JPH11111291A - Positive electrode material for nonaqueous secondary battery and battery using this - Google Patents
Positive electrode material for nonaqueous secondary battery and battery using thisInfo
- Publication number
- JPH11111291A JPH11111291A JP9272421A JP27242197A JPH11111291A JP H11111291 A JPH11111291 A JP H11111291A JP 9272421 A JP9272421 A JP 9272421A JP 27242197 A JP27242197 A JP 27242197A JP H11111291 A JPH11111291 A JP H11111291A
- Authority
- JP
- Japan
- Prior art keywords
- compound
- lithium
- lif
- positive electrode
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 18
- 239000011572 manganese Substances 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 37
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000011651 chromium Substances 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 10
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 9
- 150000002222 fluorine compounds Chemical class 0.000 claims abstract description 6
- 125000005843 halogen group Chemical group 0.000 claims abstract 2
- 239000002131 composite material Substances 0.000 claims description 30
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 14
- 229910052744 lithium Inorganic materials 0.000 claims description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 8
- 229910001416 lithium ion Inorganic materials 0.000 claims description 8
- 150000001845 chromium compounds Chemical class 0.000 claims description 5
- 150000001869 cobalt compounds Chemical class 0.000 claims description 5
- 150000002642 lithium compounds Chemical class 0.000 claims description 5
- 150000002697 manganese compounds Chemical class 0.000 claims description 5
- 150000002816 nickel compounds Chemical class 0.000 claims description 5
- 150000002506 iron compounds Chemical class 0.000 claims description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 claims description 4
- 239000007773 negative electrode material Substances 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 abstract description 34
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 abstract description 26
- -1 chromium oxide Chemical class 0.000 abstract description 11
- 229910052596 spinel Inorganic materials 0.000 abstract description 11
- 239000011029 spinel Substances 0.000 abstract description 11
- 150000001875 compounds Chemical class 0.000 abstract description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 abstract description 2
- 229910000423 chromium oxide Inorganic materials 0.000 abstract description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 abstract description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 abstract description 2
- 229910000480 nickel oxide Inorganic materials 0.000 abstract description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 abstract description 2
- 229910021446 cobalt carbonate Inorganic materials 0.000 description 14
- ZOTKGJBKKKVBJZ-UHFFFAOYSA-L cobalt(2+);carbonate Chemical compound [Co+2].[O-]C([O-])=O ZOTKGJBKKKVBJZ-UHFFFAOYSA-L 0.000 description 14
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 14
- 229910052808 lithium carbonate Inorganic materials 0.000 description 14
- 229910052731 fluorine Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011737 fluorine Substances 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- 150000002367 halogens Chemical group 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 2
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012794 LiCoN Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 description 1
- 229910003174 MnOOH Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 235000012012 Paullinia yoco Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910005790 SnSiO Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- XHFVDZNDZCNTLT-UHFFFAOYSA-H chromium(3+);tricarbonate Chemical compound [Cr+3].[Cr+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O XHFVDZNDZCNTLT-UHFFFAOYSA-H 0.000 description 1
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical class [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水二次電池用正
極材料及びこれを正極に用いた非水二次電池に関するも
のである。The present invention relates to a positive electrode material for a non-aqueous secondary battery and a non-aqueous secondary battery using the same as a positive electrode.
【0002】[0002]
【従来の技術】近年、電子機器の小型化、薄型化、軽量
化の傾向は著しく、それに伴い電源となる電池に対して
も駆動用、バックアップ用を問わず小型化、薄型化、軽
量化かつ、高エネルギー密度化の要求が高まっている。
機器の小型化、軽量化が可能なことからリチウムイオン
二次電池は、最近携帯電話やノート型パーソナルコンピ
ューターなどの携帯機器に広く用いられるようになって
きた。2. Description of the Related Art In recent years, there has been a remarkable tendency for electronic equipment to become smaller, thinner, and lighter. Accordingly, a battery as a power source has been made smaller, thinner, lighter, regardless of whether it is for driving or backup. Demand for higher energy density is increasing.
Lithium ion secondary batteries have recently been widely used in portable devices such as mobile phones and notebook personal computers because of the ability to reduce the size and weight of the devices.
【0003】現在、一般に市販されているリチウムイオ
ン二次電池は、正極活物質にコバルト酸リチウムを、負
極活物質に炭素が用いられている。しかし、正極活物質
のコバルト酸リチウムは、コバルトが高価である上、埋
蔵量が少ないことから将来供給不足になる可能性があ
る。これに対し最近、安価で、埋蔵量が豊富な上、コバ
ルト酸リチウムと同等の高電圧でのリチウムの吸蔵・放
出が可能な正極活物質としてスピネル系のリチウム含有
マンガン酸化物が注目され、多くの研究がなされてい
る。At present, generally available lithium ion secondary batteries use lithium cobalt oxide as a positive electrode active material and carbon as a negative electrode active material. However, lithium cobalt oxide as the positive electrode active material may be short in the future because cobalt is expensive and reserves are small. On the other hand, recently, spinel-based lithium-containing manganese oxides have attracted attention as a positive electrode active material that is inexpensive, has abundant reserves, and can store and release lithium at the same high voltage as lithium cobalt oxide. Research has been done.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
スピネル系リチウムマンガン酸化物は、以下のような課
題がある。However, the conventional spinel-based lithium manganese oxide has the following problems.
【0005】 スピネル系のリチウムマンガン複合酸
化物はサイクル特性が悪く、これを改善するために特開
平5−205744号公報で示されるように、マンガン
の一部をリチウムで置換することが提案されている。こ
れによりサイクル性は改善されるものの、自己放電、特
に高温での自己放電が大きい、という問題がある。The spinel lithium manganese composite oxide has poor cycle characteristics, and it has been proposed to replace a part of manganese with lithium as disclosed in JP-A-5-205744 in order to improve the cycle characteristics. I have. Although this improves cycleability, there is a problem that self-discharge, particularly self-discharge at a high temperature, is large.
