JPH11118199A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JPH11118199A JPH11118199A JP9286522A JP28652297A JPH11118199A JP H11118199 A JPH11118199 A JP H11118199A JP 9286522 A JP9286522 A JP 9286522A JP 28652297 A JP28652297 A JP 28652297A JP H11118199 A JPH11118199 A JP H11118199A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- wind speed
- fan
- fin
- plate fin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Air-Conditioning Systems (AREA)
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
Abstract
(57)【要約】
【課題】ビル用室外機、天吊型室内機、天井カセット型
室内機等の場合、ファンと熱交換器の構造的な位置関係
より、熱交換器での前面風速が不均一となり、熱交換器
のパス間に温度差を生じ、十分に熱交換性能を出せない
という問題点があった。
【解決手段】上記目的を達成するため、プレートフィン
チューブ熱交換器を上下に2等分またはそれ以上分割さ
せフィンピッチ及びフィンの切り欠き形状を変化させ
る、または、フィン形状を台形・三角形にすることによ
り、熱交換器を通過する場合の空気圧損を変え、熱交換
器とファン間での風の流れを変えることによって、プレ
ートフィンチューブ熱交換器の前面風速を均一化させ
る。
(57) [Summary] [Problem] In the case of a building outdoor unit, a ceiling suspended indoor unit, a ceiling cassette type indoor unit, etc., the front wind speed in the heat exchanger is reduced due to the structural positional relationship between the fan and the heat exchanger. There is a problem in that the heat exchange becomes uneven and a temperature difference occurs between the heat exchanger paths, so that sufficient heat exchange performance cannot be obtained. In order to achieve the above object, a plate fin tube heat exchanger is divided into two equal parts or more to change the fin pitch and the notch shape of the fin, or the fin shape is trapezoidal / triangular. Thus, the air pressure loss when passing through the heat exchanger is changed, and the flow of air between the heat exchanger and the fan is changed, so that the front wind speed of the plate fin tube heat exchanger is made uniform.
Description
【0001】[0001]
【発明の属する技術分野】本発明は空気調和機、冷凍機
に使用する空冷式熱交換器の形状に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-cooled heat exchanger used for an air conditioner and a refrigerator.
【0002】[0002]
【従来の技術】従来のプレートフィンチューブ熱交換器
に使用するプレートフィンは同一形状、同一ピッチによ
って組み立てられている。そのため、プレートフィンチ
ューブ熱交換器のプレートフィンと垂直方向にあるファ
ンを回転させることにより外気空気を取り込み、プレー
トフィンチューブ熱交換器内の冷媒を熱交換させる場
合、ファンの近くになるほど熱交換器の前面風速が速く
なり、ファンから遠くなるほど熱交換器の前面風速が遅
くなる。2. Description of the Related Art Plate fins used in conventional plate fin tube heat exchangers are assembled with the same shape and pitch. Therefore, when the fan in the direction perpendicular to the plate fins of the plate fin tube heat exchanger is rotated to take in outside air and exchange heat with the refrigerant in the plate fin tube heat exchanger, the closer the fan becomes, the closer the heat exchanger becomes. The front wind speed of the heat exchanger increases, and the front wind speed of the heat exchanger decreases as the distance from the fan increases.
【0003】また、プレートフィンチューブ熱交換器が
角度をもって取付けられている場合、ファンの近くにな
るほど熱交換器の前面風速が速くなり、ファンから遠く
なるほど熱交換器の前面風速が遅くなる。When the plate fin tube heat exchanger is mounted at an angle, the wind speed in front of the heat exchanger increases as the distance from the fan increases, and the wind speed decreases in front of the heat exchanger as the distance from the fan increases.
【0004】プレートフィンチューブ熱交換器のプレー
トフィンと垂直方向にあるファンを回転させることによ
り外気空気を取り込み、プレートフィンチューブ熱交換
器内の冷媒を熱交換させる空気調和機の例として、例え
ば特開平3−179198号に記載されている、上吹き
室外機がある。As an example of an air conditioner that takes in outside air by rotating a fan that is perpendicular to the plate fins of the plate fin tube heat exchanger and exchanges heat in the refrigerant in the plate fin tube heat exchanger, for example, There is an upper blowing outdoor unit described in Japanese Unexamined Patent Publication No. 3-179198.
【0005】また、プレートフィンチューブ熱交換器が
角度をもって取付けられている空気調和機の例として、
例えば特開平5−164346号に記載されている、天
吊型室内機がある。Further, as an example of an air conditioner in which a plate fin tube heat exchanger is mounted at an angle,
For example, there is a ceiling-suspended indoor unit described in JP-A-5-164346.
【0006】[0006]
【発明が解決しようとする課題】プロペラファンをユニ
ットの上面に配置しトップフロー方向に風を吹き出すビ
ル用室外機、シロッコファンの前面に置く熱交換器を製
品高さ寸法の制限より傾けて配置した天吊型室内機、タ
ーボファンにより外気を導入するため熱交換器に均一に
風が当たらない天井カセット型室内機等の場合、ファン
の近くになるほど熱交換器の前面風速が速くなり、ファ
ンから遠くなるほど前面風速が遅くなることから、熱交
換器を通る風が不均一になり、熱交換器のパス間に温度
差を生じるという問題点がある。An outdoor unit for a building in which a propeller fan is arranged on the upper surface of a unit and blows air in a top flow direction, and a heat exchanger arranged in front of a sirocco fan are arranged at an angle more than the height limit of the product. In the case of a ceiling-suspended indoor unit or a ceiling cassette type indoor unit that does not evenly hit the heat exchanger due to the introduction of outside air by a turbo fan, the wind speed near the front of the heat exchanger increases as the fan gets closer. As the distance from the heat exchanger decreases, the front wind speed decreases, so that the wind passing through the heat exchanger becomes non-uniform, causing a problem that a temperature difference occurs between the heat exchanger paths.
