JPH11123577A - Laser machining method for brittle material - Google Patents
Laser machining method for brittle materialInfo
- Publication number
- JPH11123577A JPH11123577A JP9288077A JP28807797A JPH11123577A JP H11123577 A JPH11123577 A JP H11123577A JP 9288077 A JP9288077 A JP 9288077A JP 28807797 A JP28807797 A JP 28807797A JP H11123577 A JPH11123577 A JP H11123577A
- Authority
- JP
- Japan
- Prior art keywords
- brittle material
- laser beam
- laser
- pulse
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title abstract description 15
- 238000003754 machining Methods 0.000 title abstract 5
- 239000011521 glass Substances 0.000 claims description 28
- 238000003672 processing method Methods 0.000 claims description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 6
- 239000001569 carbon dioxide Substances 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 2
- 238000005553 drilling Methods 0.000 abstract 1
- 230000003252 repetitive effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005338 heat storage Methods 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
- B23K26/382—Removing material by boring or cutting by boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/0025—Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、被加工物の表面
にパルスレーザー光を照射し、このレーザー光のエネル
ギーを利用して、被加工物表面を加工する方法に関す
る。さらには、パルスレーザー光の照射のタイミングを
調整して、脆性材を破壊せずに侵食加工する方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for irradiating a surface of a workpiece with a pulse laser beam and utilizing the energy of the laser beam to process the surface of the workpiece. Further, the present invention relates to a method of performing erosion processing without breaking a brittle material by adjusting the timing of irradiation of a pulse laser beam.
【0002】[0002]
【従来の技術】脆性材の表面にレーザー光を照射し、そ
の表面を加工する方法が従来から知られている。レーザ
ー光は、マイクロ波よりも波長の短い可視光線・近赤外
線などであって、位相がよく揃い収束性もよいので、狭
い面積にきわめて高密度の光エネルギーを集中させるこ
とができる。このレーザー光の性質を利用することによ
り、機械式の加工方法では不可能な微細で緻密な加工
を、脆性材の表面に施すことができる。2. Description of the Related Art A method of irradiating a surface of a brittle material with a laser beam and processing the surface has been conventionally known. The laser light is a visible light, a near-infrared ray, or the like having a shorter wavelength than the microwave, and has a good phase and good convergence, so that extremely high-density light energy can be concentrated in a small area. By utilizing the property of the laser light, fine and dense processing that cannot be performed by a mechanical processing method can be performed on the surface of the brittle material.
【0003】レーザー光は、脆性材に照射されると、脆
性材の表面で瞬間的に吸収される。このレーザー光を吸
収した部分は、温度が瞬間的に高くなり、その部分だけ
が蒸発する。したがって、レーザー光を照射することに
より、非接触でありながら、脆性材の表面を侵食加工す
ることができる。[0003] When a brittle material is irradiated with laser light, it is instantaneously absorbed on the surface of the brittle material. The temperature of the portion that has absorbed the laser light instantaneously rises, and only that portion evaporates. Therefore, by irradiating the laser beam, the surface of the brittle material can be eroded while being in non-contact.
【0004】脆性材の表面を加工する方法としては、機
械式の接触研削方法が現在一般的である。この方法は、
研削時に振動や衝撃が発生し易く、脆性材の加工方法と
して好ましいものではない。なぜなら、脆性材は、その
名の通り、硬くかつ脆いので、振動あるいは衝撃に弱い
からである。対して、レーザーを使用する加工方法は、
脆性材と非接触であるので、振動もしくは衝撃が発生し
難い。すなわち、レーザーによる脆性材の加工方法は、
その表面に微細で緻密な加工が可能であり、かつ加工時
の割れもしくは破損を発生させ難くする効果も併せ持
つ。したがって、レーザーを使用する加工方法は、脆性
材の加工方法として好ましい。[0004] As a method of processing the surface of a brittle material, a mechanical contact grinding method is currently common. This method
Vibration and impact are likely to occur during grinding, which is not a preferable method for processing brittle materials. This is because a brittle material is hard and brittle, as the name implies, and is vulnerable to vibration or impact. On the other hand, the processing method using laser is
Since it is not in contact with the brittle material, vibration or impact hardly occurs. That is, the processing method of the brittle material by laser,
The surface can be finely and densely processed, and has an effect of making it difficult to generate cracks or breakage during the processing. Therefore, a processing method using a laser is preferable as a processing method for a brittle material.
