speed Nymin, Nδmin Minimum rotation speed Nimax, Nymax, Nmax Maximum rotation speed Φi, Φy, Φδ Magnetic flux Φo Rating Magnetic flux Φimax, Φymax, Φδmax Overexcitation magnetic flux Ei, Ey, Eδ Electromotive force Eio, Eyo, Eδo Rated electromotive force Eimax, Eymax, Eδmax Maximum electromotive force Vo Rated voltage δV Voltage fluctuation V Storage voltage Pio, Pyo, Pδo Generator basic rating Capacity Pmax Generator maximum capacity Pemin Engine minimum output Pgmin Generator minimum output Pemax Engine maximum output Pgmax Generator maximum output Tmax Maximum torque Tpm Maximum output torque Symbols Vo, V, δV in FIGS. 2, 8, 9 and 10 I Charge / discharge current r Internal resistance ec, ed Polarization action Power Wc Charge / discharge power amount ηc Charge / discharge efficiency v, vL, vH, vo, vs Running speed vca Constant acceleration upper limit speed vb Regeneration lower limit speed α Acceleration β Deceleration s Gradient H Altitude difference (gradient drop) ta Acceleration time tv Steady running Time tb Braking time t Running time, charging / discharging time tst Stop time tat, tbt Constant torque acceleration / deceleration time tap, tbp Constant output acceleration / deceleration time Sa Acceleration distance Sv Steady traveling distance Sb Braking distance Fv Running resistance Fi, Fia, Fib Inertia resistance Fs Gradient resistance Fda Acceleration tractive force Fdv Steady tractive force Fb Braking force, Stalling resistance Fd Power running resistance, Wea, Wev, Web Effective work (during acceleration, steady running,
Wiring, Wia, Wib Inertial work Wee Effective work Inertial work Wd Consumed work Wda, Wdv, Wb Work (acceleration, steady running, braking) Wmd Electric input power Wmb Regenerative output power , Wc charge / discharge power amount Wca discharge power amount Wcb charge power amount Wwb wheel brake loss Wg generated power amount Pg generated power Pc charged / discharged power Pi In-vehicle power consumption Pd Power running load Pb Slowing load Pv Steady running load Ps Slope resistance load Pmd Power running Power Pmb Regenerative power pd Motor loss pb Regenerative loss Pmda Acceleration motor power Pca Acceleration discharge power Pcb Braking charging power Pmdv Steady running electric power Pcv Steady running charging power Pt Overhead wire receiving power Pgadj Adjusting feeding power Pcadj Spare / adjusting charging / discharging power Sadj Adjustment charge / discharge distance