【0007】すなわち、熱交換器を蒸発器で見た場合、
風速の速いところがスーパーヒートして、熱交換性能が
落ち熱交換器を有効に利用できない。また、風速の遅い
ところは、湿り状態となり、熱交換性能が落ちるという
問題が生じる。That is, when the heat exchanger is viewed from an evaporator,
The place where the wind speed is fast is superheated, the heat exchange performance is reduced and the heat exchanger cannot be used effectively. In addition, a place where the wind speed is slow is moist, which causes a problem that heat exchange performance is deteriorated.
【0008】また、熱交換器を凝縮器でみた場合、風速
の速いところは凝縮性能が良く、液溜りを生じ、冷媒が
流れにくくなる。一方、風速の遅いところは凝縮性能が
悪く、乾き度の高い状態で熱交換器を出るため、熱交換
性能が落ちるという問題が生じる。Further, when the heat exchanger is viewed as a condenser, where the wind speed is high, the condensation performance is good, a liquid pool is generated, and the refrigerant does not easily flow. On the other hand, where the wind speed is low, the condensation performance is poor, and the heat exchanger leaves the heat exchanger in a state of high dryness.
【0009】また、使用する冷媒がHCFC系冷媒から
HFC系冷媒に変更する中、冷媒の変更により性能が従
来冷媒に対し同一の使用点で落ちるという問題がある。
このため熱交換器の性能を最大に発揮するための技術手
段を早急にはかる必要がある。[0009] Further, while the refrigerant to be used is changed from the HCFC-based refrigerant to the HFC-based refrigerant, there is a problem that the performance is lowered at the same point of use as the conventional refrigerant due to the change of the refrigerant.
For this reason, it is necessary to quickly take technical measures to maximize the performance of the heat exchanger.
【0010】本発明の目的は上記課題を解決し、熱交換
器の高効率化、小型化を図ることにより、熱交換器、膨
張弁を順次連絡し冷凍サイクルを構成する冷凍サイクル
部品と、モータ、ファン、ベルマウスの送風装置を筐体
内に配する空気調和機の小型化を図ることにある。[0010] An object of the present invention is to solve the above-mentioned problems and improve the efficiency and size of the heat exchanger, thereby connecting the heat exchanger and the expansion valve sequentially to form a refrigeration cycle component and a motor. An object of the present invention is to reduce the size of an air conditioner in which a blower for a fan, a bellmouth, and the like are arranged in a housing.
【0011】[0011]
【課題を解決するための手段】冷凍サイクルを循環する
冷媒をHFC系とし、熱交換器、膨張弁を順次連絡し冷
凍サイクルを構成する冷凍サイクル部品と、モータ、フ
ァン、ベルマウスの送風装置を筐体内に配し、前記熱交
換器がプレートフィンチューブ構造をとるとともに、プ
レートフィンを2分割させ、各々のプレートフィンのフ
ィン間ピッチが異なるようにした。Means for Solving the Problems The refrigerant circulating in the refrigeration cycle is an HFC system, and a refrigeration cycle component constituting a refrigeration cycle by sequentially connecting a heat exchanger and an expansion valve, and a blower for a motor, a fan and a bell mouth are provided. The heat exchanger had a plate fin tube structure, and the plate fins were divided into two parts so that the pitch between the plate fins was different.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施例について説
明する。Embodiments of the present invention will be described below.
【0013】図1は、圧縮機1、四方弁2、室外機熱交
換器3、Lタンク4、膨張弁5、室内機熱交換器6、ア
キュームレータ7を順次連結し、HFC系冷媒を用いた
冷凍サイクル系統図を示す。FIG. 1 shows a compressor 1, a four-way valve 2, an outdoor unit heat exchanger 3, an L tank 4, an expansion valve 5, an indoor unit heat exchanger 6, and an accumulator 7, which are sequentially connected, and an HFC-based refrigerant is used. The refrigeration cycle system diagram is shown.
【0014】冷房時、圧縮機1で高温高圧に圧縮された
ガス冷媒は四方弁2を介し室外機熱交換器3で室外機フ
ァン8により送り込まれる空気により冷却され凝縮され
ることにより、高圧の液冷媒に変化する。液冷媒はLタ
ンク4に溜まり込み、その一部または全冷媒が室内ユニ
ットに送られ、膨張弁5で断熱膨張し、低温低圧のガス
冷媒となり、室内機熱交換器6で蒸発し、室内機ファン
9により送り込まれる空気より熱を奪い、再び室内ユニ
ットに戻る。低圧のガス冷媒は四方弁2を介しアキュー
ムレータ7で気液分離され、冷媒ガスのみが圧縮機1に
吸入され再度圧縮される。At the time of cooling, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 is cooled and condensed by the air sent by the outdoor unit fan 8 in the outdoor unit heat exchanger 3 through the four-way valve 2 so that the high pressure gas refrigerant is compressed. Changes to liquid refrigerant. The liquid refrigerant accumulates in the L tank 4, and a part or all of the refrigerant is sent to the indoor unit, adiabatically expanded by the expansion valve 5, turns into a low-temperature low-pressure gas refrigerant, evaporates in the indoor unit heat exchanger 6, The heat is taken from the air sent by the fan 9 and returns to the indoor unit again. The low-pressure gas refrigerant is gas-liquid separated by the accumulator 7 via the four-way valve 2, and only the refrigerant gas is sucked into the compressor 1 and compressed again.