【0005】しかし、レーザーを使用した脆性材の加工
方法においても、脆性材の割れもしくは破損が全くない
わけではなかった。これは、レーザー光を吸収した部分
が加熱蒸発した後に、その周辺に熱が残留し、熱応力が
発生するからである。熱応力が脆性材の許容範囲を超え
た場合は、その部分にクラックが発生し、脆性材の強度
が著しく低下する。ここで、クラックとは、脆性材の表
面の微少な傷のことである。クラックは、小さな力でも
脆性材内部に容易に進行するので、脆性材の強度を著し
く低下させる。すなわち、クラックが発生した脆性材
は、小さな振動などによっても容易に破損するようにな
る。However, even in a method of processing a brittle material using a laser, the brittle material is not completely free from cracks or breakage. This is because, after the portion that has absorbed the laser beam is heated and evaporated, heat remains around the portion and thermal stress is generated. If the thermal stress exceeds the allowable range of the brittle material, cracks will occur in that portion, and the strength of the brittle material will be significantly reduced. Here, the crack is a minute flaw on the surface of the brittle material. The cracks easily advance into the brittle material even with a small force, and thus significantly reduce the strength of the brittle material. That is, the brittle material having a crack can be easily broken even by a small vibration or the like.
【0006】そこで、クラックを発生させない脆性材の
レーザー加工方法が、これまで様々に研究されてきた。
たとえば、「続・レーザー加工」(開発社出版:小林
昭著:48ページ)には、ガラスを400℃に加熱した
状態でレーザー加工を行うと、レーザー光の熱の残留に
よるクラックの発生が見られない旨の記載がされてい
る。Therefore, various laser processing methods for brittle materials that do not generate cracks have been studied.
For example, "Continuation, laser processing" (published by developer: Kobayashi
(Akira: p. 48) states that when laser processing is performed while the glass is heated to 400 ° C., no crack is generated due to residual heat of the laser beam.
【0007】[0007]
【発明が解決しようとする課題】ところが、この方法に
は、以下のような問題点が存在した。すなわち、ガラス
全体を加熱するための大きな加熱設備が必要であるこ
と。加熱炉から受ける熱の影響を小さくするために、レ
ーザーを加熱炉から離しておかなければならないこと。
レーザーを加熱炉から離した場合、ガラスの表面でレー
ザー光の焦点を精度よく合わせることが難しいこと。レ
ーザー光の焦点を合わせるためのレンズを加熱炉の付近
まで近づけると、これらのレンズに含まれるセレン化亜
鉛ZnSeなどが熱により有毒ガスとなって発生する恐
れがあることなどである。However, this method has the following problems. That is, a large heating facility for heating the entire glass is required. The laser must be kept away from the furnace to reduce the effects of heat from the furnace.
When the laser is separated from the heating furnace, it is difficult to accurately focus the laser beam on the surface of the glass. When lenses for focusing laser light are brought close to a heating furnace, zinc selenide and ZnSe contained in these lenses may become toxic gas due to heat and may be generated.
【0008】この発明は、このような従来技術に存在す
る問題点に着目してなされたものである。その目的とす
るところは、レーザーによる脆性材の加工において、脆
性材を加熱することなく、常温中で加工を行ってもその
表面にクラックを発生させない方法を提供することにあ
る。[0008] The present invention has been made by focusing on the problems existing in such prior art. It is an object of the present invention to provide a method of processing a brittle material by laser without generating a crack on the surface of the brittle material even if the processing is performed at room temperature without heating the brittle material.