【0006】 これに対し、特開平7−37617号
公報および特開平7−254403号公報ではスピネル
系リチウムマンガン複合酸化物にフッ素を導入すること
が開示されており、特に特開平7−254403号公報
によれば高温での自己放電が改善されることが開示され
ている。しかしながら、このような方法によって、高温
保存時の自己放電は改良されるものの、高温でのサイク
ル性に劣り、また高温保存時に内部で発生するガスが多
くこのため電池の内圧が高くなる、という問題点があ
る。On the other hand, JP-A-7-37617 and JP-A-7-254403 disclose that fluorine is introduced into a spinel-based lithium manganese composite oxide, and in particular, JP-A-7-254403. Discloses that self-discharge at high temperatures is improved. However, although the self-discharge during high-temperature storage is improved by such a method, the cycleability at high temperatures is inferior, and the internal pressure of the battery increases due to the large amount of gas generated internally during high-temperature storage. There is a point.
【0007】本発明は、高容量で高温保存時の自己放電
が少なく同時に高温でのサイクル性に優れ、さらにガス
発生の少ない非水二次電池及びその正極材料を提供する
ことを目的とする。An object of the present invention is to provide a non-aqueous secondary battery having high capacity, low self-discharge during high-temperature storage, excellent cyclability at high temperature and low gas generation, and a cathode material thereof.
【0008】[0008]
【課題を解決するための手段】本発明者らが鋭意検討し
た結果、特定の組成を有するスピネル系リチウムマンガ
ン酸化物を正極活物質に用いることにより、上記課題を
解決できることを知見し、本発明を完成するに至った。The present inventors have made intensive studies and as a result, they have found that the above-mentioned problems can be solved by using a spinel lithium manganese oxide having a specific composition as a positive electrode active material. Was completed.
【0009】かかる知見に基づく[請求項1]の非水二
次電池用正極材料の発明は、一般式がLi(1+A) Mn
[2-(A+B)] MB O(4-C) XC (ただし、MはCr,F
e,Co,Ni等の内一種以上の元素であり、A,B,
Cは各々0.02<A≦0.2、0.02<B≦0.
2、0.01≦C≦0.2、Xはハロゲン元素である)
で表わされることを特徴とする。The invention of the positive electrode material for a non-aqueous secondary battery according to claim 1 based on the above findings is based on the general formula Li (1 + A) Mn
[2- (A + B)] M B O (4-C) X C ( although, M is Cr, F
e, Co, Ni and the like, and one or more elements among them, A, B,
C is 0.02 <A ≦ 0.2 and 0.02 <B ≦ 0.
2, 0.01 ≦ C ≦ 0.2, X is a halogen element)
It is characterized by being represented by
【0010】[請求項2]の非水二次電池用正極材料の
発明は、マンガン化合物、リチウム化合物、及びクロム
化合物、鉄化合物、コバルト化合物、ニッケル化合物等
の内少くとも一種以上の化合物とフッ素化合物との混合
物を、600〜900℃で焼成することにより得られた
ことを特徴とする。A second aspect of the invention for a positive electrode material for a non-aqueous secondary battery is to provide a manganese compound, a lithium compound, and at least one compound such as a chromium compound, an iron compound, a cobalt compound, a nickel compound, and fluorine. It is characterized by being obtained by calcining a mixture with a compound at 600 to 900 ° C.
【0011】[請求項3]の非水二次電池の発明は、リ
チウムイオンの吸蔵放出が可能な負極活物質と、リチウ
ムイオンの吸蔵放出が可能なリチウム含有複合酸化物か
らなる正極活物質と、リチウムイオン伝導性の非水電解
質を備えた非水二次電池において、前記リチウム含有複
合酸化物が請求項1あるいは請求項2に記載の正極材料
であることを特徴とする。[0013] The invention of a non-aqueous secondary battery according to claim 3 provides a negative electrode active material capable of inserting and extracting lithium ions and a positive electrode active material comprising a lithium-containing composite oxide capable of inserting and extracting lithium ions. In a non-aqueous secondary battery provided with a non-aqueous electrolyte having lithium ion conductivity, the lithium-containing composite oxide is the positive electrode material according to claim 1 or 2.
【0012】[0012]
【発明の実施の形態】以下本発明につき詳細に説明す
る。本発明は、一般式がLi(1+A) Mn[2-(A+B)] MB
O(4-C) XC (ただし、MはCr,Fe,Co,Ni等
の内一種以上の元素であり、A,B,Cは各々0.02
<A≦0.2、0.02<B≦0.2、0.01≦C≦
0.2、Xはハロゲン元素である)で表わされることを
特徴とするスピネル系のリチウムマンガン複合酸化物及
びこれを用いることを特徴とする非水二次電池である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The present invention is a general formula Li (1 + A) Mn [ 2- (A + B)] M B
O (4-C) X C (where M is at least one element such as Cr, Fe, Co, Ni, etc .; A, B, and C are each 0.02
<A ≦ 0.2, 0.02 <B ≦ 0.2, 0.01 ≦ C ≦
0.2, and X is a halogen element), and a non-aqueous secondary battery using the spinel-based lithium-manganese composite oxide.
【0013】化学量論組成のLiMn2 O4 で表される
リチウムマンガン複合酸化物は、充放電時や保存時高温
にさらされると、マンガンが溶出し結晶構造が破壊さ
れ、電池としての容量が低下する。これに対し、マンガ
ンの一部をリチウム及びクロム、鉄、コバルト、ニッケ
ル等の元素の内少くとも一種以上で置換したものは、結
晶が安定化し、マンガンの溶出が減少し高温でのサイク
ル時に容量の低下が少なくなる。この効果はLi(1+A)
Mn[2-(A+B)] MB O(4-C) XC において、A,B共に
0.02より大きいときに現れ、より好ましくは0.0
4以上でその効果が大きく、さらには0.05以上で顕
著に現れる。しかし、このようにマンガンの一部をリチ
ウム及びクロム、鉄、コバルト、ニッケル等の元素の内
少なくとも一種以上で置き換えると、その量に応じて活
物質としての容量が低くなる。よって電池として高容量
を得る為には、A+Bを0.4以下にするのが好まし
く、さらに好ましくは0.3以下とするのがよい。Lithium-manganese composite oxide represented by stoichiometric composition LiMn 2 O 4 , when exposed to high temperature during charge / discharge or storage, manganese is eluted, the crystal structure is destroyed, and the capacity as a battery is reduced. descend. In contrast, those in which part of manganese is replaced by at least one of lithium and elements such as chromium, iron, cobalt, and nickel stabilize the crystal, reduce the elution of manganese, and increase the capacity during cycling at high temperatures. Is less reduced. This effect is Li (1 + A)
Mn in [2- (A + B)] M B O (4-C) X C, A, appears when B both 0.02 greater, more preferably 0.0
The effect is large at 4 or more, and is remarkably exhibited at 0.05 or more. However, when part of manganese is replaced with at least one of elements such as lithium and chromium, iron, cobalt, and nickel, the capacity as an active material is reduced according to the amount. Therefore, in order to obtain a high capacity as a battery, A + B is preferably set to 0.4 or less, more preferably 0.3 or less.