【0015】暖房時、四方弁2が切り替わり冷媒の流れ
は上記流れの逆になる。つまり、圧縮機1で高温高圧に
圧縮されたガス冷媒は四方弁2を介し室内機熱交換器6
で室内機ファン9により送り込まれる空気により冷却さ
れ凝縮されることにより、高圧の液冷媒に変化する。液
冷媒は膨張弁5で断熱膨張し、低温低圧のガス冷媒とな
り、室外機熱交換器3で蒸発し、室外機ファン8により
送り込まれる空気より熱を奪い、低圧のガス冷媒は四方
弁2を介しアキュームレータ7で気液分離され、冷媒ガ
スのみが圧縮機1に吸入され再度圧縮される。At the time of heating, the four-way valve 2 is switched and the flow of the refrigerant is the reverse of the above flow. That is, the gas refrigerant compressed to a high temperature and a high pressure by the compressor 1 passes through the four-way valve 2 through the indoor unit heat exchanger 6.
Is cooled and condensed by the air sent by the indoor unit fan 9 to change into a high-pressure liquid refrigerant. The liquid refrigerant is adiabatically expanded by the expansion valve 5, becomes a low-temperature low-pressure gas refrigerant, evaporates in the outdoor unit heat exchanger 3, takes away heat from the air sent by the outdoor unit fan 8, and the low-pressure gas refrigerant passes through the four-way valve 2. The gas is separated into gas and liquid by the accumulator 7, and only the refrigerant gas is sucked into the compressor 1 and compressed again.
【0016】以上に示す通り室外機熱交換器3におい
て、冷房時に冷媒は凝縮され、暖房時に冷媒は蒸発する
ことになる。As described above, in the outdoor unit heat exchanger 3, the refrigerant is condensed during cooling, and the refrigerant evaporates during heating.
【0017】図2に熱交換器の詳細図を示す。通常熱交
換器にて風が一様にあたり、複数個に分割されたパス毎
に冷媒は、凝縮、蒸発をおこない、再度合流して冷凍サ
イクルを循環する。このため、熱交換器の性能を最大限
に発揮するためには、複数個のパスに分かれた冷媒はデ
スビで均等に分配され、風が各パス毎に均等に当たるこ
とが必要となる。FIG. 2 shows a detailed view of the heat exchanger. Normally, the air is uniformly blown by the heat exchanger, and the refrigerant condenses and evaporates in each of the plurality of divided paths, merges again, and circulates in the refrigeration cycle. For this reason, in order to maximize the performance of the heat exchanger, it is necessary that the refrigerant divided into a plurality of paths is evenly distributed by the desbye, and the wind is evenly applied to each path.
【0018】図3に熱交換器をソコベース14上に、ま
た、ファンモータ10、室外機ファン8、モータクラン
プ11等の送風装置をユニット上部に配した空調用室外
機の一例を示す。FIG. 3 shows an example of an outdoor unit for air conditioning in which a heat exchanger is arranged on a saw base 14, and a blower such as a fan motor 10, an outdoor unit fan 8, a motor clamp 11 and the like are arranged in an upper part of the unit.
【0019】ビル用室外機等、設置スペースの制約を受
ける室外機はユニット同士を横連続設置されるため、ト
ップフロー方向に風を吹き出すキャビネット構成をとる
場合が多い。Outdoor units, such as building outdoor units, which are limited in installation space, are installed horizontally in a row, and therefore often employ a cabinet configuration that blows air in the top flow direction.
【0020】この場合、プロペラファンは風は垂直方向
に筐体から吹き出すのにたいし、熱交換器に吸い込まれ
る風は水平方向となる。また、プロペラファンと熱交換
器の関係より、プロペラファンに近い側のパスから遠い
側のパスに移動するに従い、熱交換器にあたる風は強く
なり、熱交換器の上下方向で面風速度が不均一となる。In this case, the wind of the propeller fan blows out of the housing in the vertical direction, while the wind sucked into the heat exchanger is in the horizontal direction. Also, due to the relationship between the propeller fan and the heat exchanger, the wind that hits the heat exchanger becomes stronger as it moves from the path closer to the propeller fan to the path farther away, and the surface wind speed in the vertical direction of the heat exchanger becomes lower. Become uniform.
【0021】熱交換器を蒸発器として使用する暖房運転
の場合、熱交換器の上部のパスでは風速が速いため、蒸
発器出口で過熱ガスとなる。一方、下部のパスは風速が
遅いため蒸発性能が悪く、飽和ガスで湿りぎみのまま熱
交換器を通過し、熱交換器の上下方向でパス間の温度又
は熱交換性能が不均一になる。In the heating operation in which the heat exchanger is used as an evaporator, since the wind speed is high in the path above the heat exchanger, superheated gas is generated at the evaporator outlet. On the other hand, the lower path has low evaporation speed due to low wind speed, passes through the heat exchanger with the saturated gas wet, and the temperature or heat exchange performance between the paths in the vertical direction of the heat exchanger becomes uneven.
【0022】また、熱交換器を凝縮器として使用する場
合、熱交換器の上部のパスでは風速が速いため、冷媒は
飽和ガスから過冷却された液冷媒となり、液冷媒が熱交
換器に溜まり込む。また、熱交換器の下部では風速が遅
いため、凝縮性能が悪く、高温高圧ガスから凝縮が不完
全のまま、乾きぎみの飽和ガスとして熱交換器を通過
し、熱交換器の上下方向で、パス間の温度又は熱交換性
能が不均一になる。When the heat exchanger is used as a condenser, since the wind speed is high in the path above the heat exchanger, the refrigerant becomes a supercooled liquid refrigerant from the saturated gas, and the liquid refrigerant accumulates in the heat exchanger. Put in. In addition, since the wind speed is slow at the lower part of the heat exchanger, the condensation performance is poor, and the condensation from the high-temperature and high-pressure gas passes through the heat exchanger as a dry saturated gas while the condensation is incomplete. The temperature or heat exchange performance between passes becomes uneven.