【0009】[0009]
【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に記載の発明の脆性材のレーザー加工方
法は、パルス幅が50〜200,000ns、繰返し周波
数が20〜2,000Hzであるパルスレーザー光を1〜
5回照射する毎に、0.1〜10sの非照射時間帯を設
けるものである。In order to achieve the above object, a laser processing method for a brittle material according to the present invention has a pulse width of 50 to 200,000 ns and a repetition frequency of 20 to 2, 000Hz pulsed laser light from 1 to
A non-irradiation time zone of 0.1 to 10 s is provided every five irradiations.
【0010】請求項2に記載の発明の脆性材のレーザー
加工方法は、請求項1に記載の発明において、パルスレ
ーザー光は炭酸ガスレーザー光であり、脆性材はガラス
またはセラミックであるものである。According to a second aspect of the present invention, in the laser processing method for a brittle material according to the first aspect, the pulse laser beam is a carbon dioxide laser beam and the brittle material is glass or ceramic. .
【0011】請求項3に記載の発明の脆性材のレーザー
加工方法は、請求項1に記載の発明において、パルスレ
ーザー光はYAGレーザー光もしくはYLFレーザー光
であり、脆性材はセラミックであるものである。According to a third aspect of the present invention, there is provided the laser processing method for a brittle material according to the first aspect, wherein the pulse laser beam is a YAG laser beam or a YLF laser beam, and the brittle material is a ceramic. is there.
【0012】[0012]
【発明の実施の形態】以下、この発明の実施形態につい
て詳細に説明する。レーザーから脆性材の表面までのレ
ーザー光の光路を図1に示す。ただし、この形態に限る
ものではない。レーザー1から出力されたレーザー光2
は、ビームエクスパンダ3によって、そのビーム径を拡
げられる。このビームは、開口マスク4によってその径
を少し小さくされ、その後反射鏡5で脆性材7の方向に
反射される。さらに、このビームは、集光レンズ6によ
って徐々にその径が小さくなるように絞られて、脆性材
7の表面で焦点を合わされる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 shows the optical path of the laser beam from the laser to the surface of the brittle material. However, it is not limited to this mode. Laser light 2 output from laser 1
Can be expanded in beam diameter by the beam expander 3. This beam is slightly reduced in diameter by the aperture mask 4 and then reflected by the reflector 5 in the direction of the brittle material 7. Further, this beam is narrowed down by the condenser lens 6 so as to gradually reduce its diameter, and is focused on the surface of the brittle material 7.
【0013】上述の通り、レーザー光は、脆性材の表面
で吸収されて、その部分の温度が急激に高くなる。温度
が高くなることにより、その部分が蒸発するので、脆性
材の表面が侵食加工される。この際、長時間連続でレー
ザー光を出力させると、脆性材の加工された部分の周辺
部に、クラックが頻繁に発生する。これは、加工に用い
られたレーザー光のエネルギーが、この部分の加工すな
わち蒸発にだけ利用されるのではなく、その周辺部に熱
として蓄積するからである。つまり、侵食加工されたそ
の周辺部に残った熱(以下、蓄熱と称する)が、脆性材
の熱膨張を引き起こし、結果としてクラックを発生させ
る。As described above, the laser beam is absorbed by the surface of the brittle material, and the temperature of that portion rises sharply. As the temperature increases, the portion evaporates, so that the surface of the brittle material is eroded. At this time, if the laser light is output continuously for a long time, cracks frequently occur around the processed portion of the brittle material. This is because the energy of the laser beam used for processing is not only used for processing or evaporation of this portion, but is accumulated as heat in the peripheral portion thereof. That is, the heat (hereinafter, referred to as heat storage) remaining in the peripheral portion subjected to the erosion processing causes thermal expansion of the brittle material, and as a result, cracks are generated.
