[go: up one dir, main page]

JPH11147838A - New nitrogen monoxide supplying agent - Google Patents

New nitrogen monoxide supplying agent

Info

Publication number
JPH11147838A
JPH11147838A JP10267445A JP26744598A JPH11147838A JP H11147838 A JPH11147838 A JP H11147838A JP 10267445 A JP10267445 A JP 10267445A JP 26744598 A JP26744598 A JP 26744598A JP H11147838 A JPH11147838 A JP H11147838A
Authority
JP
Japan
Prior art keywords
α1pi
noα1pi
nitrosated
nitrogen monoxide
unmodified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10267445A
Other languages
Japanese (ja)
Inventor
Takaaki Akaike
孝章 赤池
Yoichi Miyamoto
洋一 宮本
Hiroshi Maeda
浩 前田
Takayoshi Hamamoto
高義 濱本
Kazuhiko Tomokiyo
和彦 友清
Toshihiro Nakagaki
智弘 中垣
Seiji Miyamoto
誠二 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP10267445A priority Critical patent/JPH11147838A/en
Publication of JPH11147838A publication Critical patent/JPH11147838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new nitrogen monoxide supplying agent. SOLUTION: This nitrogen monoxide supplying agent comprises S nitrosated α1 protease inhibitor as a main form and acts as a bifunctional function protein as the nitrogen monoxide supplying agent. The agent can be used as a suitable medicine for improving peripheral vascular circulatory failure, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は血漿蛋白質の新たな用
途に関する。さらに詳細には、Sニトロソ化されたα1
プロテアーゼインヒビターを本態とする一酸化窒素供与
剤に関する。
The present invention relates to a new use of plasma proteins. More specifically, S1 nitrosated α1
The present invention relates to a nitric oxide donor based on a protease inhibitor.

【0002】[0002]

【従来の技術並びに発明が解決しようとする課題】α1
プロテアーゼインヒビター(以下、α1PIと称するこ
とがあるは)は、分子量53,000の一本鎖糖タンパク
質で主に肝臓で合成される。健常人の血中濃度は300
mg/dl(〜60μM)で、血中プロテアーゼインヒビ
ターの中では最も高濃度に存在する。好中球エラスター
ゼやカテプシンGに対する阻害活性が強く、セリンプロ
テアーゼインヒビターとしての機能を有している。α1
PIは、アンチトロンビンIII、ヘパリンコファクターI
I、プロテインCインヒビター、α1アンチキモトリプ
シン、α2プラスミンインヒビター、プラスミノーゲン
アクチベーターインヒビター、C1インヒビター等との
アミノ酸配列の相同性も高く、一群のセリンプロテアー
ゼインヒビター(一般に、セルピン(SERPIN)と総
称される)の一つに数えられる(Stein P and Ch
othia C,J. Mol. Biol., 221,p.6
15−621,(1991))。
2. Description of the Related Art α1
Protease inhibitors (hereinafter sometimes referred to as α1PI) are single-chain glycoproteins having a molecular weight of 53,000 and are synthesized mainly in the liver. The blood concentration of a healthy person is 300
At mg / dl (〜60 μM), it is present at the highest concentration among blood protease inhibitors. It has a strong inhibitory activity on neutrophil elastase and cathepsin G, and has a function as a serine protease inhibitor. α1
PI is antithrombin III, heparin cofactor I
I, amino acid sequence homology with protein C inhibitor, α1 antichymotrypsin, α2 plasmin inhibitor, plasminogen activator inhibitor, C1 inhibitor, etc. is high, and a group of serine protease inhibitors (generally referred to as serpin (SERPIN)) ) (Stein P and Ch
othia C, J. Mol. Biol., 221 , p.6
15-621, (1991)).

【0003】α1PIの欠乏症や異常症は肺気腫の発病
と深い関連があり、肺気腫の発病は、α1PIの欠損に
よって肺胞に集積した好中球からのエラスターゼを阻害
できないために、肺胞壁のエラスチン繊維の崩壊を抑制
できないことに起因していると考えられている(Kei
th B and Travis J, J. Biol. Che
m., 255,p.3931−3934(1980))。α1
PIはその広いプロテアーゼ阻害スペクトル故に、上述
の組織におけるプロテアーゼに対する阻害能や血液凝固
系の活性化XI因子(XIa)のインヒビター、線溶系の
プラスミンのインヒビター、免疫補体系プロテアーゼの
インヒビター、炎症の進展抑制等の生体防御反応に深く
関わっている(鈴木宏治、蛋白質 核酸 酵素、34,(8)
(1989))。
[0003] α1PI deficiency and abnormalities are closely related to the onset of emphysema, and the onset of emphysema cannot prevent elastase from neutrophils accumulated in the alveoli due to α1PI deficiency. It is believed that this is due to the inability to suppress fiber collapse (Kei
th B and Travis J, J. Biol. Che
m., 255 , pp. 3931-3934 (1980)). α1
Due to its broad protease inhibition spectrum, PI has the ability to inhibit proteases in the above-mentioned tissues, activates blood coagulation system Factor XI (XIa), inhibitors of fibrinolytic plasmin, inhibitors of immune complement system protease, and suppresses the progression of inflammation. (Koji Suzuki, Protein Nucleic Acid Enzyme, 34 , (8)
(1989)).