【0014】しかしこのように、マンガンの一部をリチ
ウム及びクロム、鉄、コバルト、ニッケル等の元素の内
少なくとも一種以上で置き換えるだけでは高温でのサイ
クル特性は改善されるものの十分ではなく、初期容量が
低下し、さらに高温保存時の自己放電が大きく、又ガス
発生も多い。そこで、このようなマンガンの一部をリチ
ウム及びクロム、鉄、コバルト、ニッケル等の元素の内
少なくとも一種以上で置換したリチウムマンガン複合酸
化物の出発原料に、フッ素化合物を混合後焼成し、フッ
素を導入すると、結晶が安定化し、高温保存時の結晶の
崩壊およびそれに伴う酸素の発生が抑制され、脱離酸素
による溶媒の分解が抑制されるため、ガス発生が減少す
る。また、酸素をフッ素で置換することによりマンガン
の平均価数が小さくなり、初期容量も増加する。すなわ
ち、マンガンの一部をリチウム及びクロム、鉄、コバル
ト、ニッケル等の元素の内少なくとも一種以上で置換す
る効果とフッ素の導入による結晶の安定化の相乗効果に
より初期特性、高温保存時特性が改善される。However, as described above, although the cycling characteristics at high temperature are improved by merely replacing a part of manganese with at least one of elements such as lithium and chromium, iron, cobalt, nickel, etc., it is not sufficient. And self-discharge during high-temperature storage is large, and gas generation is also large. Therefore, after mixing a fluorine compound with a starting material of a lithium manganese composite oxide in which part of such manganese is replaced with at least one of elements such as lithium and chromium, iron, cobalt, and nickel, the mixture is calcined, and the fluorine is reduced. When introduced, the crystals are stabilized, the collapse of the crystals during storage at high temperatures and the accompanying generation of oxygen are suppressed, and the decomposition of the solvent due to desorbed oxygen is suppressed, so that gas generation is reduced. Further, by substituting oxygen with fluorine, the average valence of manganese decreases, and the initial capacity also increases. In other words, the initial properties and high-temperature storage properties are improved due to the synergistic effect of replacing part of manganese with at least one of elements such as lithium and chromium, iron, cobalt, and nickel, and stabilizing the crystal by introducing fluorine. Is done.
【0015】本発明におけるハロゲン元素であるフッ素
の導入量Cは、0.01以上0.2以下が好ましく、
0.02以上0.2以下がさらに好ましい。これは、
0.01未満では効果が十分でなく、一方、0.2より
多いと、容量が低下し、電池としたとき高容量が得られ
ないばかりか結晶の安定性がかえって低下し、自己放電
やガスの発生も多くなるからである。In the present invention, the introduction amount C of fluorine as a halogen element is preferably 0.01 or more and 0.2 or less,
0.02 or more and 0.2 or less are more preferable. this is,
If it is less than 0.01, the effect is not sufficient, while if it is more than 0.2, the capacity is reduced, and not only a high capacity is not obtained when the battery is used, but also the stability of the crystal is rather reduced, and self-discharge and gas This is because the occurrence of the occurrence increases.
【0016】本発明のリチウムマンガン複合酸化物を好
適に得るには、マンガン化合物、クロム化合物、鉄化合
物、コバルト化合物、ニッケル化合物、リチウム化合物
及びフッ素化合物を混合した後熱処理して得るが、単一
の結晶相を合成し、初期特性,高温特性に十分な効果を
得るには熱処理を適切に行う必要がある。本発明では、
マンガン化合物、クロム化合物、鉄化合物、コバルト化
合物、ニッケル化合物、リチウム化合物及びフッ素化合
物の混合物の熱処理としては、600〜900℃の特定
の温度で熱処理することが好ましい。ここで、温度を6
00〜900℃と規定したのは、600℃未満では未反
応物が残留し、一方900℃を超えると分解が生じて単
一相が得られないためである。In order to suitably obtain the lithium-manganese composite oxide of the present invention, a manganese compound, a chromium compound, an iron compound, a cobalt compound, a nickel compound, a lithium compound and a fluorine compound are mixed and then heat-treated. In order to synthesize the crystalline phase and obtain sufficient effects on the initial characteristics and high-temperature characteristics, it is necessary to appropriately perform heat treatment. In the present invention,
As the heat treatment of the mixture of the manganese compound, the chromium compound, the iron compound, the cobalt compound, the nickel compound, the lithium compound, and the fluorine compound, it is preferable to perform the heat treatment at a specific temperature of 600 to 900 ° C. Here, the temperature is 6
The reason why the temperature is specified to be from 00 to 900 ° C. is that unreacted substances remain below 600 ° C., whereas if it exceeds 900 ° C., decomposition occurs and a single phase cannot be obtained.