【0014】したがって、脆性材のレーザー加工方法に
おいて、クラックを発生させないためには、蓄熱を防ぐ
必要がある。この蓄熱を防止するために、この発明は、
レーザー光の照射のタイミングを調整する。すなわち、
パルス幅が50〜200,000ns、繰返し周波数が2
0〜2,000Hzであるパルスレーザー光を用いて、こ
のパルスレーザー光を1〜5回照射する毎に、0.1〜
10sのレーザー光の非照射時間帯を設ける。ここで、
パルス幅とは、1回のレーザー光照射時間のことであ
る。なお、1回のレーザー光の照射を単パルスと称す
る。また、繰り返し周波数とは、1秒間当たりの単パル
スの数のことである。Therefore, in the laser processing method for a brittle material, it is necessary to prevent heat accumulation in order not to generate cracks. In order to prevent this heat storage, the present invention
Adjust the timing of laser light irradiation. That is,
Pulse width 50-200,000 ns, repetition frequency 2
Using a pulse laser beam having a frequency of 0 to 2,000 Hz, each time the pulse laser beam is irradiated 1 to 5 times, 0.1 to
A non-irradiation time zone of 10 s laser light is provided. here,
The pulse width refers to one laser light irradiation time. Note that one laser light irradiation is referred to as a single pulse. The repetition frequency is the number of single pulses per second.
【0015】この発明は、パルスレーザー光を上記のよ
うに照射することにより、蓄熱をパルス幅の隙間で放出
させ、蓄熱された部分の温度を下げることができる。さ
らに、このパルスレーザー光を1〜5回照射する毎に、
0.1〜10sの非照射時間帯を設けることにより、蓄
熱をさらに効果的に放出させることができる。すなわ
ち、この発明は、パルス幅の隙間の他に、非照射時間帯
を意識的に設けることにより、蓄熱を効果的に防止す
る。そして、蓄熱が防止されることにより、クラックが
発生し難くなる。According to the present invention, by irradiating a pulse laser beam as described above, heat can be released in a gap having a pulse width, and the temperature of a portion where heat has been stored can be reduced. Furthermore, every time this pulsed laser light is irradiated 1 to 5 times,
By providing a non-irradiation time zone of 0.1 to 10 s, heat can be released more effectively. That is, the present invention effectively prevents heat storage by consciously setting a non-irradiation time zone in addition to the gap of the pulse width. And, by preventing heat storage, cracks are less likely to occur.
【0016】蓄熱を防ぎクラックの発生を防止するに
は、パルス幅を短くし、繰返し周波数を小さくすればよ
い。しかしながら、このような照射をすると、加工能率
が極めて悪くなる。この発明は、上記の条件でパルスレ
ーザー光を照射することにより、クラックを発生させず
に加工能率を高く維持することができる。In order to prevent heat accumulation and cracks, the pulse width may be reduced and the repetition frequency may be reduced. However, when such irradiation is performed, the processing efficiency becomes extremely poor. According to the present invention, by irradiating the pulse laser beam under the above conditions, it is possible to maintain high processing efficiency without generating cracks.
【0017】上記パルスレーザーが炭酸ガスレーザーで
ある場合は、ガラスおよびセラミックなどの幅広い脆性
材にこの発明を適用することができる。これは、炭酸ガ
スレーザー光のピーク波長が10.6μmであり、また
ガラスおよびセラミックがこの波長の光を効率よく吸収
できるからである。When the pulse laser is a carbon dioxide laser, the present invention can be applied to a wide range of brittle materials such as glass and ceramic. This is because the peak wavelength of the carbon dioxide laser light is 10.6 μm, and glass and ceramics can efficiently absorb light of this wavelength.
【0018】現在脆性材は数多く存在するが、中でもガ
ラスは、表面の平滑性もしくは透明性といった特徴を有
しており、幅広い分野で使用されている。しかしなが
ら、ガラスは、振動あるいは衝撃に非常に弱く、その加
工が極めて困難であった。したがって、この発明は、ガ
ラスの表面加工に最適である。At present, there are many brittle materials. Among them, glass has characteristics such as surface smoothness and transparency, and is used in a wide range of fields. However, glass is very susceptible to vibration or impact, making its processing extremely difficult. Therefore, the present invention is most suitable for glass surface processing.