【0004】ヒトα1PIのアミノ酸配列は、タンパク
質とcDNAの両方から決定されている。394残基の
アミノ酸からなり、3箇所のアスパラギン残基(Asn
46、Asn83及びAsn247)に複合型の糖鎖が
結合している。分子内には1残基のシステインが存在し
ているが、S−S結合は1つもない。C末端部位のMe
t358−Serが反応部位であり、標的酵素と1:1
のモル比で複合体を形成し、プロテアーゼを不活性化す
る(Research Monographsin Ce
ll and Tissue Physiology, v
ol.12, Protease inhibitors,
Barrett A.J. and Salvesen G,
p.441−456(1986), Elisevier;
止血・血栓・線溶, 松田道生及び鈴木宏治, p.200
−208(1994), 中外医学社)
[0004] The amino acid sequence of human α1PI has been determined from both proteins and cDNAs. Consisting of 394 amino acids, three asparagine residues (Asn
46, Asn83 and Asn247) are linked to a complex type sugar chain. There is one residue cysteine in the molecule, but no SS bond. Me at C-terminal site
t358-Ser is the reaction site and is 1: 1 with the target enzyme.
To form a complex and inactivate protease (Research Monographsin Ce)
ll and Tissue Physiology, v
ol.12, Protease inhibitors,
Barrett AJ and Salvesen G,
441-456 (1986), Elisevier;
Hemostasis, thrombus, fibrinolysis, Michio Matsuda and Koji Suzuki, p.200
-208 (1994), Chugai Medical)

【0005】1980年、Furchigottらによ
って内皮細胞由来弛緩因子(EDRF)が発見され、19
87年にその本態が一酸化窒素(以下、NOと称するこ
とがある)であることがMoncada等により証明さ
れて以来、NOに対する関心が世界的に高まった(Mo
ncada P et al., Nature 327,p.
524−,(1987))。NOの生理活性は実に多様で、
血管平滑筋弛緩作用、血管平滑筋細胞の増殖抑制、血小
板・白血球の粘着凝集抑制、炎症反応、免疫反応等の生
体防御機能に重要な役割を演じている。NOは3種類の
NO合成酵素(神経型、内皮型、誘導型)から産生遊離さ
れる。これまでの多くの研究から、3種類のNO合成酵
素(以下、NOSと称することがある)から産生遊離され
るNOの作用が明らかになった。すなわち、神経型NO
Sから産生されるNOは、神経伝達物質として中枢神経
系での高次構造、末梢神経系での消化器や心血管系での
神経調節に関与している。内皮型NOSから産生される
NOは、血管トーヌスの調節、抗血栓作用・抗血小板凝
集作用等の血管機能の恒常性を維持するのに重要な役割
がある。誘導型NOSにより一過性に大量に産生される
NOは、細菌、ウイルス、腫瘍細胞等に対する生体防御
反応の一端を担っていることが明らかにされてきた(血
管と内皮, NO: 生と死へのかかわり, 増刊号(199
7))。
In 1980, Furchigott et al. Discovered an endothelial cell-derived relaxing factor (EDRF).
In 1987, interest in NO has increased worldwide since the fact that the substance was nitric oxide (hereinafter sometimes referred to as NO) was proved by Moncada et al.
ncada Pet et al., Nature 327 , p.
524, (1987)). NO has a wide variety of physiological activities,
It plays an important role in biological defense functions such as vascular smooth muscle relaxation, inhibition of vascular smooth muscle cell proliferation, inhibition of platelet and leukocyte adhesion and aggregation, inflammatory response, and immune response. NO is produced and released from three types of NO synthase (neural type, endothelial type, and inducible type). Many studies so far have revealed the effects of NO produced and released from three types of NO synthase (hereinafter sometimes referred to as NOS). That is, nervous NO
NO produced from S is involved as a neurotransmitter in higher-order structures in the central nervous system, and in gastrointestinal and cardiovascular neuroregulation in the peripheral nervous system. NO produced from endothelial NOS plays an important role in regulating vascular tonus and maintaining homeostasis of vascular functions such as antithrombotic action and antiplatelet aggregation action. It has been clarified that NO, which is produced in large quantities transiently by inducible NOS, plays a part in host defense reactions against bacteria, viruses, tumor cells, etc. (vascular and endothelial, NO: life and death Involvement, Special Issue (199
7)).

【0006】Stamler等は、ヒトの血漿中にμM
オーダーのS−ニトロソアルブミンを見出し、また、血
中のヘモグロビンのシステイン残基がニトロソ化されて
いることを報告した。これらの結果から、生体内タンパ
ク質のS−ニトロソ化はNOの輸送や貯蔵に関与し、N
Oの生理作用を制御していると考えられている(Sta
mler J.S. et al., Proc Natl Ac
ad Sci USA,89,p.7674−7677,(1
992); Lia J et al., Nature, 38
,p.221−226,(1996))。最近では、上述の
ようなNOの魅力的な生理活性故に、臨床的立場からの
薬剤としての様々なNO供与剤が開発され使用されてい
る。実際に、S−ニトロソグルタチオン(以下、GSN
Oと称することがある)の有する、血小板凝集は阻害す
るが血圧は低下させないといった性質を利用して、経皮
経管的冠動脈形成術(PTCA)の際の血小板凝集阻害剤
として、また、妊娠女性の子癇前症の治療に応用されて
いる(Langford E.J. et al., Lanc
et, 344,p.1458−1460,(1994);d
e Belder et al., Lancet, 345,
p.124−125,(1996))。
[0006] Stamler et al. Disclose μM in human plasma.
An S-nitroso albumin of the order was found, and it was reported that the cysteine residue of hemoglobin in blood was nitrosated. These results indicate that S-nitrosation of in vivo proteins is involved in NO transport and storage,
It is thought to control the physiological action of O (Sta
mler JS et al., Proc Natl Ac
ad Sci USA, 89 , p.7674-7677, (1
992); Lia J et al., Nature, 38.
0 , p. 221-226, (1996)). Recently, due to the attractive physiological activity of NO as described above, various NO donors have been developed and used as agents from a clinical standpoint. Actually, S-nitrosoglutathione (hereinafter, GSN)
O), which inhibits platelet aggregation but does not lower blood pressure, as a platelet aggregation inhibitor during percutaneous transluminal coronary angioplasty (PTCA), It has been applied to the treatment of preeclampsia in women (Langford EJ et al., Lanc.
et, 344 , pp. 1458-1460, (1994); d.
e Belder et al., Lancet, 345 ,
pp. 124-125, (1996)).