【0023】このため、本発明は熱交換器の上下方向で
前面風速を均一化することにより、熱交換器の上下方向
でのパス間温度差を小さくすることを図っている。つま
り、プロペラファンから近い上部熱交換器12の面風速
を熱交フィンピッチの狭いパスで受け熱交換器での空気
圧損を減らし、プロペラファンから遠い下部熱交換器1
3の面風速を熱交フィンピッチの広いパスで受け熱交換
器での空気圧損を増やし、熱交換器での前面風速が熱交
上下方向で均一化されるよう、熱交換器に当たる風の流
れの一様化を図っている。For this reason, the present invention makes it possible to reduce the temperature difference between the paths in the vertical direction of the heat exchanger by equalizing the wind speed in front of the heat exchanger in the vertical direction. In other words, the surface wind speed of the upper heat exchanger 12 close to the propeller fan is received by the narrow path of the heat exchange fin pitch to reduce the air pressure loss in the heat exchanger, and the lower heat exchanger 1 remote from the propeller fan.
(3) The flow of the wind that hits the heat exchanger so that the frontal wind speed in the heat exchanger is uniform in the vertical direction of the heat exchanger by increasing the air pressure loss in the heat exchanger by receiving the surface wind speed in the path with a wide heat exchange fin pitch Is made uniform.
【0024】本効果により、熱交換器のパス間で風速が
均一化され、熱交のパス間の温度差が小さくなり、熱交
性能を最大限に発揮することが可能となる。According to this effect, the wind speed is made uniform between the heat exchanger passes, the temperature difference between the heat exchange passes is reduced, and the heat exchange performance can be maximized.
【0025】図4に熱交換器をソコベース14上に、ま
た、ファンモータ10、室外機ファン8、モータクラン
プ11等の送風装置をユニット上部に配した空調用室外
機の一例を示す。熱交換器を2分割からさらに細分化
し、プロペラファンから近い上部熱交換器12の面風速
を熱交フィンピッチの狭いパスで受け熱交換器での空気
圧損を減らし、プロペラファンから遠い下部熱交換器1
3の面風速を熱交フィンピッチの広いパスで受け熱交換
器での空気圧損を増やし、熱交換器での前面風速が熱交
上下方向で均一化されるよう、熱交換器に当たる風の流
れの一様化を図っている。FIG. 4 shows an example of an air-conditioning outdoor unit in which a heat exchanger is disposed on a saw base 14, and a blower such as a fan motor 10, an outdoor unit fan 8, and a motor clamp 11 is disposed in an upper portion of the unit. The heat exchanger is further divided into two parts, and the surface wind speed of the upper heat exchanger 12 close to the propeller fan is received by a narrow path of the heat exchange fin pitch to reduce air pressure loss in the heat exchanger, and the lower heat exchange far from the propeller fan. Vessel 1
3) The wind flow hitting the heat exchanger so that the front wind speed at the heat exchanger is uniform in the vertical direction of the heat exchanger by increasing the air pressure loss in the heat exchanger Is made uniform.
【0026】本効果により、図3の熱交換器に比べ、熱
交換器のパス間で風速がより均一化され、熱交のパス間
の温度差が小さくなり、熱交性能を最大限に発揮するこ
とが可能となる。According to this effect, the wind speed is made more uniform between the heat exchanger paths, the temperature difference between the heat exchange paths is reduced, and the heat exchange performance is maximized, as compared with the heat exchanger of FIG. It is possible to do.
【0027】図5に熱交換器をソコベース14上に、ま
た、ファンモータ10、室外機ファン8、モータクラン
プ11等の送風装置をユニット上部に配した空調用室外
機の一例を示す。プレートフィンの形状を台形にした台
形型熱交換器15により、プロペラファンから近いパス
の風速を熱交フィンの幅の広い側で受け、プロペラファ
ンから遠いパスの風速を熱交フィンの幅の狭い側で受
け、熱交換器での空気圧損を熱交上下方向で一様化する
べく、面風速度を上部にいくほど遅く、下部にいくほど
速くなるようにすることにより、熱交換器の面風速度の
均一化を図っている。本効果により、熱交換器のパス間
で風速が均一化され、熱交のパス間の温度差が小さくな
り、熱交性能を最大限に発揮することが可能となる。FIG. 5 shows an example of an air-conditioning outdoor unit in which a heat exchanger is disposed on a saw base 14, and a blower such as a fan motor 10, an outdoor unit fan 8, and a motor clamp 11 is disposed in an upper portion of the unit. The trapezoidal heat exchanger 15 having a trapezoidal plate fin shape receives the wind speed of the path close to the propeller fan on the wide side of the heat exchange fin and the wind speed of the path far from the propeller fan to the narrow side of the heat exchange fin. In order to equalize the air pressure loss in the heat exchanger in the vertical direction of heat exchange, the surface wind speed is slower toward the upper part and faster toward the lower part. The wind speed is made uniform. With this effect, the wind speed is made uniform between the heat exchanger paths, the temperature difference between the heat exchange paths is reduced, and the heat exchange performance can be maximized.