【0019】さらには、パルスレーザーがYAGもしく
はYLFレーザーである場合は、脆性材がセラミックで
あることが好ましい。YAGもしくはYLFレーザー
は、その装置が簡素で、設備導入が極めて容易であると
いう特徴を有する。しかし、YAGレーザー光はピーク
波長が1.06μmであり、YLFレーザー光はピーク
波長が1.05μmであるので、脆性材の中でも吸収波
長域の広いセラミックにのみ利用できる。Further, when the pulse laser is a YAG or YLF laser, the brittle material is preferably ceramic. The YAG or YLF laser has a feature that the device is simple and the installation of equipment is extremely easy. However, since the YAG laser beam has a peak wavelength of 1.06 μm and the YLF laser beam has a peak wavelength of 1.05 μm, it can be used only for ceramics having a wide absorption wavelength range among brittle materials.
【0020】[0020]
【実施例】以下、実施例および比較例により、この発明
をさらに具体的に説明する。 (レーザー照射方法)図1に記載の装置を用いて、ガラ
ス板7にパルスレーザー光2を照射した。レーザー1は
炭酸ガスレーザーであって、ここから出力されるパルス
レーザー光2は、波長10.6μm、パルス幅60μsで
あり、繰り返し周波数が1kHzである。また、パルスレ
ーザー光2の単パルス11のエネルギー量は、40mJで
ある。The present invention will be described more specifically below with reference to examples and comparative examples. (Laser Irradiation Method) The glass plate 7 was irradiated with the pulse laser beam 2 using the apparatus shown in FIG. The laser 1 is a carbon dioxide laser, and the pulse laser beam 2 output from the laser 1 has a wavelength of 10.6 μm, a pulse width of 60 μs, and a repetition frequency of 1 kHz. The energy amount of the single pulse 11 of the pulse laser beam 2 is 40 mJ.
【0021】パルスレーザー光2は、ビームエクスパン
ダ3によって、その径を4倍に拡張され、開口マスク4
を通過して反射鏡5に達する。開口マスク4は、中心部
に直径30mmの円の切り欠きがあり、パルスレーザー光
2のビームの形状と大きさとを調整する役割を果たす。
その後、パルスレーザー光2は、反射鏡5でガラス板7
の方向に反射され、集光レンズ6によって収束される。
集光レンズ6は、焦点距離が100mmであって、パルス
レーザー光2がガラス板7の表面で焦点を結ぶように設
定されている。The diameter of the pulse laser beam 2 is expanded to four times by a beam expander 3, and the aperture mask 4
And reaches the reflecting mirror 5. The aperture mask 4 has a circular cutout having a diameter of 30 mm at the center, and plays a role of adjusting the shape and size of the beam of the pulsed laser light 2.
After that, the pulse laser beam 2 is reflected by the reflecting mirror 5 on the glass plate 7.
And is converged by the condenser lens 6.
The condenser lens 6 has a focal length of 100 mm, and is set so that the pulse laser beam 2 is focused on the surface of the glass plate 7.
【0022】図2には、時間の経過に対するパルスレー
ザー光2の照射および非照射の関係を示す。単パルス1
1は、1回のレーザー光の照射であって、パルス幅12
は、単パルス11の照射時間である。この実施例では、
パルス幅は60μsである。単パルス周期13は、単パ
ルス11の間隔であって、繰り返し周波数の逆数であ
る。非照射時間帯14は、意識的に照射をしない時間で
あり、0.1〜10sの間で変更することができる。ま
た、非照射時間帯14は、単パルス11が一定回数照射
される毎に設けられる。なお、非照射時間帯14の間の
単パルス11の数を、パルス数と称する。この実施例に
おいて、パルス数は、1〜5回の間で任意に設定され
る。パルス数は、一定でもよいし、順次変化させてもよ
い。FIG. 2 shows the relationship between the irradiation of the pulse laser beam 2 and the non-irradiation with the passage of time. Single pulse 1
Reference numeral 1 denotes one laser beam irradiation, and a pulse width of 12
Is the irradiation time of the single pulse 11. In this example,
The pulse width is 60 μs. The single pulse period 13 is the interval between the single pulses 11 and is the reciprocal of the repetition frequency. The non-irradiation time zone 14 is a time during which the irradiation is not intentionally performed, and can be changed between 0.1 and 10 s. The non-irradiation time zone 14 is provided every time the single pulse 11 is irradiated a certain number of times. Note that the number of single pulses 11 during the non-irradiation time zone 14 is referred to as the number of pulses. In this embodiment, the number of pulses is arbitrarily set between 1 and 5 times. The number of pulses may be constant or may be changed sequentially.