【0007】現在、臨床上使用されているGSNOのよ
うなNO供与剤は、血中半減期が短かかったり、NOの
放出と同時に生成する副産物が悪影響を与えたりして、
NO供与剤としては未だ不十分な点や多くの問題点が残
されている。一方、ヘモグロビンを代表とするS−ニト
ロソ化タンパク質については、Stamler J.S.
等がそれらの有用性について報告しているが(PCT国
際特許公開公報, WO96/30006およびWO 97
/10265)、彼らの用いたタンパク質には複数のシス
テイン残基が存在するために、ニトロソ基の導入率が不
均一であることが容易に予測される。また、ヘモグロビ
ン自体が血管内皮細胞に対して障害的に働いたり、腎臓
組織への鉄成分の沈着により、むしろ腎機能を低下させ
る等の問題が危惧される。
At present, NO donors such as GSNO, which are clinically used, have a short half-life in blood or have an adverse effect on by-products produced simultaneously with the release of NO.
There are still insufficient points and many problems as NO donors. On the other hand, for S-nitrosated proteins represented by hemoglobin, Stamler J.S.
Report their usefulness (PCT International Patent Publication, WO 96/30006 and WO 97
/ 10265), it is easily predicted that the introduction rate of nitroso groups is non-uniform due to the presence of a plurality of cysteine residues in the protein used. In addition, there is a concern that hemoglobin itself may impair the function of vascular endothelial cells, or may cause a decrease in renal function due to the deposition of an iron component in kidney tissue.

【0008】[0008]

【問題を解決するための手段、発明の構成】本願発明
は、生理的な種々のプロテアーゼインヒビターであるα
1PIを、それの有する特性と分子内に1個のシステイ
ンしか有しない構造上の特性に着目し、これにS−ニト
ロソ基を導入し、新規のプロテアーゼインヒビターとN
O供与剤としての2官能性機能タンパク質を提供するこ
と、そして、これを血管循環不全改善剤等として使用す
ることに技術的特徴を有する。本願発明者等は、α1P
Iの前述の特性に着目し、ニトロソ基の導入によるS−
ニトロソ化α1PI(以下、SNO−α1PIと称する
ことがある)を調製し、末梢循環不全改善剤としての可
能性を追求した。すなわち、SNO−α1PIのインヒ
ビター活性、SNO−α1PIの安定性およびNO供与
能(血管弛緩作用、抗血小板作用、抗菌作用)について検
討した結果、驚くべきことに、SNO−α1PIが未修
飾のα1PIと同等のプロテアーゼ活性を保持してお
り、ニトロソ化アルブミンとの比較によれば、SNO−
α1PIの安定性は非常に高く、さらに良好なNO供与
能(血管弛緩作用、抗血小板作用、虚血・再潅流障害抑
制作用及び抗菌作用)を有していることが判明した。こ
れらの知見を基に、本願発明を完成するに至った。
Means for Solving the Problems, Constitution of the Invention The present invention relates to α, which is a physiological various protease inhibitor.
1PI is focused on its properties and the structural property of having only one cysteine in the molecule, and by introducing an S-nitroso group into it, a novel protease inhibitor and N
There is a technical feature in providing a bifunctional functional protein as an O donor and using it as an agent for improving vascular circulatory failure or the like. The present inventors have found that α1P
Focusing on the above-mentioned properties of I, S-
Nitrosylated α1PI (hereinafter sometimes referred to as SNO-α1PI) was prepared, and its potential as an agent for improving peripheral circulatory failure was pursued. That is, as a result of examining the inhibitory activity of SNO-α1PI, the stability of SNO-α1PI, and the NO-donating ability (vascular relaxation action, antiplatelet action, antibacterial action), surprisingly, SNO-α1PI was unmodified with unmodified α1PI. It retains the same protease activity, and according to comparison with nitrosated albumin, SNO-
α1PI was found to have extremely high stability, and furthermore had good NO donating ability (vascular relaxation action, antiplatelet action, ischemia / reperfusion injury inhibitory action, and antibacterial action). Based on these findings, the present invention has been completed.