【0028】図6に熱交換器をソコベース14上に、ま
た、ファンモータ10、室外機ファン8、モータクラン
プ11等の送風装置をユニット上部に配した空調用室外
機の一例を示す。プレートフィンの形状を三角形にした
三角形型熱交換器16により、プロペラファンから近い
パスの風速を熱交フィンの幅の広い側で受け、プロペラ
ファンから遠いパスの風速を熱交フィンの幅の狭い側で
受け、熱交換器での空気圧損を熱交上下方向で一様化す
るべく、面風速度を上部にいくほど遅く、下部にいくほ
ど速くなるようにすることにより、熱交換器の面風速度
の均一化を図っている。本効果により、図5の熱交換器
に比べさらに、熱交換器のパス間で風速が均一化され、
熱交のパス間の温度差が小さくなり、熱交性能を最大限
に発揮することが可能となる。FIG. 6 shows an example of an air-conditioning outdoor unit in which a heat exchanger is disposed on a saw base 14, and a blower such as a fan motor 10, an outdoor unit fan 8, and a motor clamp 11 are disposed in an upper portion of the unit. The triangular heat exchanger 16 having a triangular plate fin shape receives the wind speed of the path close to the propeller fan on the wide side of the heat exchange fin and the wind velocity of the path far from the propeller fan to the narrow side of the heat exchange fin. In order to equalize the air pressure loss in the heat exchanger in the vertical direction of heat exchange, the surface wind speed is slower toward the upper part and faster toward the lower part. The wind speed is made uniform. By this effect, the wind speed is made uniform between the heat exchanger paths as compared with the heat exchanger of FIG.
The temperature difference between the heat exchange paths is reduced, and the heat exchange performance can be maximized.
【0029】図7に熱交換器をソコベース14上に、ま
た、ファンモータ10、室外機ファン8、モータクラン
プ11等の送風装置をユニット上部に配した空調用室外
機の一例を示す。プロペラファンから近いパスの風速を
図9のようなフィンの切り起し高さの高いパスで受け、
プロペラファンから遠いパスの風速を図10のようなフ
ィンの切り起し高さの低いパスで受け、熱交換器での空
気圧損を熱交上下方向で一様化するべく、前面風速を上
部で遅く、下部で速くなるようにすることにより、熱交
換器の前面風速の均一化を図っている。FIG. 7 shows an example of an outdoor unit for air conditioning in which a heat exchanger is arranged on a saw base 14 and a blower such as a fan motor 10, an outdoor unit fan 8, a motor clamp 11 and the like are arranged in an upper part of the unit. The wind speed of the pass close to the propeller fan is received by the fin with a high height as shown in Fig. 9,
The wind speed of the path far from the propeller fan is received by the path with a low fin height as shown in Fig. 10, and the front wind speed is set to the upper part in order to equalize the air pressure loss in the heat exchanger in the vertical direction of heat exchange. By making it slower and faster at the lower part, the wind speed at the front of the heat exchanger is made uniform.
【0030】本効果により、熱交換器のパス間で風速が
均一化され、熱交のパス間の温度差が小さくなり、熱交
性能を最大限に発揮することが可能となる。By this effect, the wind speed is made uniform between the heat exchanger passes, the temperature difference between the heat exchange passes is reduced, and the heat exchange performance can be maximized.
【0031】図8に熱交換器をソコベース14上に、ま
た、ファンモータ10、室外機ファン8、モータクラン
プ11等の送風装置をユニット上部に配した空調用室外
機の一例を示す。図7の熱交換器を2分割からさらに細
分化し、プロペラファンから近いパスの風速を図9のよ
うなフィンの切り起し高さの高いパスで受け、プロペラ
ファンから遠いパスの風速を図11のようなフィンの切
り起し高さの低いパスで受け、熱交換器での空気圧損を
熱交上下方向で一様化するべく、前面風速を上部にいく
ほど遅く、下部にいくほど速くなるようにすることによ
り、熱交換器の前面風速の均一化を図っている。FIG. 8 shows an example of an air-conditioning outdoor unit in which a heat exchanger is disposed on a saw base 14, and a blower such as a fan motor 10, an outdoor unit fan 8, and a motor clamp 11 are disposed in an upper portion of the unit. The heat exchanger of FIG. 7 is further subdivided from the two parts, and the wind speed of the path close to the propeller fan is received by the path with a high fin height as shown in FIG. 9 and the wind speed of the path far from the propeller fan is FIG. In order to equalize the air pressure loss in the heat exchanger in the vertical direction of heat exchange, the front wind speed is slower toward the top and faster toward the bottom in order to equalize the air pressure loss in the heat exchanger By doing so, the wind speed at the front of the heat exchanger is made uniform.
【0032】本効果により、図7の熱交換器に比べさら
に、熱交換器のパス間で風速が均一化され、熱交のパス
間の温度差が小さくなり、熱交性能を最大限に発揮する
ことが可能となる。According to this effect, the wind speed is made uniform between the heat exchanger paths, the temperature difference between the heat exchange paths is reduced, and the heat exchange performance is maximized as compared with the heat exchanger of FIG. It is possible to do.
【0033】すなわち、直径d,長さL,平均速度vの
圧力損失hは摩擦係数をλとした場合、That is, the pressure loss h of the diameter d, the length L, and the average speed v is given by
【0034】[0034]
【数1】 (Equation 1)
【0035】で表せられる。ここで、熱交換器を通過す
る体積流量をQ(m3/S)とすると、## EQU2 ## Here, assuming that the volume flow rate passing through the heat exchanger is Q (m 3 / S),
【0036】[0036]
【数2】 (Equation 2)
【0037】となる。すなわち、圧損は直径の5乗に反
比例し、長さに比例する。よって、本発明は、熱交換
器、膨張弁を順次連絡し冷凍サイクルを構成する冷凍サ
イクル部品と、モータ、ファン、ベルマウスの送風装置
を筐体内に配する空気調和機において、熱交換器がプレ
ートフィンチューブ構造をとるとともに、プレートフィ
ンを2分割させ、風速の速いところのフィンピッチを狭
めることにより、通路面積を狭くして通風抵抗を上げる
ことにより前面風速を遅くし、熱交換器の前面風速を均
一にすることができる。Is as follows. That is, the pressure loss is inversely proportional to the fifth power of the diameter and is proportional to the length. Therefore, the present invention provides a refrigeration cycle component that sequentially connects a heat exchanger and an expansion valve to form a refrigeration cycle, and a motor, a fan, and an air conditioner that disposes a blower of a bell mouth in a housing. The plate fin tube structure is adopted, the plate fin is divided into two parts, the fin pitch at the place where the wind speed is fast is narrowed, the passage area is narrowed and the ventilation resistance is increased, so that the front wind speed is slowed and the front face of the heat exchanger is reduced. The wind speed can be made uniform.