【0017】本発明に用いられるマンガン化合物として
は、電解二酸化マンガン、化学合成二酸化マンガン、γ
−MnOOH、MnCO3 などを用いることができる。
クロム化合物としては酸化クロム(Cr2 O3 等)、炭
酸クロム、水酸化クロムなどを用いることができる。鉄
化合物としては酸化鉄(Fe2 O3 ,Fe3 O4 等)、
水酸化鉄などを用いることができる。コバルト化合物と
しては酸化コバルト(Co3 O4 ,CoO等)、炭酸コ
バルト、水酸化コバルトなどを用いることができる。ニ
ッケル化合物としては酸化ニッケル(NiO等)、炭酸
ニッケル、水酸化ニッケルなどを用いることができる。
リチウム化合物としては、Li2 CO3、LiOH、L
iNO3 、CH3 COOLiなどを用いることができ
る。The manganese compound used in the present invention includes electrolytic manganese dioxide, chemically synthesized manganese dioxide, γ
-MnOOH, or the like can be used MnCO 3.
As the chromium compound, chromium oxide (such as Cr 2 O 3 ), chromium carbonate, chromium hydroxide and the like can be used. Iron oxides (Fe 2 O 3 , Fe 3 O 4, etc.);
Iron hydroxide or the like can be used. As the cobalt compound, cobalt oxide (Co 3 O 4 , CoO, etc.), cobalt carbonate, cobalt hydroxide and the like can be used. As the nickel compound, nickel oxide (NiO or the like), nickel carbonate, nickel hydroxide, or the like can be used.
As the lithium compound, Li 2 CO 3 , LiOH, L
iNO 3 , CH 3 COOLi, or the like can be used.
【0018】本発明に用いられるフッ素化合物として
は、例えばLiFを用いることができる。As the fluorine compound used in the present invention, for example, LiF can be used.
【0019】本発明のコバルト等の遷移元素及びフッ素
が導入されたスピネル系リチウムマンガン複合酸化物よ
りなる正極と組み合わせて用いられる負極としては、通
常この種の非水電解質二次電池に用いられる材料がいず
れも使用可能であり、何等限定されるものではない。上
記負極としては、例えば金属リチウム、リチウム合金、
SnSiO3 などの金属酸化物、LiCoN2 などの金
属窒化物、炭素材料などを用いることができる。また、
炭素材料としてはコークス、天然黒鉛、人造黒鉛、難黒
鉛化炭素などを用いることができる。電解液としては、
リチウム塩を電解質とし、非水溶媒に溶解したものが使
用できる。電解質としては、LiClO4 、LiAsF
6 、LiPF6 、LiBF4 、LiCF3 SO3 、Li
(CF3 SO2)2 Nなど従来公知のものが用いられる。The negative electrode used in combination with the positive electrode of the present invention comprising a spinel-based lithium manganese composite oxide into which a transition element such as cobalt or the like and fluorine have been introduced is usually a material used in this type of nonaqueous electrolyte secondary battery. Can be used, and there is no particular limitation. Examples of the negative electrode include metallic lithium, lithium alloy,
A metal oxide such as SnSiO 3, a metal nitride such as LiCoN 2, or a carbon material can be used. Also,
Coke, natural graphite, artificial graphite, non-graphitizable carbon, and the like can be used as the carbon material. As the electrolyte,
An electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent can be used. As the electrolyte, LiClO 4 , LiAsF
6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , Li
A conventionally known material such as (CF 3 SO 2 ) 2 N is used.
【0020】有機溶媒としては、特に限定されないが、
カーボネート類、ラクトン類、エーテル類などが挙げら
れ、例えばエチレンカーボネート、プロピレンカーボネ
ート、ジエチルカーボネート、ジメチルカーボネート、
メチルエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、テトラヒドロフラン、
1,3−ジオキソラン、γ−ブチロラクトンなどの溶媒
を単独もしくは2種類以上を混合して用いることができ
る。これらの溶媒に溶解される電解質の濃度は0.5〜
2.0モル/リットルで用いることができる。The organic solvent is not particularly limited.
Carbonates, lactones, ethers and the like, for example, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate,
Methyl ethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran,
Solvents such as 1,3-dioxolan and γ-butyrolactone can be used alone or as a mixture of two or more. The concentration of the electrolyte dissolved in these solvents is 0.5 to
It can be used at 2.0 mol / l.
【0021】上記の他に、上記電解質を高分子マトリッ
クスに均一分散させた固体または粘稠体、あるいはこれ
らに非水溶媒を含浸させたものも用いることができる。
高分子マトリックスとしては、例えばポリエチレンオキ
シド、ポリプロピレンオキシド、ポリアクリロニトリ
ル、ポリフッ化ビニリデンなどを用いることができる。
また正極と負極の短絡防止のためのセパレーターを設け
ることができる。セパレーターの例としては、ポリエチ
レン、ポリプロピレン、セルロースなどの材料の多孔性
シート、不織布が用いられる。In addition to the above, a solid or viscous body in which the above-mentioned electrolyte is uniformly dispersed in a polymer matrix, or a solid or viscous body impregnated with a non-aqueous solvent can also be used.
As the polymer matrix, for example, polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride and the like can be used.
Further, a separator for preventing short circuit between the positive electrode and the negative electrode can be provided. Examples of the separator include a porous sheet of a material such as polyethylene, polypropylene, and cellulose, and a nonwoven fabric.
【0022】なお、本発明の正極活物質である一般式L
i(1+A) Mn[2-(A+B)] MB O(4-C ) XC (ただし、M
はCr,Fe,Co,Ni等の内一種以上の元素であ
り、A,B,Cは各々0.02<A≦0.2、0.02
<B≦0.2、0.01≦C≦0.2、Xはハロゲン元
素である)で表わされるスピネル系のリチウムマンガン
複合酸化物のハロゲン元素(X)の原料としては、上述
したようにLiFをその代表例として示したが、本発明
はこれに限定されるものではなく、例えばLiCl,L
iBr等も用いることができ、その場合においても次の
LiFを用いた各実施例と同等の効果を発揮する。The positive electrode active material of the present invention is represented by the general formula L
i (1 + A) Mn [ 2- (A + B)] M B O (4-C) X C ( however, M
Is one or more elements such as Cr, Fe, Co, Ni, etc., and A, B, and C are respectively 0.02 <A ≦ 0.2, 0.02
(B ≦ 0.2, 0.01 ≦ C ≦ 0.2, and X is a halogen element) As a raw material of the halogen element (X) of the spinel-based lithium manganese composite oxide represented by Although LiF is shown as a typical example, the present invention is not limited to this. For example, LiCl, L
iBr or the like can also be used, and even in that case, the same effects as those of the following examples using LiF can be obtained.