【0009】本願発明のSNO−α1PIに関する検討
結果の概略は以下のとおりである。 (1)未修飾α1PIに対して約99%のニトロソ基の導
入に成功した。その導入率は、血漿タンパク質の一つで
あるアルブミンの約30%の導入率と比較して非常に高
いものであった。 (2)SNO−α1PIのプロテアーゼ阻害能は、未修飾
α1PIとほぼ同等であった。また、SNO−α1PI
のニトロソ基の解離とインヒビター活性は、4℃での液
状保存において2週間以上安定であった。一方、ニトロ
ソアルブミンのニトロソ基の安定性はSNO−α1PI
と比較すると非常に低く、2週間で約50%のニトロソ
基しか残存しなかった。 (3)SNO−α1PIは濃度依存的に血管弛緩作用を示
した。しかし、未修飾α1PIについてはその効果が認
められなかった。 (4)SNO−α1PIは濃度依存的に抗血小板作用を示
した。一方、未修飾α1PIについてはその効果が認め
られなかった。 (5)SNO−α1PIは虚血・再潅流障害抑制作用を示
した。一方、未修飾α1PIについてはその効果が認め
られなかった。 (6)さらに、SNO−α1PIは濃度依存的に各種細菌
に対して増殖抑制効果を示した。その効果は、GSNO
よりも効果的であった。しかし、未修飾α1PIにはそ
の効果が認められなかった。 (3)〜(6)の結果は、SNO−α1PIがNO供与剤と
して良好に機能していることを示している。本願発明者
によって見出された上述の知見から、本願発明のSNO
−α1PIのNO供与剤としての有用性は明白である。
とりわけ、好適な末梢循環不全改善剤としての作用が期
待される。
The outline of the study results on SNO-α1PI of the present invention is as follows. (1) About 99% of a nitroso group was successfully introduced into unmodified α1PI. The transduction rate was much higher than the transduction rate of about 30% of albumin, one of the plasma proteins. (2) The protease inhibitory ability of SNO-α1PI was almost equivalent to that of unmodified α1PI. Also, SNO-α1PI
The dissociation of the nitroso group and the inhibitor activity were stable for more than 2 weeks in liquid storage at 4 ° C. On the other hand, the stability of the nitroso group of nitrosoalbumin was SNO-α1PI
Was very low as compared with only about 50% of the nitroso groups remained in 2 weeks. (3) SNO-α1PI showed a vasorelaxing action in a concentration-dependent manner. However, the effect was not observed for unmodified α1PI. (4) SNO-α1PI showed an antiplatelet effect in a concentration-dependent manner. On the other hand, no effect was observed for unmodified α1PI. (5) SNO-α1PI showed an inhibitory effect on ischemia / reperfusion injury. On the other hand, no effect was observed for unmodified α1PI. (6) Furthermore, SNO-α1PI showed a growth inhibitory effect on various bacteria in a concentration-dependent manner. The effect is GSNO
Was more effective. However, the effect was not recognized with unmodified α1PI. The results of (3) to (6) show that SNO-α1PI functions well as a NO donor. From the above findings found by the present inventors, the SNO of the present invention
The usefulness of -α1PI as a NO donor is clear.
In particular, it is expected to act as a suitable agent for improving peripheral circulatory insufficiency.

【0010】なお、α1PIと構造上類似しているSE
RPIN属のインヒビターであるα1キモトリプシンや
プロテインCインヒビターも、分子内に1残基のシステ
インのみを有しS−S結合は存在しない。さらに、分子
内に3残基のシステインを有するがS−S結合が1つも
ないヘパリンコファクターIIもニトロソ化により、α
1PIと同様のNO供与体としての作用を有することが
推測でき、それらのニトロソ化体の有用性が期待され
る。
It should be noted that SE which is structurally similar to α1PI
Inhibitors of the RPIN genus, such as α1 chymotrypsin and protein C inhibitor, have only one residue of cysteine in the molecule and have no SS bond. Heparin cofactor II, which has three cysteines in the molecule but has no SS bond, also undergoes nitrosation to give αα
It can be estimated that 1PI has the same function as a NO donor, and the usefulness of those nitrosated compounds is expected.

【0011】本願発明に使用されるα1PIの調製方法
については特に制限はないが、例えば、ヒト血液より分
離する方法あるいは遺伝子組換え技術によって得られる
α1PI産生細胞を用いて調製する方法等がある。血液
由来のα1PIの製法としては、例えば、血漿を出発原
料として硫安分画した後、ブルーセファロース、DEA
E−セルロース、セファデックスG−75で次々にカラ
ムクロマトグラフィーを実施するTravis等の方法
(Travis J., Method in Enzymo
loy, 80,p.754−765)、あるいは、硫安塩
析を行なった後、Zincキレート、DE−52セルロ
ースの各カラムクロマトグラフィーを組み合わせたKu
reckiの方法等が知られている(Kurecki
T., Analytical Biochemistry
99,p.415−420(1979))。なかでも、α1
PI含有画分を陽イオン交換樹脂に展開し、夾雑不純蛋
白質を吸着させ、α1PIを非吸着画分に分離し回収す
ることを特徴とし効率的にα1PIを調製し得る、友清
等の方法が推奨される(特開平8−99999)。
Preparation method of α1PI used in the present invention
Although there is no particular limitation on, for example,
Obtained by the separation method or genetic recombination technology
There is a method of preparing using α1PI-producing cells. blood
As a method for producing α1PI derived from, for example, plasma
Ammonium sulfate fractionation, blue sepharose, DEA
E-cellulose and Sephadex G-75
Travis et al. For performing chromatographic methods
(Travis J., Method in Enzymo
loy,80pp. 754-765) or ammonium sulfate
After the analysis, Zinc chelate, DE-52 Cellulo
Ku combined with each column chromatography
The method of rekki is known (Kurekki
T., Analytical Biochemistry
99pp. 415-420 (1979)). Above all, α1
The PI-containing fraction is spread on a cation exchange resin,
Adsorb white matter and separate and collect α1PI into non-adsorbed fraction
That can efficiently prepare α1PI
Is recommended (JP-A-8-99999).

【0012】タンパク質及び合成試薬のチオール基への
NOの導入(ニトロソ化)は、亜硝酸塩と反応させる方法
によって達成することができる。ヘモグロビンのニトロ
ソ化に代表されるように、タンパク質のニトロソ化に成
功している例もあるが、一般的には、タンパク質にとっ
ては厳しい条件での反応である。従って、より穏和な条
件でのチオール基へのNOの導入が可能な、イソアミル
ナイトライトを用いた方法(DeMaster E.G.
et al., Biochemistry, 34,p.11
494−11499, (1995))やn−ブチルナイト
ライトと反応させる方法(Meyer D.J. et a
l., FEBS Letters, 345,p.177−1
80, (1994))を適用することができる。
Introducing NO (nitrosation) to thiol groups of proteins and synthetic reagents can be achieved by a method of reacting with nitrite. As typified by the nitrosation of hemoglobin, there have been cases where the nitrosation of proteins has been successful, but in general, reactions are performed under severe conditions for proteins. Therefore, a method using isoamyl nitrite, which allows the introduction of NO into a thiol group under milder conditions (DeMaster EG.
et al., Biochemistry, 34 , p.
494-11499, (1995)) and a reaction with n-butyl nitrite (Meyer DJ et al.).
l., FEBS Letters, 345 , p. 177-1
80, (1994)).