【0038】また、本発明は、熱交換器、膨張弁を順次
連絡し冷凍サイクルを構成する冷凍サイクル部品と、モ
ータ、ファン、ベルマウスの送風装置を筐体内に配する
空気調和機において、熱交換器がプレートフィンチュー
ブ構造をとるとともに、プレートフィンを複数個に分割
させ、各々のプレートフィンのフィン間ピッチを変化さ
せることにより、上記のフィンを2分割したものに比
べ、通風抵抗を変化をより細分化させることが可能とな
り、上記の熱交換器以上に熱交換器の前面風速を均一に
することができる。Further, the present invention relates to an air conditioner in which a refrigeration cycle component which sequentially connects a heat exchanger and an expansion valve to constitute a refrigeration cycle, and an air conditioner in which a motor, a fan and a bell mouth blower are disposed in a housing. The exchanger adopts a plate fin tube structure, the plate fin is divided into a plurality of parts, and the pitch between the fins of each plate fin is changed. It is possible to make the heat exchanger more subdivided and to make the front wind speed of the heat exchanger more uniform than the above heat exchanger.
【0039】さらに、本発明は、熱交換器、膨張弁を順
次連絡し冷凍サイクルを構成する冷凍サイクル部品と、
モータ、ファン、ベルマウスの送風装置を筐体内に配す
る空気調和機において、熱交換器がプレートフィンチュ
ーブ構造をとるとともに、プレートフィン形状を台形形
状にした場合、圧力損失はフィンの長さに比例すること
より、風速の速いところのフィンを長くし通風抵抗を上
げることにより前面風速を遅くし、熱交換器の前面風速
を均一にすることができる。Further, the present invention provides a refrigeration cycle component which sequentially connects a heat exchanger and an expansion valve to constitute a refrigeration cycle,
In an air conditioner in which a motor, a fan, and a bell mouth blower are arranged in a housing, when the heat exchanger has a plate fin tube structure and the plate fin shape is trapezoidal, the pressure loss is reduced by the length of the fin. By proportionally increasing the length of the fin where the wind speed is fast and increasing the ventilation resistance, the front wind speed can be reduced and the front wind speed of the heat exchanger can be made uniform.
【0040】さらに、本発明は、熱交換器、膨張弁を順
次連絡し冷凍サイクルを構成する冷凍サイクル部品と、
モータ、ファン、ベルマウスの送風装置を筐体内に配す
る空気調和機において、熱交換器がプレートフィンチュ
ーブ構造をとるとともに、プレートフィン形状が三角形
形状にすることにより、風速の速いところのフィンを長
くし通風抵抗を上げることにより前面風速を遅くし、熱
交換器の前面風速を均一にすることができる。Further, the present invention provides a refrigeration cycle component which sequentially connects a heat exchanger and an expansion valve to form a refrigeration cycle,
In an air conditioner in which a motor, a fan, and a bell mouth blower are arranged in a housing, the heat exchanger adopts a plate fin tube structure and the plate fin shape is triangular, so that fins with high wind speed can be removed. By increasing the length and increasing the ventilation resistance, the front wind speed can be reduced and the front wind speed of the heat exchanger can be made uniform.
【0041】さらに、本発明は、熱交換器、膨張弁を順
次連絡し冷凍サイクルを構成する冷凍サイクル部品と、
モータ、ファン、ベルマウスの送風装置を筐体内に配す
る空気調和機において、熱交換器がプレートフィンチュ
ーブ構造をとるとともに、プレートフィンを2分割さ
せ、風速の速いところのプレートフィンの切り起こし高
さを高くすることにより、通路面積を狭くして通風抵抗
を上げることにより前面風速を遅くし、熱交換器の前面
風速を均一にすることができる。Further, the present invention provides a refrigeration cycle component which sequentially connects a heat exchanger and an expansion valve to constitute a refrigeration cycle,
2. Description of the Related Art In an air conditioner in which a motor, a fan, and a bell mouth blower are arranged in a housing, a heat exchanger adopts a plate fin tube structure, and a plate fin is divided into two parts, and a height of the plate fin at a high wind speed is increased. By increasing the height, the frontal wind speed can be reduced by reducing the passage area and increasing the ventilation resistance, thereby making the frontal wind speed of the heat exchanger uniform.
【0042】さらに、本発明は、熱交換器、膨張弁を順
次連絡し冷凍サイクルを構成する冷凍サイクル部品と、
モータ、ファン、ベルマウスの送風装置を筐体内に配す
る空気調和機において、熱交換器がプレートフィンチュ
ーブ構造をとるとともに、プレートフィン複数個に分割
させ、各々のプレートフィンの切り起こし高さを変える
ことにより、上記のフィンを2分割したものに比べ、通
風抵抗を変化をより細分化させることが可能となり、上
記の熱交換器以上に熱交換器の前面風速を均一にするこ
とができる。Further, the present invention provides a refrigeration cycle component which sequentially connects a heat exchanger and an expansion valve to constitute a refrigeration cycle,
In an air conditioner in which a motor, a fan, and a bell mouth blower are arranged in a housing, a heat exchanger adopts a plate fin tube structure and is divided into a plurality of plate fins, and the cut-and-raised height of each plate fin is increased. By changing the fins, the ventilation resistance can be further subdivided as compared with the case where the fin is divided into two, and the front wind speed of the heat exchanger can be made more uniform than that of the heat exchanger.