【0023】[0023]
【実施例】以下、本発明の実施例を詳細に説明するが、
本発明はこれに限定されるものではない。Hereinafter, embodiments of the present invention will be described in detail.
The present invention is not limited to this.
【0024】(実施例1)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
2でかつMn:Co=1.86:0.1でかつ[Li
LiF ]/([LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理して正極活物質を得た。ここで、[L
i]はリチウムの全モル量を、[LiLi F ]はLiFの
Liのモル量を表わす。このリチウムマンガン複合酸化
物100重量部に対し、導電剤としてアセチレンブラッ
ク3重量部と鱗片状黒鉛3重量部を混合した後に、結着
剤としてポリフッ化ビニリデンを総重量に対し3重量部
加え、N−メチルピロリドン(NMP)を添加して湿式
混合を行いペーストとした。次いでこのペーストを正極
集電体である厚さ20μmのアルミ箔の両面に均一に塗
布し乾燥させた後、150℃に加熱したローラープレス
機で加圧成形して帯状の正極を得た。(Example 1) Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
2 and Mn: Co = 1.86: 0.1 and [Li
LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours to obtain a positive electrode active material. Here, [L
i] represents the total molar amount of lithium, and [Li Li F ] represents the molar amount of Li in LiF. After mixing 3 parts by weight of acetylene black and 3 parts by weight of flaky graphite as conductive agents with respect to 100 parts by weight of the lithium manganese composite oxide, 3 parts by weight of polyvinylidene fluoride as a binder were added to the total weight, and N was added. -Methylpyrrolidone (NMP) was added and wet mixed to obtain a paste. Next, this paste was uniformly applied to both sides of a 20 μm-thick aluminum foil serving as a positive electrode current collector and dried, and then pressure-formed with a roller press machine heated to 150 ° C. to obtain a belt-shaped positive electrode.
【0025】次いで、黒鉛化メソカーボン繊維95重量
部と鱗片状黒鉛5重量部の混合物にカルボキシメチルセ
ルロース1重量部とスチレンブタジエンゴム2重量部、
溶剤として精製水を添加して湿式混合を行いペーストと
した。このペーストを負極集電体である厚さ12μmの
銅箔の両面に均一に塗布し、乾燥させた後加圧成形して
帯状の負極を作製した。上記帯状正極と上記帯状負極の
間にセパレーターとして25μm厚のポリエチレン微多
孔膜を挟んでロール状に巻いて捲回体とした。Next, 1 part by weight of carboxymethylcellulose and 2 parts by weight of styrene butadiene rubber were added to a mixture of 95 parts by weight of graphitized mesocarbon fiber and 5 parts by weight of flake graphite,
Purified water was added as a solvent and wet-mixed to obtain a paste. This paste was uniformly applied on both sides of a copper foil having a thickness of 12 μm as a negative electrode current collector, dried, and then press-formed to prepare a strip-shaped negative electrode. A 25 μm-thick polyethylene microporous membrane was sandwiched as a separator between the strip-shaped positive electrode and the strip-shaped negative electrode to form a roll.
【0026】鉄製の角形缶の底部に絶縁性のフィルムを
挿入し、前記捲回体を押し潰して挿入した。次いで捲回
体から取り出した負極タブを閉塞蓋体に、正極タブを閉
塞蓋体の正極ピンに各々溶接した。電池缶の中にエチレ
ンカーボネートとジエチルカーボネートの1:2の混合
溶媒に1モル/リットルの濃度でLiPF6 を溶解した
電解液を注液した後、閉塞蓋体を溶接し、厚さ8.6m
m、巾34mm、高さ48mmの角形電池を作製した。An insulating film was inserted into the bottom of a square iron can, and the wound body was crushed and inserted. Next, the negative electrode tab taken out from the wound body was welded to the closing lid, and the positive electrode tab was welded to the positive electrode pin of the closing lid. An electrolyte obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a 1: 2 mixed solvent of ethylene carbonate and diethyl carbonate was injected into the battery can, and then the closure lid was welded to a thickness of 8.6 m.
m, a width of 34 mm and a height of 48 mm were produced.
【0027】(実施例2)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.8:0.1でかつ[L
iLiF ]/([LiLi2CO3]+[LiLiF ])=0.1
となるよう「表1」に示す配合で混合し、空気中800
℃で20時間熱処理した。得られたリチウムマンガン複
合酸化物を用いて実施例1と同様にして電池缶を作製し
た。Example 2 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.8: 0.1 and [L
i LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1
And mixed in the composition shown in Table 1 in air.
Heat treatment was performed at 20 ° C. for 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0028】(実施例3)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.6
0でかつMn:Co=1.7:0.1でかつ[L
iLiF ]/([LiLi2CO3]+[LiLiF ])=0.1
となるよう「表1」に示す配合で混合し、空気中800
℃で20時間熱処理した。得られたリチウムマンガン複
合酸化物を用いて実施例1と同様にして電池缶を作製し
た。Example 3 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.6
0 and Mn: Co = 1.7: 0.1 and [L
i LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1
And mixed in the composition shown in Table 1 in air.
Heat treatment was performed at 20 ° C. for 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0029】(実施例4)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.87:0.03でかつ[Li
LiF ]/([LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理した。得られたリチウムマンガン複合
酸化物を用いて実施例1と同様にして電池缶を作製し
た。Example 4 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.87: 0.03 and [Li
LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0030】(実施例5)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.7:0.2でかつ[L
iLiF ]/[LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理した。得られたリチウムマンガンの複
合酸化物を用いて実施例1と同様にして電池缶を作製し
た。Example 5 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.7: 0.2 and [L
i LiF ] / [Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0031】(実施例6)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.8:0.1でかつ[L
iLiF ]/([LiLi2CO3]+[LiLiF ])=0.1
となるよう「表1」に示す配合で混合し、空気中800
℃で20時間熱処理した。得られたリチウムマンガン複
合酸化物を用いて実施例1と同様にして電池缶を作製し
た。Example 6 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.8: 0.1 and [L
i LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1
And mixed in the composition shown in Table 1 in air.