【0013】かくして調製されたSNO−α1PIは、
ヒトアルブミン、塩、クエン酸ナトリウム、糖またはア
ミノ酸等の安定化剤と共に凍結乾燥もしくは液体の状態
での保存が可能で、さらには、凍結し保存することも可
能である。また、感染性夾雑ウイルスの不活性化を目的
として、凍結乾燥状態もしくは液状状態において所定の
条件下、例えば凍結乾燥状態では65℃96時間、液状
では60℃10時間の加熱処理を施すことは、薬剤の安
全性の観点から極めて好ましい態様である。本願発明で
は、かかる有効成分としてのSNO−α1PIと公知の
適当な賦形剤を組み合せ、公知の方法で本願発明のプロ
テアーゼインヒビターとしての機能を維持したNO供与
剤とすることができる。
The SNO-α1PI thus prepared is
It can be freeze-dried or stored in a liquid state together with a stabilizer such as human albumin, salt, sodium citrate, sugar or amino acid, and furthermore, can be frozen and stored. Further, for the purpose of inactivating infectious contaminating viruses, heat treatment at a predetermined temperature in a lyophilized state or a liquid state, for example, at 65 ° C. for 96 hours in a lyophilized state and at 60 ° C. for 10 hours in a liquid state, This is a very preferable embodiment from the viewpoint of drug safety. In the present invention, SNO-α1PI as such an active ingredient is combined with a known suitable excipient to obtain a NO donor which maintains the function as a protease inhibitor of the present invention by a known method.

【0014】以下、実施例に沿って本発明をさらに詳細
に説明するが、これら実施例は本発明の範囲を限定する
ものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but these Examples do not limit the scope of the present invention.

【0015】[0015]

【実施例】調製例 1 (S−ニトロソ化α1PIの調製)コーン分画FIV−1
の沈澱500gを、0.1Mトリス塩酸/0.02M塩化
ナトリウム緩衝液(pH8.8)9.0Lに溶解した。この
溶液に、50%ポリエチレングリコール4000溶液を
終濃度12%になるように添加した後、pHが5.2に
なるようにpH4.0の酢酸緩衝液で調整し、遠心上清
を取得した。次いで、遠心上清のpHを6.5に修正
し、粉末状のポリエチレングリコール4000を終濃度
が30%になるように添加して得られた沈澱画分を遠心
分離して分取した。分取した沈澱を25mMリン酸緩衝
液(pH6.0)で溶解後、DEAE−Sepharos
e FFに展開し、90mMリン酸緩衝液(pH6.0)で
溶出した。溶出液を電気伝導率が2.0以下になるよう
に水で希釈後、pHを5.2に調整して、予め15mM
リン酸/酢酸緩衝液(pH5.2)で平衡化したSP−S
epharose FFに展開し、非吸着画分を集め
た。この画分を、ウイルス除去膜(PLANOVA:15
N 旭化成(株))で濾過処理後、限外濾過膜を用いて濃縮
した。濃縮液に終濃度が0.4Mになるようにクエン酸
ナトリウムを、ショ糖を40%になるように添加し、6
0℃、10時間の液状加熱を行なった。この溶液を25
mMリン酸緩衝液(pH7.0)に置換し、Blue−S
epharoseを用いて混在するアルブミンを除去し
た。Blue−Sepharoseの素通り画分に10
倍モル量のDTT(Dithiothreitol)を添
加し、室温で2時間反応後、上記と同様にDEAEによ
る再クロマトグラフィーを行なった。溶出画分に、高純
度精製α1PIを得た。得られた高純度精製α1PIの
−SH基含量を測定後、限外濾過膜を用いて100mM
リン酸/5mMEDTA溶液(pH7.0)に透析置換し
た。
EXAMPLES Preparation Example 1 ( Preparation of S-nitrosated α1PI) Corn fraction FIV-1
Was dissolved in 9.0 L of 0.1 M Tris-HCl / 0.02 M sodium chloride buffer (pH 8.8). To this solution, a 50% polyethylene glycol 4000 solution was added to a final concentration of 12%, and then adjusted to pH 5.2 with an acetate buffer at pH 4.0 to obtain a centrifuged supernatant. Next, the pH of the centrifuged supernatant was corrected to 6.5, and a powdery polyethylene glycol 4000 was added to a final concentration of 30%, and the resulting precipitate fraction was separated by centrifugation. The collected precipitate was dissolved in 25 mM phosphate buffer (pH 6.0) and then dissolved in DEAE-Sepharos.
e Developed on FF and eluted with 90 mM phosphate buffer (pH 6.0). The eluate was diluted with water so that the electric conductivity was 2.0 or less, and the pH was adjusted to 5.2.
SP-S equilibrated with phosphate / acetate buffer (pH 5.2)
The solution was developed on epharose FF, and the non-adsorbed fraction was collected. This fraction was subjected to a virus removal membrane (PLANOVA: 15).
N was filtered using Asahi Kasei Corporation and concentrated using an ultrafiltration membrane. Sodium citrate was added to the concentrated solution to a final concentration of 0.4 M, and sucrose was added to a concentration of 40%.
Liquid heating was performed at 0 ° C. for 10 hours. Add this solution to 25
mM phosphate buffer (pH 7.0).
Mixed albumin was removed using epharose. The flow-through fraction of Blue-Sepharose contains 10
A double molar amount of DTT (Dithiothreitol) was added, and the mixture was reacted at room temperature for 2 hours, followed by re-chromatography by DEAE in the same manner as above. High-purity purified α1PI was obtained in the eluted fraction. After measuring the -SH group content of the obtained highly purified purified α1PI, 100 mM was determined using an ultrafiltration membrane.
The dialysis was replaced with a phosphoric acid / 5 mM EDTA solution (pH 7.0).