【0043】本発明は、プレートフィンを複数個に分割
させ、各々のプレートフィンのフィン間ピッチが異なる
ことを特徴とする。The present invention is characterized in that the plate fin is divided into a plurality of fins, and the plate fins have different pitches between the fins.
【0044】また、プレートフィン形状が台形形状とし
たことを特徴とする。更にまた、プレートフィン形状が
三角形形状としたことを特徴とする。さらにまた、プレ
ートフィンを2分割させ、各々のプレートフィンの切り
起こし高さを変えたことを特徴とする。更にまた、プレ
ートフィン複数個に分割させ、各々のプレートフィンの
切り起こし高さを変えたことを特徴とする。Further, the plate fins are trapezoidal in shape. Still further, the plate fins have a triangular shape. Further, the plate fin is divided into two parts, and the cut-and-raised height of each plate fin is changed. Furthermore, the plate fin is divided into a plurality of plate fins, and the cut-and-raised height of each plate fin is changed.
【0045】[0045]
【発明の効果】本発明によれば、プレートフィンチュー
ブ熱交換器を備えた空気調和機において、外気導入用の
ファンの取り付け位置に関わらず、熱交換器前面の面風
速度を均一化することができ、プレートフィン熱交換器
の効率を上げることが可能となり、空調機の冷暖房能力
の向上を図ることができる。According to the present invention, in an air conditioner provided with a plate fin tube heat exchanger, the surface wind speed on the front surface of the heat exchanger is made uniform regardless of the installation position of a fan for introducing outside air. Thus, the efficiency of the plate fin heat exchanger can be increased, and the cooling and heating capacity of the air conditioner can be improved.
【0046】また、熱交換器のパス間の温度差を均一化
することができることにより、暖房時、熱交換器を蒸発
器として使用した場合、風速の遅いパスが着霜しやすく
なり、除霜頻度が増えるという問題を回避することがで
き、空調機の快適性の向上を図ることができる。Further, since the temperature difference between the paths of the heat exchanger can be made uniform, when the heat exchanger is used as an evaporator at the time of heating, the path having a low wind speed is liable to frost, and defrosting is performed. The problem that the frequency increases can be avoided, and the comfort of the air conditioner can be improved.
【図面の簡単な説明】[Brief description of the drawings]
【図1】冷凍サイクルの一例を示す。FIG. 1 shows an example of a refrigeration cycle.
【図2】熱交換器の一例を示す。FIG. 2 shows an example of a heat exchanger.
【図3】一実施の形態による室外ユニットの主要部を示
す側面図。FIG. 3 is a side view showing a main part of the outdoor unit according to the embodiment.
【図4】一実施の形態による室外ユニットの主要部を示
す側面図。FIG. 4 is a side view showing a main part of the outdoor unit according to the embodiment.
【図5】一実施の形態による室外ユニットの主要部を示
す側面図。FIG. 5 is a side view showing a main part of the outdoor unit according to the embodiment.
【図6】一実施の形態による室外ユニットの主要部を示
す側面図。FIG. 6 is a side view showing a main part of the outdoor unit according to the embodiment.
【図7】一実施の形態による室外ユニットの主要部を示
す側面図。FIG. 7 is a side view showing a main part of the outdoor unit according to the embodiment.
【図8】一実施の形態による室外ユニットの主要部を示
す側面図。FIG. 8 is a side view showing a main part of the outdoor unit according to the embodiment.
【図9】一実施の形態によるフィンの一例を示す。FIG. 9 shows an example of a fin according to one embodiment.
【図10】図9のA−A断面図。FIG. 10 is a sectional view taken along line AA of FIG. 9;
【図11】一実施の形態によるフィンの一例を示す。FIG. 11 shows an example of a fin according to an embodiment.
【図12】図11のA−A断面図。FIG. 12 is a sectional view taken along line AA of FIG. 11;
1…圧縮機、2…四方弁、3…室外機熱交換器、4…L
タンク、5…膨張弁、6…室内機熱交換器、7…アキュ
ームレータ、8…室外機ファン、9…室内機ファン、1
0…ファンモータ、11…モータクランプ、12…上部
熱交換器、13…下部熱交換器、14…ソコベース、1
5…台形型熱交換器、16…三角形型熱交換器、1 ... Compressor, 2 ... Four-way valve, 3 ... Outdoor unit heat exchanger, 4 ... L
Tank, 5: expansion valve, 6: indoor unit heat exchanger, 7: accumulator, 8: outdoor unit fan, 9: indoor unit fan, 1
0: Fan motor, 11: Motor clamp, 12: Upper heat exchanger, 13: Lower heat exchanger, 14: Soko base, 1
5 ... trapezoidal heat exchanger, 16 ... triangular heat exchanger,
Claims (1)
し、熱交換器、膨張弁を順次連絡し冷凍サイクルを構成
する冷凍サイクル部品と、モータ、ファン、ベルマウス
の送風装置を筐体内に配し、前記熱交換器がプレートフ
ィンチューブ構造をとるとともに、プレートフィンを2
分割させ、各々のプレートフィンのフィン間ピッチが異
なることを特徴とする空気調和機。1. A refrigerant circulating in a refrigeration cycle is an HFC system, and a refrigeration cycle component constituting a refrigeration cycle by sequentially connecting a heat exchanger and an expansion valve, and a blower for a motor, a fan and a bell mouth are arranged in a housing. The heat exchanger has a plate fin tube structure, and the plate fins are
An air conditioner, wherein the air conditioner is divided and the plate fins have different pitches between the fins.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9286522A JPH11118199A (en) | 1997-10-20 | 1997-10-20 | Air conditioner |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9286522A JPH11118199A (en) | 1997-10-20 | 1997-10-20 | Air conditioner |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11118199A true JPH11118199A (en) | 1999-04-30 |
Family
ID=17705509