Heat treatment was performed at 20 ° C. for 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0032】(実施例7)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.8:0.1でかつ[L
iLiF ]/([LiLi2CO3]+[LiLiF ])=0.2
となるよう「表1」に示す配合で混合し、空気中800
℃で20時間熱処理した。得られたリチウムマンガン複
合酸化物を用いて実施例1と同様にして電池缶を作製し
た。Example 7 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.8: 0.1 and [L
i LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.2
And mixed in the composition shown in Table 1 in air.
Heat treatment was performed at 20 ° C. for 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0033】(比較例1)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
1でかつMn:Co=1.88:0.1でかつ[Li
LiF ]/([LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理した。得られたリチウムマンガン複合
酸化物を用いて実施例1と同様にして電池缶を作製し
た。Comparative Example 1 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
1 and Mn: Co = 1.88: 0.1 and [Li
LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0034】(比較例2)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.6
3でかつMn:Co=1.64:0.1でかつ[Li
LiF ]/([LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理した。得られたリチウムマンガン複合
酸化物を用いて実施例1と同様にして電池缶を作製し
た。Comparative Example 2 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.6
3 and Mn: Co = 1.64: 0.1 and [Li
LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0035】(比較例3)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.88:0.02でかつ[Li
LiF ]/([LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理した。得られたリチウムマンガン複合
酸化物を用いて実施例1と同様にして電池缶を作製し
た。(Comparative Example 3) Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.88: 0.02 and [Li
LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0036】(比較例4)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.65:0.25でかつ[Li
LiF ]/([LiLi2CO3]+[LiLiF ])=0.1と
なるよう「表1」に示す配合で混合し、空気中800℃
で20時間熱処理した。得られたリチウムマンガン複合
酸化物を用いて実施例1と同様にして電池缶を作製し
た。Comparative Example 4 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.65: 0.25 and [Li
LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.1 and mixed in the composition shown in Table 1 in air at 800 ° C.
For 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0037】(比較例5)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.8:0.1でかつ[L
iLiF ]/([LiLi2CO3]+[LiLiF ])=0.0
08となるよう「表1」に示す配合で混合し、空気中8
00℃で20時間熱処理した。得られたリチウムマンガ
ン複合酸化物を用いて実施例1と同様にして電池缶を作
製した。Comparative Example 5 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.8: 0.1 and [L
i LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.0
08 and mixed in the composition shown in Table 1 in air.
Heat treatment was performed at 00 ° C. for 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0038】(比較例6)電解二酸化マンガン、炭酸コ
バルト、Li2 CO3 およびLiFを、組成比が[L
i]/([Li]−1+[Mn]+[Co])=0.5
5でかつMn:Co=1.8:0.1でかつ[L
iLiF ]/([LiLi2CO3]+[LiLiF ])=0.2
5となるよう「表1」に示す配合で混合し、空気中80
0℃で20時間熱処理した。得られたリチウムマンガン
複合酸化物を用いて実施例1と同様にして電池缶を作製
した。Comparative Example 6 Electrolytic manganese dioxide, cobalt carbonate, Li 2 CO 3 and LiF were mixed at a composition ratio of [L
i] / ([Li] -1+ [Mn] + [Co]) = 0.5
5 and Mn: Co = 1.8: 0.1 and [L
i LiF ] / ([Li Li2CO3 ] + [Li LiF ]) = 0.2
5 and mixed in the composition shown in Table 1 in air.
Heat treatment was performed at 0 ° C. for 20 hours. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0039】(比較例7)電解二酸化マンガン、Li2
CO3 およびLiFを、組成比が[Li]/([Li]
−1+[Mn]=0.55でかつ[LiLiF ]/([L
iLi2CO3]+[LiLiF ])=0.1となるよう「表
1」に示す配合で混合し、空気中800℃で20時間熱
処理した。得られたリチウムマンガン複合酸化物を用い
て実施例1と同様にして電池缶を作製した。Comparative Example 7 Electrolytic manganese dioxide, Li 2
CO 3 and LiF were mixed at a composition ratio of [Li] / ([Li]
-1+ [Mn] = 0.55 and [Li LiF ] / ([L
i Li2CO3 ] + [Li LiF ]) = 0.1, and the mixture was heat-treated at 800 ° C. for 20 hours in air. Using the obtained lithium manganese composite oxide, a battery can was produced in the same manner as in Example 1.
【0040】(試験結果)実施例及び比較例で作製した
電池を以下のように評価した。充電電圧4.2Vで5時
間充電を行った後800mAの一定電流で2.7Vまで
放電を行い電池容量を求めた。さらにこの充放電サイク
ルを5サイクル繰り返した後、充電を行い4.2Vの充
電状態で85℃下、120時間保存後、室温まで冷却し
放電を行った。自己放電率は{1−(6サイクル目の放
電量/5サイクル目の放電量)}×100により求め
た。またこのときの電池缶の厚さを測定した。また、同
時に作製した別の電池を用い、充電電圧4.2Vで5時
間充電を行った後800mAの一定電流で2.7Vまで
放電を行うサイクルを60℃下、100サイクル行い、
1サイクル目の放電容量に対する100サイクル目の放
電容量の比を求め、60℃でのサイクル容量維持率とし
た。以上の結果を「表1」に示す。(Test Results) The batteries produced in Examples and Comparative Examples were evaluated as follows. After charging for 5 hours at a charging voltage of 4.2 V, the battery was discharged at a constant current of 800 mA to 2.7 V to obtain a battery capacity. After repeating this charge / discharge cycle for 5 cycles, the battery was charged, stored at 85 ° C. for 120 hours in a 4.2 V charged state, cooled to room temperature, and discharged. The self-discharge rate was determined by {1- (discharge amount at sixth cycle / discharge amount at fifth cycle)} × 100. At this time, the thickness of the battery can was measured. Further, using another battery produced at the same time, the battery was charged at a charging voltage of 4.2 V for 5 hours and then discharged at a constant current of 800 mA to 2.7 V at 60 ° C. for 100 cycles.