【0016】得られたα1PIおよびイソアミルナイト
ライト(Isoamylnitrite:和光純薬工業
(株))をそれぞれ最終濃度が0.1mMおよび1.0mM
になるように1mlの0.1Mリン酸緩衝液(pH7.8)
に添加し、37℃で30分間反応させた。反応液を、
0.1Mリン酸緩衝液(pH7.8)で平衡化したSeph
adex−G25に展開して、未反応のイソアミルナイ
トライトおよびイソアミルアルコール等の低分子反応産
物を除去した後、得られたS−ニトロソ化α1PI(S
−NOα1PI)を限外濾過により濃縮した。回収され
たタンパク質量は5.04mgで、タンパク質としての
回収率は95%であった。
The obtained α1PI and isoamylnitrite (Wako Pure Chemical Industries, Ltd.)
Co., Ltd.) at final concentrations of 0.1 mM and 1.0 mM, respectively.
1 ml of 0.1 M phosphate buffer (pH 7.8)
And reacted at 37 ° C. for 30 minutes. The reaction solution is
Seph equilibrated with 0.1 M phosphate buffer (pH 7.8)
After developing on adex-G25 to remove unreacted low-molecular-weight reaction products such as isoamyl nitrite and isoamyl alcohol, the resulting S-nitrosated α1PI (S
-NOα1PI) was concentrated by ultrafiltration. The amount of the recovered protein was 5.04 mg, and the recovery rate as a protein was 95%.

【0017】実施例 1 (S−ニトロソ化α1PIの性状解析)本願発明における
α1PI量の検定は次の方法を用いて行なった。エラス
ターゼに対する発色基質を用いることによりα1PIの
エラスターゼ阻害能力を評価した。エラスターゼによる
N−サクシニル−L−アラニル−L−アラニル−L−ア
ラニル−p−ニトロアニリドの加水分解は405nmの
吸収を増加させる。この増加を37℃において連続的に
測定し、単位時間当りの加水分解量を算出する。α1P
Iの有無における吸収の直線的変化を時間と共に比較す
る。次いで、エラスターゼおよびα1PIが1:1の化
学量論的に反応する事実と、エラスターゼの既知量に基
づき阻害剤としてのα1PIの量を評価した(Trav
is J,Method in Enzymology,
,p.754−765)。
Example 1 (Analysis of properties of S-nitrosated α1PI) The α1PI amount in the present invention was assayed by the following method. The ability of α1PI to inhibit elastase was evaluated by using a chromogenic substrate for elastase. Hydrolysis of N-succinyl-L-alanyl-L-alanyl-L-alanyl-p-nitroanilide by elastase increases the absorption at 405 nm. This increase is continuously measured at 37 ° C., and the amount of hydrolysis per unit time is calculated. α1P
The linear change in absorption with and without I is compared over time. The amount of α1PI as an inhibitor was then evaluated based on the fact that elastase and α1PI react stoichiometrically at 1: 1 and the known amount of elastase (Trav
is J, Method in Enzymology, 8
0 , p. 754-765).

【0018】同様に、トリプシンに対する発色基質を用
いることにより、S−NOα1PIのトリプシン阻害能
力を評価した(Travis J, Method in E
nzymology, 80,p.754−765)。結果
を表1に示す。その結果、S−NOα1PIのエラスタ
ーゼおよびトリプシンに対する阻害活性は約90%以上
残存していることが明らかになった。
Similarly, the ability of S-NOα1PI to inhibit trypsin was evaluated by using a chromogenic substrate for trypsin (Travis J, Method in E).
nzymology, 80 , pp. 754-765). Table 1 shows the results. As a result, it was revealed that about 90% or more of the inhibitory activity of S-NOα1PI on elastase and trypsin remained.

【0019】[0019]

【表1】 実験番号 α1PI蛋白量 エラスターセ゛阻害活性 トリフ゜シン阻害活性 (mg) 残存 (%) 残存 (%) 1 4.8 95.8 97.9 2 4.7 93.6 95.7 3 5.1 90.2 92.2 4 5.2 92.3 94.2 5 4.9 91.8 95.9Table 1 Experiment No. α1PI protein amount Elastase inhibitory activity Trifusin inhibitory activity (mg) Remaining (%) Remaining (%) 1 4.8 95.8 97.9 2 4.7 93.6 95.7 35.7 5.1 90.2 92.2 4 5.2 92.3 94.2 5 4.9 91.8 95.9

【0020】S−ニトロソ基は、試料を塩化水銀とグリ
イス試薬を連続的に反応させるフローリアクターを接続
した高速液体クロマトグラフィーにて定量した(Aka
ike T, et al., J. Biochemistr
y, in press)。結果を表2に示す。その結果、
S−ニトロソ基の導入効率は約99%であり、α1PI
に存在する唯一のシステイン残基がほぼ完全にS−ニト
ロソ化されていることが明らかになった。同様にして、
精製アルブミンもニトロソ化しニトロソ基の導入率を定
量した結果、こちらは約30%の導入率であった。
The S-nitroso group was quantified by high performance liquid chromatography connected to a flow reactor for continuously reacting the sample with mercury chloride and the Glyce reagent (Aka).
ike T, et al., J. Biochemistry
y, in press). Table 2 shows the results. as a result,
The introduction efficiency of the S-nitroso group is about 99%, and α1PI
Was found to be almost completely S-nitrosated. Similarly,
Purified albumin was also nitrosated and the introduction rate of the nitroso group was quantified. As a result, the introduction rate was about 30%.