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9286522A Pending JPH11118199A (en) | 1997-10-20 | 1997-10-20 | Air conditioner |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11118199A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003279075A (en) * | 2002-03-20 | 2003-10-02 | Sanyo Electric Co Ltd | Outdoor unit of air-conditioner |
| WO2004083734A3 (en) * | 2003-03-15 | 2005-10-13 | Lg Electronics Inc | Front suction/discharge type outdoor unit for air conditioner |
| WO2006003860A1 (en) | 2004-06-30 | 2006-01-12 | Toshiba Carrier Corporation | Multi-type air conditioner |
| JP2008261611A (en) * | 2007-04-16 | 2008-10-30 | Mitsubishi Electric Corp | Air conditioner outdoor unit, fin and tube type heat exchanger bending apparatus, and bending method |
| JP2010096454A (en) * | 2008-10-17 | 2010-04-30 | Denso Corp | Dehumidifying/humidifying device |
| JP2010276313A (en) * | 2009-05-29 | 2010-12-09 | Daikin Ind Ltd | Air conditioner outdoor unit |
| CN103574952A (en) * | 2012-08-03 | 2014-02-12 | 日立空调·家用电器株式会社 | Refrigeration cycle apparatus and refrigeration unit and air-conditioning system equipped with the refrigeration cycle apparatus |
| KR20170047684A (en) * | 2015-10-23 | 2017-05-08 | 삼성전자주식회사 | Air conditioner |
| CN106802027A (en) * | 2015-11-26 | 2017-06-06 | 同方人工环境有限公司 | A kind of composite wind-cooled fin-tube type heat exchanger structure |
| JP2019015432A (en) * | 2017-07-05 | 2019-01-31 | 日立ジョンソンコントロールズ空調株式会社 | Heat exchanger and heat exchange unit |
| JPWO2021117156A1 (en) * | 2019-12-11 | 2021-06-17 |
-
1997
- 1997-10-20 JP JP9286522A patent/JPH11118199A/en active Pending
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003279075A (en) * | 2002-03-20 | 2003-10-02 | Sanyo Electric Co Ltd | Outdoor unit of air-conditioner |
| WO2004083734A3 (en) * | 2003-03-15 | 2005-10-13 | Lg Electronics Inc | Front suction/discharge type outdoor unit for air conditioner |
| WO2006003860A1 (en) | 2004-06-30 | 2006-01-12 | Toshiba Carrier Corporation | Multi-type air conditioner |
| JP2008261611A (en) * | 2007-04-16 | 2008-10-30 | Mitsubishi Electric Corp | Air conditioner outdoor unit, fin and tube type heat exchanger bending apparatus, and bending method |
| JP2010096454A (en) * | 2008-10-17 | 2010-04-30 | Denso Corp | Dehumidifying/humidifying device |
| JP2010276313A (en) * | 2009-05-29 | 2010-12-09 | Daikin Ind Ltd | Air conditioner outdoor unit |
| CN103574952A (en) * | 2012-08-03 | 2014-02-12 | 日立空调·家用电器株式会社 | Refrigeration cycle apparatus and refrigeration unit and air-conditioning system equipped with the refrigeration cycle apparatus |
| CN103574952B (en) * | 2012-08-03 | 2016-10-05 | 江森自控日立空调技术(香港)有限公司 | Refrigeration cycle device, and refrigeration device and air conditioning device provided with same |
| KR20170047684A (en) * | 2015-10-23 | 2017-05-08 | 삼성전자주식회사 | Air conditioner |
| CN106802027A (en) * | 2015-11-26 | 2017-06-06 | 同方人工环境有限公司 | A kind of composite wind-cooled fin-tube type heat exchanger structure |
| JP2019015432A (en) * | 2017-07-05 | 2019-01-31 | 日立ジョンソンコントロールズ空調株式会社 | Heat exchanger and heat exchange unit |
| JPWO2021117156A1 (en) * | 2019-12-11 | 2021-06-17 | ||
| WO2021117156A1 (en) * | 2019-12-11 | 2021-06-17 | 三菱電機株式会社 | Indoor machine for air-conditioner |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110300879B (en) | Heat exchanger and air conditioner | |
| US20080141707A1 (en) | Multichannel Evaporator with Flow Separating Manifold | |
| JPWO2013160957A1 (en) | Heat exchanger, indoor unit and refrigeration cycle apparatus | |
| JPH11118199A (en) | Air conditioner | |
| JP2010169311A (en) | Air-conditioning outdoor unit | |
| WO2004097306A1 (en) | Outdoor unit for air conditioner | |
| US20060037354A1 (en) | Indoor unit of air conditioner | |
| JP2001304783A (en) | Outdoor heat exchanger, indoor heat exchanger, and air conditioner | |
| US11486655B2 (en) | Outdoor unit of air conditioner | |
| CN104713167A (en) | Air conditioning system | |
| WO2021095452A1 (en) | Heat exchanger and air conditioner | |
| CN215062438U (en) | Indoor machine of air conditioner | |
| CN111981583B (en) | Outdoor unit of air conditioner | |
| CN214148148U (en) | Indoor unit of air conditioner | |
| JP2015224844A (en) | Heat exchanger | |
| JPH10196984A (en) | Air conditioner | |
| CN111448423B (en) | Air conditioner | |
| JP7357137B1 (en) | air conditioner | |
| CN222438059U (en) | Air conditioner indoor unit | |
| JP2015169358A (en) | Heat exchanger | |
| CN212252913U (en) | Outdoor unit of air conditioner | |
| CN221744182U (en) | Rooftop air conditioner | |
| CN216693800U (en) | Outdoor air conditioner | |
| CN216346674U (en) | Machine in heat exchanger and air conditioning | |
| CN217109776U (en) | Indoor unit of air conditioner |