The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the first cycle was determined, and the ratio was taken as the cycle capacity retention rate at 60 ° C. The above results are shown in Table 1.
【0041】[0041]
【表1】 [Table 1]
【0042】「表1」に示すように、Li(1+A) Mn
[2-(A+B)] MB O(4-C) XC (ただし、A,B,Cは各
々0.02<A≦0.2、0.02<B≦0.2、0≦
C≦0.2、0.01≦D≦0.2、Xはハロゲン元素
である)で表わされるスピネル系のリチウムマンガン複
合酸化物を正極活物質に用いることにより、高容量でか
つ高温でのサイクル特性、高温保存特性に優れた非水二
次電池を得ることが判明した。As shown in Table 1, Li (1 + A) Mn
[2- (A + B)] M B O (4-C) X C ( however, A, B, C are each 0.02 <A ≦ 0.2,0.02 <B ≦ 0.2,0 ≤
C ≦ 0.2, 0.01 ≦ D ≦ 0.2, and X is a halogen element), by using a spinel-based lithium manganese composite oxide represented by It has been found that a non-aqueous secondary battery having excellent cycle characteristics and high-temperature storage characteristics can be obtained.
【0043】[0043]
【発明の効果】以上述べたように、本発明はLi(1+A)
Mn[2-(A+B)] MB O(4-C) XC (ただし、A,B,C
は各々0.02<A≦0.2、0.02<B≦0.2、
0.01≦C≦0.2、Xはハロゲン元素である)で表
わされるスピネル系のリチウムマンガン複合酸化物を正
極活物質に用いることにより、高容量でかつ高温でのサ
イクル特性、高温保存特性に優れた電池を得ることがで
きる。さらにリチウムマンガン複合酸化物にフッ素のみ
を導入したものに比べ、よりガス発生の少ない保存性に
優れた電池を得ることができ、安価でかつ供給不安のな
いリチウムマンガン複合酸化物を用いて、高価なリチウ
ムコバルト複合酸化物を用いた場合と遜色のない非水電
解液二次を提供でき、その工業的価値は非常に大きい。As described above, the present invention provides Li (1 + A)
Mn [2- (A + B) ] M B O (4-C) X C ( however, A, B, C
Are respectively 0.02 <A ≦ 0.2, 0.02 <B ≦ 0.2,
By using a spinel-based lithium manganese composite oxide represented by the following formula (0.01 ≦ C ≦ 0.2, X is a halogen element) as a positive electrode active material, high capacity, high temperature cycle characteristics, and high temperature storage characteristics An excellent battery can be obtained. Furthermore, compared to a lithium manganese composite oxide in which only fluorine is introduced, a battery with less gas generation and excellent storage stability can be obtained. A non-aqueous electrolyte secondary that is comparable to the case of using a suitable lithium-cobalt composite oxide can be provided, and its industrial value is extremely large.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 文茂 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内 (72)発明者 津端 敏男 神奈川県川崎市川崎区夜光1丁目3番1号 旭化成工業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Fumio Nishikawa 1-3-1, Yoko, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Asahi Kasei Kogyo Co., Ltd. No. 1 Asahi Kasei Kogyo Co., Ltd.
Claims (3)
O(4-C) XC (ただし、MはCr,Fe,Co,Ni等
の内一種以上の元素であり、A,B,Cは各々0.02
<A≦0.2、0.02<B≦0.2、0.01≦C≦
0.2、Xはハロゲン元素である)で表わされることを
特徴とする非水二次電池用正極材料。[Claim 1] The general formula is Li (1 + A) Mn [2- (A + B)] M B
O (4-C) X C (where M is at least one element such as Cr, Fe, Co, Ni, etc .; A, B, and C are each 0.02
<A ≦ 0.2, 0.02 <B ≦ 0.2, 0.01 ≦ C ≦
0.2, and X is a halogen element).
クロム化合物、鉄化合物、コバルト化合物、ニッケル化
合物等の内少くとも一種以上の化合物とフッ素化合物と
の混合物を、600〜900℃で焼成することにより得
られたことを特徴とする請求項1記載の非水二次電池用
正極材料。2. A mixture of at least one of a manganese compound, a lithium compound, a chromium compound, an iron compound, a cobalt compound, a nickel compound and the like, and a fluorine compound, which is obtained by firing at 600 to 900 ° C. The positive electrode material for a non-aqueous secondary battery according to claim 1, wherein
活物質と、リチウムイオンの吸蔵放出が可能なリチウム
含有複合酸化物からなる正極活物質と、リチウムイオン
伝導性の非水電解質を備えた非水二次電池において、前
記リチウム含有複合酸化物が請求項1あるいは請求項2
に記載の正極材料であることを特徴とする非水二次電
池。3. A negative electrode comprising a negative electrode active material capable of inserting and extracting lithium ions, a positive electrode active material comprising a lithium-containing composite oxide capable of inserting and extracting lithium ions, and a lithium ion conductive non-aqueous electrolyte. 3. The water secondary battery according to claim 1, wherein the lithium-containing composite oxide is used.