【0021】[0021]

【表2】 実験番号 ニトロソ基導入率(%) α1PI アルブミン 1 98 26 2 99 34 3 100 32 4 98 28 5 100 31Table 2 Experiment No. Nitroso group introduction rate (%) α1PI albumin 1 98 26 299 34 3 100 32 4 98 28 5 100 31

【0022】調製したS−NOα1PIの安定性を、液
状4℃で無菌的に放置することで評価した。その結果、
表3に示すようにS−NOα1PIのニトロソ基の解離
およびインヒビタ−活性に関して2週間以上安定であっ
た。一方、ニトロソ化アルブミンのニトロソ基は約2週
間で約50%減衰し、S−NOα1PIの安定性の優位
性が明らかとなった。
The stability of the prepared S-NOα1PI was evaluated by aseptically leaving the liquid at 4 ° C. as a result,
As shown in Table 3, the dissociation of the nitroso group of S-NOα1PI and the inhibitory activity were stable for 2 weeks or more. On the other hand, the nitroso group of nitrosated albumin attenuated by about 50% in about 2 weeks, which revealed the superiority of S-NOα1PI in stability.

【0023】[0023]

【表3】 EIC: エラスターセ゛阻害活性 TIC: トリフ゜シン阻害活性 保存期間 S−NOα1PI S−NOアルフ゛ミン (日) SNO含量(%) EIC(%) TIC(%) SNO含量(%) 0 100 100 100 100 1 98 97 98 96 2 99 98 97 83 4 100 100 99 71 8 97 99 100 62 12 100 98 99 51 16 98 97 98 42Table 3 EIC: Elastase inhibitory activity TIC: Trifusin inhibitory activity Storage period S-NOα1PI S-NO albumin (days) SNO content (%) EIC (%) TIC (%) SNO content (%) 0 100 100 100 100 1 98 97 98 96 96 99 98 97 834 100 100 99 99 71 8 97 99 100 62 12 100 98 99 51 51 16 98 97 98 98 42

【0024】実施例 2 (S−ニトロソ化α1PIの血管弛緩効果)体重2.5〜
3.0kgの雌ニュージーランド白ウサギをペントバル
ビトンナトリウム麻酔下に屠殺し、胸部大動脈を摘出し
た。摘出した大動脈から脂肪および過剰の結合組織を除
去した後、幅5mmの大動脈リングを調製した。大動脈
リングを20mlのクレブス液を満たしたオーガン・バ
スに装着し、等長張力を記録した。クレブス液は37℃
に保ち、95%O2/5%CO2ガスをバブリングさせ
た。大動脈リングを予め0.3μMのフェニレフリンで
収縮させた後、S−NOα1PIを各々1、3、10、
30、100および300nMになるようにオーガン・
バス内に添加し、張力の変化を記録した。0.3μMの
フェニレフリンによって収縮した状態を0%弛緩、フェ
ニレフリン添加前の張力を100%弛緩とし、各濃度の
S−NOα1PIによる弛緩の割合を%で表した。結果
を表4に示す。S−NOα1PIは濃度依存的に大動脈
リングを弛緩させ、300nMのS−NOα1PIは大
動脈リングに完全な弛緩をもたらした。一方、対照とし
て実施した未修飾α1PIの添加においては、顕緒な弛
緩効果を観ることはなかった。
Example 2 (Vascular relaxing effect of S-nitrosated α1PI) Body weight 2.5-
A 3.0 kg female New Zealand white rabbit was sacrificed under sodium pentobarbitone anesthesia and the thoracic aorta was removed. After removing fat and excess connective tissue from the excised aorta, a 5 mm wide aortic ring was prepared. The aortic ring was mounted on an organ bath filled with 20 ml Krebs solution and the isometric tension was recorded. Krebs solution at 37 ° C
And 95% O 2 /5% CO 2 gas was bubbled. After pre-contracting the aortic ring with 0.3 μM phenylephrine, S-NOα1PI was increased to 1, 3, 10,
Organs to be 30, 100 and 300 nM
It was added into the bath and the change in tension was recorded. The state contracted by 0.3 μM phenylephrine was defined as 0% relaxation, the tension before the addition of phenylephrine was defined as 100% relaxation, and the percentage of relaxation due to each concentration of S-NOα1PI was expressed as%. Table 4 shows the results. S-NOα1PI relaxed the aortic ring in a concentration-dependent manner, and 300 nM S-NOα1PI caused complete relaxation of the aortic ring. On the other hand, in the case of adding unmodified α1PI performed as a control, no apparent relaxation effect was observed.