【0023】(実施例1)図1に記載のレーザーを用い
て、厚さ0.7mmのガラス板7に貫通孔を明けた。この
とき、パルス数は1回であり、非照射時間帯14は0.
2sであった。ガラス板に貫通孔が明くまでに、単パル
ス11が20回照射された。この貫通孔は、直径200
μmの円柱状で、ガラス板にクラックの発生は無かっ
た。この実施例、以下の実施例および比較例の条件と結
果とを、下記表1に示す。(Example 1) Through holes were made in a glass plate 7 having a thickness of 0.7 mm using the laser shown in FIG. At this time, the number of pulses is one, and the non-irradiation time period 14 is set to 0.1.
2s. The single pulse 11 was irradiated 20 times before the through-hole became clear on the glass plate. This through hole has a diameter of 200
It had a columnar shape of μm and no cracks occurred on the glass plate. Table 1 below shows the conditions and results of this example, the following examples, and comparative examples.
【0024】(実施例2)実施例1において、パルス数
を2回として、ガラス板に貫通孔を明けた。単パルスが
20回照射された時点で、ガラス板に貫通孔が明いた。
貫通孔は、直径200μmの円柱状で、ガラス板にクラ
ックの発生は無かった。(Example 2) In Example 1, the number of pulses was set to two, and a through hole was formed in the glass plate. At the time when the single pulse was irradiated 20 times, a through hole was made in the glass plate.
The through-hole had a columnar shape with a diameter of 200 μm, and no crack was generated in the glass plate.
【0025】(実施例3)実施例1において、パルス数
を5回として、ガラス板に貫通孔を明けた。単パルスが
20回照射された時点で、ガラス板に貫通孔が明いた。
貫通孔は、直径200μmの円柱状で、ガラス板にクラ
ックの発生は無かった。Example 3 In Example 1, the number of pulses was set to 5 times, and a through-hole was formed in the glass plate. At the time when the single pulse was irradiated 20 times, a through hole was made in the glass plate.
The through-hole had a columnar shape with a diameter of 200 μm, and no crack was generated in the glass plate.
【0026】(比較例1)実施例1において、パルス数
を6回として、ガラス板に貫通孔を明けた。単パルスが
20回照射された時点で、ガラス板に貫通孔が明いた。
貫通孔は、直径200μmの円柱状で、ガラス板にクラ
ックが発生した。(Comparative Example 1) In Example 1, the number of pulses was set to six, and a through-hole was formed in the glass plate. At the time when the single pulse was irradiated 20 times, a through hole was made in the glass plate.
The through-hole was cylindrical with a diameter of 200 μm, and cracks occurred in the glass plate.
【0027】[0027]
【表1】 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− パルス数 単パルス照射回数 クラックの発生 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 実施例1 1 20 なし 実施例2 2 20 なし 実施例3 5 20 なし 比較例1 6 20 あり −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Table 1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Pulse count Single pulse irradiation frequency Crack generation − −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Example 1 1 20 None Example 2 2 20 None Example 3 5 20 No Comparative Example 1 6 20 Yes −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
【0028】[0028]
【発明の効果】この発明は、以上のように構成されてい
るため、次のような効果を奏する。請求項1に記載の発
明の脆性材のレーザー加工方法によれば、パルス幅が5
0〜200,000ns、繰返し周波数が20〜2,00
0Hzであるパルスレーザー光を1〜5回照射する毎に、
0.1〜10sの非照射時間帯を設けるので、脆性材に
クラックを発生させることなく、能率よく加工を施すこ
とができる。The present invention is configured as described above, and has the following effects. According to the laser processing method for a brittle material according to the first aspect of the present invention, the pulse width is 5
0-200,000 ns, repetition frequency 20-2,000
Each time the pulsed laser light of 0 Hz is irradiated 1 to 5 times,
Since the non-irradiation time zone of 0.1 to 10 s is provided, processing can be performed efficiently without generating cracks in the brittle material.