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 車両内に、蓄電器と、エンジン発電機及
び整流器、交流受電変圧器及び整流器または直流受電用
チョッパを配し、車両の慣性抵抗負荷及び勾配抵抗負荷
を主に蓄電器の充放電で、走行抵抗負荷と車両内設備の
消費電力を主にエンジン発電機または架線電力で分担す
るよう構成した、車両の主電源装置。
A vehicle includes a battery, an engine generator and a rectifier, an AC power receiving transformer and a rectifier, or a DC power receiving chopper. The inertial resistance load and the gradient resistance load of the vehicle are mainly charged and discharged by the battery. A main power supply device for a vehicle configured to mainly share a running resistance load and power consumption of facilities in the vehicle with an engine generator or overhead power.
【請求項2】 エンジン発電機の3相交流電機子巻線の
Y・Δ切り替え回路を配し、エンジン回転数の中速域で
Y接続、高速域でΔ接続し、その両者で整流器を介して
同一の直流定格電圧で給電するよう構成し、あるいは、
それらを2組配して直・並列切り替え回路を付加し、エ
ンジンのアイドリングを含む低速域でも同一の直流定格
電圧の給電を可能とした、発電装置。
2. A Y-.DELTA. Switching circuit for a three-phase AC armature winding of an engine generator, wherein a Y connection is made in a medium speed range of the engine speed and a .DELTA. To supply power at the same DC rated voltage, or
A power generator that has two sets of them and adds a series / parallel switching circuit to enable power supply at the same DC rated voltage even in a low-speed range including engine idling.
【請求項3】 交流発電機を、全励磁のままで定格を超
える回転数で駆動し、制御整流で定格電圧に変成して、
銅損増加なく定格を超える電力出力を得るよう構成し
た、発電装置。
3. The alternator is driven at a rotational speed exceeding the rating while maintaining full excitation, and is transformed into a rated voltage by controlled rectification.
A power generator configured to obtain a power output that exceeds the rating without increasing copper loss.
【請求項4】 交流発電機の30度の位相差を持つ2組
の3相電機子巻線または30度の位相差で連結した2台
の発電機の3相電機子巻線に、それぞれ3相ブリッジ整
流回路を配し、直流側で直列または並列に接続して、1
2相交流の整流出力を得るよう構成した、直流電源装
置。
4. Three sets of three-phase armature windings of an AC generator having a phase difference of 30 degrees or three sets of three-phase armature windings of two generators connected by a phase difference of 30 degrees, respectively. Phase bridge rectifier circuit, connected in series or parallel on the DC side,
A DC power supply configured to obtain a two-phase AC rectified output.
【請求項5】 電動機回路(22)の一方に2個の接触
器(24)、(25)またはスイッチング素子(24
S)及びダイオード(25D)を、他方にリアクトル
(23)を介して2個のチョッパ(26)、(27)ま
たは各1個のダイオード(26D)及びチョッパ(2
7)を配してブリッジ回路を形成し、主電源の正極(9
P)と負極(9N)にそれぞれ接続し、電動機回路(2
2)の電流方向が電動、回生とも同一になるよう構成し
た、電動装置の運転主回路。
5. One of the motor circuits (22) has two contactors (24), (25) or switching elements (24).
S) and a diode (25D) to the other via a reactor (23) with two choppers (26), (27) or one diode (26D) and one chopper (2
7) to form a bridge circuit, and the positive electrode (9
P) and the negative electrode (9N), respectively, and the motor circuit (2
The main circuit of the electric device, wherein the current direction of 2) is the same for both electric and regenerative purposes.
【請求項6】 チョッパ(30)等の逆流阻止機能を持
つ制御素子または制御機器を受電回路に配し、蓄電器
(10)の異常突入充電電流を抑制及び・または蓄電電
圧に合わせ電力制御して受電し、回生・蓄電電力の逆流
出を阻止するよう構成した、車両の架線電力受電装置。
6. A control element or a control device having a backflow preventing function such as a chopper (30) is arranged in a power receiving circuit, and an abnormal inrush charging current of the battery (10) is suppressed and / or power is controlled in accordance with the battery voltage. An overhead wire power receiving device for a vehicle, configured to receive power and prevent reverse outflow of regenerative / storage power.
【請求項7】 ダイオード(26D)、(30D)を請
求項5のチョッパ(26)とリアクトル(23)及び受
電回路との間にそれぞれ配し、該チョッパを蓄電器(1
0)の異常突入充電電流の抑制及び受電電力制御に兼用
し、ダイオード(30D)で回生・蓄電電力の逆流出を
阻止するよう構成した、車両の架線電力受電装置。
7. Diodes (26D) and (30D) are arranged between the chopper (26) of claim 5 and the reactor (23) and the power receiving circuit, respectively.
An overhead wire power receiving device for a vehicle, which is also used for suppressing the abnormal inrush charging current of 0) and controlling the received power, and configured to prevent the reverse outflow of regenerative and stored power by a diode (30D).
【請求項8】 請求項4の運転主回路の接触器(24)
とチョッパ(26)との間に挿入したダイオード(3
9)の入力側と受電回路との間に、ダイオード(38
D)及び接触器(38C)またはスイッチング素子(3
8)を配し、回生電力を架線に送出し且つ蓄電器(1
0)の蓄電電力が架線に逆流出しないよう構成した、車
両の回生電力送出装置
8. The contactor (24) of the main circuit according to claim 4, wherein:
Diode (3) inserted between the chopper (26)
A diode (38) is connected between the input side of 9) and the power receiving circuit.
D) and contactor (38C) or switching element (3
8), regenerative electric power is sent out to the overhead line, and the battery (1)
0) A regenerative power transmission device for a vehicle configured so that the stored power of 0) does not flow backward to the overhead line.
JP8227612A 1996-08-09 1996-08-09 Power device for air-and motor-driven car Pending JPH1066204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8227612A JPH1066204A (en) 1996-08-09 1996-08-09 Power device for air-and motor-driven car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8227612A JPH1066204A (en) 1996-08-09 1996-08-09 Power device for air-and motor-driven car