A non-aqueous secondary battery, which is the positive electrode material according to 1.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9272421A JPH11111291A (en) | 1997-10-06 | 1997-10-06 | Positive electrode material for nonaqueous secondary battery and battery using this |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9272421A JPH11111291A (en) | 1997-10-06 | 1997-10-06 | Positive electrode material for nonaqueous secondary battery and battery using this |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11111291A true JPH11111291A (en) | 1999-04-23 |
Family
ID=17513684
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9272421A Pending JPH11111291A (en) | 1997-10-06 | 1997-10-06 | Positive electrode material for nonaqueous secondary battery and battery using this |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11111291A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000090933A (en) * | 1998-07-13 | 2000-03-31 | Ngk Insulators Ltd | Lithium secondary battery |
| JP2001048547A (en) * | 1999-08-17 | 2001-02-20 | Nikki Chemcal Co Ltd | Spinel-type lithium-manganese multiple oxide, its production and use |
| WO2001015252A1 (en) * | 1999-08-19 | 2001-03-01 | Mitsubishi Chemical Corporation | Positive electrode material for lithium secondary cell and positive electrode, and lithium secondary cell |
| KR100296878B1 (en) * | 1999-06-12 | 2001-07-12 | 김순택 | Positive active material for lithium secondary battery and lithium secondary battery comprising the same |
| KR100296877B1 (en) * | 1999-05-27 | 2001-07-12 | 김순택 | Positive active material for lithium secondary battery and lithium secondary by using the same |
| JP2001319653A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Maxell Ltd | Non-aqueous secondary battery |
| JP2002134110A (en) * | 2000-10-23 | 2002-05-10 | Sony Corp | Method for producing positive electrode active material and method for producing nonaqueous electrolyte battery |
| JP2002151080A (en) * | 2000-11-15 | 2002-05-24 | Sony Corp | Positive pole active material, non-aqueous electrolyte battery, and those manufacturing method |
| JP2002324549A (en) * | 2001-04-24 | 2002-11-08 | Tdk Corp | Manufacturing method for electrode for non-aqueous electrolyte battery and non-aqueous electrolyte secondary battery |
| US7799458B2 (en) | 2001-03-30 | 2010-09-21 | Sanyo Electric Co., Ltd. | Nonaqueous electrolytic secondary battery and method of manufacturing the same |
| JP2012067006A (en) * | 2011-11-02 | 2012-04-05 | Jgc Catalysts & Chemicals Ltd | Spinel type lithium manganese composite oxide, method of manufacturing the same, and application of the same |
| CN107658451A (en) * | 2017-09-18 | 2018-02-02 | 北京理工大学 | A kind of 622NCM tertiary cathode materials and preparation method thereof |
-
1997
- 1997-10-06 JP JP9272421A patent/JPH11111291A/en active Pending
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000090933A (en) * | 1998-07-13 | 2000-03-31 | Ngk Insulators Ltd | Lithium secondary battery |
| US6368750B1 (en) | 1998-07-13 | 2002-04-09 | Ngk Insulators, Ltd. | Lithium secondary battery |
| KR100296877B1 (en) * | 1999-05-27 | 2001-07-12 | 김순택 | Positive active material for lithium secondary battery and lithium secondary by using the same |
| KR100296878B1 (en) * | 1999-06-12 | 2001-07-12 | 김순택 | Positive active material for lithium secondary battery and lithium secondary battery comprising the same |
| JP2001048547A (en) * | 1999-08-17 | 2001-02-20 | Nikki Chemcal Co Ltd | Spinel-type lithium-manganese multiple oxide, its production and use |
| WO2001015252A1 (en) * | 1999-08-19 | 2001-03-01 | Mitsubishi Chemical Corporation | Positive electrode material for lithium secondary cell and positive electrode, and lithium secondary cell |
| JP2001319653A (en) * | 2000-05-12 | 2001-11-16 | Hitachi Maxell Ltd | Non-aqueous secondary battery |
| JP2002134110A (en) * | 2000-10-23 | 2002-05-10 | Sony Corp | Method for producing positive electrode active material and method for producing nonaqueous electrolyte battery |
| JP2002151080A (en) * | 2000-11-15 | 2002-05-24 | Sony Corp | Positive pole active material, non-aqueous electrolyte battery, and those manufacturing method |
| US7799458B2 (en) | 2001-03-30 | 2010-09-21 | Sanyo Electric Co., Ltd. | Nonaqueous electrolytic secondary battery and method of manufacturing the same |
| JP2002324549A (en) * | 2001-04-24 | 2002-11-08 | Tdk Corp | Manufacturing method for electrode for non-aqueous electrolyte battery and non-aqueous electrolyte secondary battery |
| JP2012067006A (en) * | 2011-11-02 | 2012-04-05 | Jgc Catalysts & Chemicals Ltd | Spinel type lithium manganese composite oxide, method of manufacturing the same, and application of the same |
| CN107658451A (en) * | 2017-09-18 | 2018-02-02 | 北京理工大学 | A kind of 622NCM tertiary cathode materials and preparation method thereof |
| CN107658451B (en) * | 2017-09-18 | 2020-01-31 | 北京理工大学 | A kind of 622NCM ternary cathode material and preparation method thereof |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3813001B2 (en) | Non-aqueous secondary battery | |
| EP0782206B1 (en) | Positive electrode active material for lithium secondary battery, method of producing thereof, and lithium secondary battery | |
| US8026003B2 (en) | Negative active material for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery comprising the same | |
| US7608365B1 (en) | Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same | |
| CA2522107A1 (en) | Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same | |
| KR100946006B1 (en) | Non-aqueous electrolyte secondary battery and manufacturing method thereof | |
| JP2004139743A (en) | Nonaqueous electrolyte secondary battery | |
| JP2004047180A (en) | Nonaqueous electrolytic solution battery | |
| JPH0982325A (en) | Manufacture of positive active material | |
| JP2008277309A (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
| JP2000195513A (en) | Nonaqueous electrolyte secondary battery | |
| JPH09147863A (en) | Nonaqueous electrolyte battery | |
| CN101084161A (en) | Optimised positive electrode material for lithium cell batteries, method for the production thereof, electrode, and battery for implementing said method | |
| JP2002358961A (en) | Non-aqueous electrolyte secondary battery | |
| JPH11111291A (en) | Positive electrode material for nonaqueous secondary battery and battery using this | |
| CA2210489A1 (en) | Delithiated cobalt oxide and nickel oxide phases and method of preparing same | |
| JP4707426B2 (en) | Nonaqueous electrolyte secondary battery | |
| JPH06349493A (en) | Secondary battery | |
| US6482546B1 (en) | Rechargeable lithium battery | |
| KR20000071371A (en) | Non-Aqueous Electrolyte Battery | |
| JP2002170566A (en) | Lithium secondary battery | |
| JP2000348722A (en) | Nonaqueous electrolyte battery | |
| JP3969072B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP3650548B2 (en) | Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material | |
| JP2002270181A (en) | Non-aqueous electrolyte battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040316 |