【0029】請求項2に記載の発明の脆性材のレーザー
加工方法によれば、請求項1に記載の発明の効果に加え
て、パルスレーザー光は炭酸ガスレーザー光であり、脆
性材はガラスまたはセラミックであるので、これらの脆
性材に対してクラックを発生させること無く、能率よく
加工を施すことができる。According to the laser processing method for a brittle material according to the second aspect of the present invention, in addition to the effect of the first aspect, the pulse laser beam is a carbon dioxide gas laser beam, and the brittle material is glass or glass. Since it is a ceramic, it is possible to efficiently process these brittle materials without generating cracks.
【0030】請求項3に記載の発明の脆性材のレーザー
加工方法によれば、請求項1に記載の発明の効果に加え
て、パルスレーザー光はYAGレーザー光もしくはYL
Fレーザー光であり、脆性材はセラミックであるので、
簡素なレーザー装置を用いて、セラミックの表面にクラ
ックを発生させること無く、能率よく加工を施すことが
できる。According to the laser processing method for a brittle material according to the third aspect of the present invention, in addition to the effect of the first aspect, the pulse laser light may be YAG laser light or YL.
F laser light, and the brittle material is ceramic,
Using a simple laser device, processing can be performed efficiently without generating cracks on the ceramic surface.
【図1】実施例および比較例で使用したレーザーの概略
図であるFIG. 1 is a schematic view of a laser used in Examples and Comparative Examples.
【図2】パルスレーザー光の照射のタイミングを示した
図であるFIG. 2 is a diagram showing the timing of irradiation of a pulse laser beam.
1 レーザー 2 レーザー光 3 ビームエクスパンダ 4 開口マスク 5 反射鏡 6 集光レンズ 7 ガラス板 10 時間軸 11 単パルス 12 パルス幅 13 単パルス周期 14 非照射時間帯 REFERENCE SIGNS LIST 1 laser 2 laser beam 3 beam expander 4 aperture mask 5 reflecting mirror 6 condenser lens 7 glass plate 10 time axis 11 single pulse 12 pulse width 13 single pulse cycle 14 non-irradiation time zone
Claims (3)
り返し周波数が20〜2,000Hzであるパルスレーザ
ー光を1〜5回照射する毎に、0.1〜10sの非照射
時間帯を設ける脆性材のレーザー加工方法。1. A brittleness in which a non-irradiation time zone of 0.1 to 10 s is provided every one to five times of irradiation with a pulse laser beam having a pulse width of 50 to 200,000 ns and a repetition frequency of 20 to 2,000 Hz. Laser processing method of material.
ー光であり、脆性材はガラスもしくはセラミックである
請求項1に記載の脆性材のレーザー加工方法。2. The laser processing method for a brittle material according to claim 1, wherein the pulse laser beam is a carbon dioxide laser beam, and the brittle material is glass or ceramic.