Publications (1)

Publication Number Publication Date
JPH1066204A true JPH1066204A (en) 1998-03-06

Family

ID=16863671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8227612A Pending JPH1066204A (en) 1996-08-09 1996-08-09 Power device for air-and motor-driven car

Country Status (1)

Country Link
JP (1) JPH1066204A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355911A (en) * 1998-06-09 1999-12-24 Koei Sangyo Kk Drive device for single rail vehicles
JP2005027447A (en) * 2003-07-03 2005-01-27 Hitachi Ltd Railway vehicle drive system
JP2006219051A (en) * 2005-02-14 2006-08-24 Toshiba Corp Vehicle operation plan creation device
WO2010146643A1 (en) * 2009-06-15 2010-12-23 株式会社 日立製作所 Driving system for railroad vehicle
WO2011135777A1 (en) * 2010-04-30 2011-11-03 東洋電機製造株式会社 Electric vehicle control device
CN102290847A (en) * 2011-08-23 2011-12-21 刘芳雨 Energy-stored type power transmission driving system
JP2012050162A (en) * 2010-08-24 2012-03-08 Hitachi Ltd Rail car with onboard electric component for rail car mounted thereon and train of rail cars
WO2013114546A1 (en) * 2012-01-30 2013-08-08 三菱電機株式会社 Propulsion control device of electric vehicle and control method thereof
JP2014075864A (en) * 2012-10-03 2014-04-24 Kinki Sharyo Co Ltd Railway vehicle
EP1724147A3 (en) * 2005-05-18 2016-08-17 Kabushiki Kaisha Toshiba Control apparatus for an electric locomotive
CN113752852A (en) * 2020-06-01 2021-12-07 北京罗克维尔斯科技有限公司 Vehicle torque zero-crossing control method and device
CN116683519A (en) * 2023-05-30 2023-09-01 西南交通大学 An optimal operation control method for flexible traction power supply system
CN118402170A (en) * 2022-02-02 2024-07-26 三菱电机株式会社 Conveyor systems, conveyor modules and inverter units
WO2024241497A1 (en) * 2023-05-23 2024-11-28 株式会社日立インダストリアルプロダクツ Electrically driven vehicle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11355911A (en) * 1998-06-09 1999-12-24 Koei Sangyo Kk Drive device for single rail vehicles
JP2005027447A (en) * 2003-07-03 2005-01-27 Hitachi Ltd Railway vehicle drive system
JP2006219051A (en) * 2005-02-14 2006-08-24 Toshiba Corp Vehicle operation plan creation device
EP1724147A3 (en) * 2005-05-18 2016-08-17 Kabushiki Kaisha Toshiba Control apparatus for an electric locomotive
EP2444272A4 (en) * 2009-06-15 2014-10-29 Hitachi Ltd TRAINING SYSTEM FOR RAILWAY VEHICLE
WO2010146643A1 (en) * 2009-06-15 2010-12-23 株式会社 日立製作所 Driving system for railroad vehicle
CN102803007A (en) * 2009-06-15 2012-11-28 株式会社日立制作所 Driving system for railroad vehicle
JP5259820B2 (en) * 2009-06-15 2013-08-07 株式会社日立製作所 Railway vehicle drive system
US9108645B2 (en) 2009-06-15 2015-08-18 Hitachi, Ltd. Driving system for railroad vehicle
WO2011135777A1 (en) * 2010-04-30 2011-11-03 東洋電機製造株式会社 Electric vehicle control device
JP5665859B2 (en) * 2010-04-30 2015-02-04 東洋電機製造株式会社 Electric vehicle control device
JP2012050162A (en) * 2010-08-24 2012-03-08 Hitachi Ltd Rail car with onboard electric component for rail car mounted thereon and train of rail cars
CN102290847A (en) * 2011-08-23 2011-12-21 刘芳雨 Energy-stored type power transmission driving system
WO2013114546A1 (en) * 2012-01-30 2013-08-08 三菱電機株式会社 Propulsion control device of electric vehicle and control method thereof
JP5295470B1 (en) * 2012-01-30 2013-09-18 三菱電機株式会社 Electric vehicle propulsion control device and control method thereof
CN104080639A (en) * 2012-01-30 2014-10-01 三菱电机株式会社 Propulsion control device of electric vehicle and control method thereof
US9174546B2 (en) 2012-01-30 2015-11-03 Mitsubishi Electric Corporation Propulsion control apparatus of electric motor vehicle and control method for propulsion control apparatus
CN104080639B (en) * 2012-01-30 2016-08-17 三菱电机株式会社 Tram propulsion control device and control method thereof
JP2014075864A (en) * 2012-10-03 2014-04-24 Kinki Sharyo Co Ltd Railway vehicle
CN113752852A (en) * 2020-06-01 2021-12-07 北京罗克维尔斯科技有限公司 Vehicle torque zero-crossing control method and device
CN113752852B (en) * 2020-06-01 2023-08-18 北京罗克维尔斯科技有限公司 Control method and device for vehicle torque zero crossing
CN118402170A (en) * 2022-02-02 2024-07-26 三菱电机株式会社 Conveyor systems, conveyor modules and inverter units
CN118402170B (en) * 2022-02-02 2025-09-05 三菱电机株式会社 Conveying systems and conveying modules
WO2024241497A1 (en) * 2023-05-23 2024-11-28 株式会社日立インダストリアルプロダクツ Electrically driven vehicle
CN116683519A (en) * 2023-05-30 2023-09-01 西南交通大学 An optimal operation control method for flexible traction power supply system
CN116683519B (en) * 2023-05-30 2024-02-13 西南交通大学 Optimized operation control method for flexible traction power supply system