光もしくはYLFレーザー光であり、脆性材はセラミッ
クである請求項1に記載の脆性材のレーザー加工方法。3. The laser processing method for a brittle material according to claim 1, wherein the pulse laser beam is a YAG laser beam or a YLF laser beam, and the brittle material is a ceramic.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9288077A JPH11123577A (en) | 1997-10-21 | 1997-10-21 | Laser machining method for brittle material |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9288077A JPH11123577A (en) | 1997-10-21 | 1997-10-21 | Laser machining method for brittle material |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11123577A true JPH11123577A (en) | 1999-05-11 |
Family
ID=17725510
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9288077A Pending JPH11123577A (en) | 1997-10-21 | 1997-10-21 | Laser machining method for brittle material |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11123577A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002113587A (en) * | 2000-10-10 | 2002-04-16 | Ricoh Microelectronics Co Ltd | Method and device for laser beam machining |
| US6705914B2 (en) | 2000-04-18 | 2004-03-16 | Matsushita Electric Industrial Co., Ltd. | Method of forming spherical electrode surface for high intensity discharge lamp |
| US7137859B2 (en) | 2001-08-06 | 2006-11-21 | Nec Corporation | High-pressure discharge lamp |
| WO2005062343A3 (en) * | 2003-12-22 | 2007-08-09 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Electrode for a high pressure discharge lamp |
| US7674395B2 (en) * | 1999-11-30 | 2010-03-09 | Canon Kabushiki Kaisha | Laser etching method and apparatus therefor |
| JP2015006677A (en) * | 2013-06-25 | 2015-01-15 | ビアメカニクス株式会社 | Laser drilling method |
| US9688563B2 (en) | 2015-11-16 | 2017-06-27 | Asahi Glass Company, Limited | Apparatus and method for forming holes in glass substrate |
-
1997
- 1997-10-21 JP JP9288077A patent/JPH11123577A/en active Pending
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7674395B2 (en) * | 1999-11-30 | 2010-03-09 | Canon Kabushiki Kaisha | Laser etching method and apparatus therefor |
| US6705914B2 (en) | 2000-04-18 | 2004-03-16 | Matsushita Electric Industrial Co., Ltd. | Method of forming spherical electrode surface for high intensity discharge lamp |
| JP2002113587A (en) * | 2000-10-10 | 2002-04-16 | Ricoh Microelectronics Co Ltd | Method and device for laser beam machining |
| US7137859B2 (en) | 2001-08-06 | 2006-11-21 | Nec Corporation | High-pressure discharge lamp |
| WO2005062343A3 (en) * | 2003-12-22 | 2007-08-09 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Electrode for a high pressure discharge lamp |
| JP2015006677A (en) * | 2013-06-25 | 2015-01-15 | ビアメカニクス株式会社 | Laser drilling method |
| US9688563B2 (en) | 2015-11-16 | 2017-06-27 | Asahi Glass Company, Limited | Apparatus and method for forming holes in glass substrate |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11713271B2 (en) | Device and method for cutting out contours from planar substrates by means of laser | |
| Kautek et al. | Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials | |
| US3527198A (en) | Method and apparatus for working diamonds by means of laser light beam | |
| JP3797068B2 (en) | Laser microfabrication method | |
| KR20010095011A (en) | Method and apparatus using laser pulses to make an array of microcavity holes | |
| JP2020500810A (en) | Laser device for cutting brittle material using aspherical focusing means and beam expander | |
| CN109641315A (en) | Laser processing and a kind of system cut using Multi sectional condenser lens or cut wafer | |
| JP2000301372A (en) | Laser processing method of transparent material | |
| JP2002205179A (en) | Method for controlling laser-induced fracture and cutting geometry | |
| KR101744869B1 (en) | Method of working material with high-energy radiation | |
| JP7008740B2 (en) | Optimized laser cutting | |
| JP2018523291A (en) | Method for scribing semiconductor workpiece | |
| Dell'Erba et al. | An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources | |
| JP2718795B2 (en) | Method for fine processing of work surface using laser beam | |
| JPH11123577A (en) | Laser machining method for brittle material | |
| CN112839908A (en) | Laser processing of brittle material separation and release | |
| JPH10263873A (en) | Laser beam machine and machining method | |
| RU2087322C1 (en) | Method of forming image inside material of an article and article containing formed image | |
| JP6744624B2 (en) | Method and apparatus for cutting tubular brittle member | |
| KR101164418B1 (en) | Substrate Dicing Method by Nonlinear Focal Shift using Femtosecond Pulse Lasers | |
| US20240335909A1 (en) | Method of and apparatus for cutting a substrate or preparing a substrate for cleaving | |
| JP2003088989A (en) | Laser cleaving method, method of manufacturing a lens or lens mold using the method, lens molded by the manufacturing method, and lens mold | |
| JPH08112682A (en) | Optical processing method | |
| JP6787617B2 (en) | Method and device for dividing tubular brittle members | |
| EP4410469A1 (en) | Ablation of materials with double time-separated laser pulses |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040707 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060726 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061212 |