Similar Documents

Publication Publication Date Title
US7304445B2 (en) Locomotive power train architecture
KR101173722B1 (en) Driver of rolling stock
AU2008247961B2 (en) Propulsion system
AU2008247963B2 (en) Electric drive vehicle retrofit system and associated method
US8950526B2 (en) AC drive system for a vehicle
CN101808845B (en) Method of operating a propulsion system
US20100006351A1 (en) Electric vehicle with contra-recgarge system
CN102689597B (en) Air power-photovoltaic automobile
JPH08508392A (en) Track-unconstrained automobile with electric motor
JPH1066204A (en) Power device for air-and motor-driven car
JP4200512B2 (en) Power unit for electric vehicle
CN202480860U (en) Automobile potential energy recovering system
Liudvinavičius et al. New locomotive energy management systems
JP2001231112A (en) Power device of motor vehicle and power feeding apparatus
JPH1042407A (en) Power device for pail-car
CN102616126A (en) Potential energy recovery system for vehicles
Liudvinavičius et al. Management of locomotive tractive energy resources
JPH09289703A (en) Motive power/feeder plant for electric motor car
JP3178536U (en) Electric vehicle power control device
JP2011030345A (en) Power control device of electric vehicle
CN103231644B (en) Without the tandem hybrid electric drive system system of generator inverter
CN1273194A (en) Design method for motor-driven vehicle to transfer and use stored energy
Liudvinavičius et al. New technical solutions of using rolling stock electrodynamical braking
AU2014246607B2 (en) Method of operating propulsion system
Liudvinavičius et al. Nowe możliwości oszczędzania energii lokomotyw