【0025】[0025]

【表4】 薬剤添加量 血管弛緩率(%) (nM) S−NOα1PI α1PI 0 0.0 0.0 1 5.6 1.0 3 19.0 1.5 10 35.6 2.0 30 66.7 2.0 100 87.3 2.4 300 100.0 3.0Table 4 Amount of drug added Vascular relaxation rate (%) (nM) S-NOα1PI α1PI 0.0 0.0 1 5.6 1.0 3 19.0 1.5 10 35.6 2.0 30 66 .7 2.0 100 87.3 2.4 300 1000.0 3.0

【0026】実施例 3 (S−ニトロソ化α1PIの抗血小板作用)多血小板血漿
(PRP)を用い、コラーゲン、ADP(アデノシン5'−
二リン酸)またはエピネフリン等の凝集惹起物質によっ
て惹起した血小板凝集に対するS−NOα1PIの効果
を検討した。対照を未修飾α1PIとした。PRPを定
法に従って採取し、当該血漿とS−NOα1PIまたは
未修飾α1PIを9:1の割合で混和した。混和した血
漿360μlを測定キュベットに添加し、37℃で3分
間静置後、凝集惹起物質含有溶液を40μl添加して添
加後5分以上の凝集反応を血小板凝集計(NKK HEM
A TRACER1 PAT−4A)にて記録した。記録
データより最大凝集率を算出した。ここで、最大凝集率
は、乏血小板血漿透過光度に対するPRPの最大透過度
の比率で表され、ADPによる凝集では通常70%以上
となる。すなわち、最大凝集率が高いことは血小板凝集
率が高いことを意味し、抑制剤の作用により最大凝集率
は低下する。最大凝集率について本願発明のS−NOα
1PIの効果を対照の未修飾α1PIと比較した。表5
に示したように3種の凝集惹起物質によって惹起された
血小板凝集は、S−NOα1PIの処理により明らかに
抑制された。
Example 3 (Antiplatelet effect of S-nitrosated α1PI) Platelet-rich plasma
(PRP), collagen, ADP (adenosine 5'-
The effect of S-NOα1PI on platelet aggregation induced by an aggregation-inducing substance such as diphosphate) or epinephrine was examined. The control was unmodified α1PI. PRP was collected according to a standard method, and the plasma was mixed with S-NOα1PI or unmodified α1PI at a ratio of 9: 1. 360 μl of the mixed plasma was added to the measurement cuvette, and left at 37 ° C. for 3 minutes. Then, 40 μl of an aggregation-inducing substance-containing solution was added.
A TRACER1 PAT-4A). The maximum aggregation rate was calculated from the recorded data. Here, the maximum aggregation rate is represented by the ratio of the maximum transmittance of PRP to the transmittance of platelet-poor plasma, and is usually 70% or more in ADP aggregation. That is, a high maximum aggregation rate means a high platelet aggregation rate, and the maximum aggregation rate decreases due to the action of the inhibitor. S-NOα of the present invention for the maximum aggregation rate
The effect of 1PI was compared to a control unmodified α1PI. Table 5
As shown in Table 2, platelet aggregation induced by the three aggregation-inducing substances was clearly suppressed by the treatment with S-NOα1PI.

【0027】[0027]

【表5】 薬 剤 最大凝集率(%) コラ−ケ゛ン ADP エヒ゜ネフリン S-NOα1PI 8 30 15 (5μM) 未修飾α1PI 75 80 75 (5μM)[Table 5] Drug Maximum aggregation rate (%) Collagen ADP Epinephrine S-NOα1PI 830 15 (5 μM) Unmodified α1PI 75 80 75 (5 μM)

【0028】実施例 4 (S−ニトロソ化α1PIの虚血・再潅流障害抑制作用)
ウィスター ラット(Wister rat:雄、200
〜250g)をエーテル下に麻酔し腹部正中で開腹し
た。門脈及び肝動脈を結節し血行を30分間遮断した。
結節を解き再潅流した直後に、各群のラットに対して経
門脈的にS−NOα1PI、未修飾α1PIを各々0.
3mg、陰性対照として生理食塩水0.3mlを投与し
た。GOT、GPT及びLDHを指標として、投与後3
時間後の肝障害を評価した。結果を表6に示す。各指標
の数値より、未修飾α1PIに比較して本願発明のS−
NOα1PIが有意に虚血・再潅流障害抑制作用を有す
ることが明らかとなった。
Example 4 (Suppression of ischemia / reperfusion injury by S-nitrosated α1PI)
Wistar rat (male, 200)
250250 g) was anesthetized under ether and the abdomen was opened in the midline. The portal vein and hepatic artery were nodulated and blood circulation was blocked for 30 minutes.
Immediately after dissolving the nodules and reperfusion, the rats of each group were given 0. 1 S-NOα1PI and 0.
3 mg and 0.3 ml of physiological saline were administered as a negative control. GOT, GPT and LDH were used as indices and 3
Hepatic damage after hours was evaluated. Table 6 shows the results. From the numerical value of each index, the S-value of the present invention is compared with that of the unmodified α1PI.
It was revealed that NOα1PI has a significant effect on suppressing ischemia / reperfusion injury.

【0029】[0029]

【表6】 投与薬剤 指 標 GOT GPT LDH (IU/L) S-NOα1PI 900 900 6000 (0.3mg) 未修飾α1PI 1450 1550 18000 (0.3mg) 生理食塩水 1800 2050 15000 (0.3ml) Table 6 Drugs to be administered Indicator GOT GPT LDH (IU / L) S-NOα1PI 900 900 6000 (0.3 mg) Unmodified α1PI 1450 1550 18000 (0.3 mg) Physiological saline 1800 2050 15000 (0.3 ml)

【0030】実施例 5 (S−ニトロソ化α1PIの抗菌効果)Staphylo
coccus aureus ATCC25923(以下、S.
aureusと称する)、Staphylococcu
s pyogenes S121(以下、S.pyogene
と称する)、Escherichia coli AT
CC25922(以下、E.coliと称する)、Salmon
ella typhi GIFU10751(以下、S.typ
hiと称する)およびSalmonella typhi
murium LT2(以下、S.typhimurium
と称する)に対するS−NOα1PIの抗菌効果を、細
菌増殖に伴う濁度の上昇を指標に、GSNOおよび未修
飾α1PIと比較した。S.aureusS.pyog
enesE.coliS.typhiおよびS.ty
phimurium(各々、1×106コロニー形成単位
/ml)をpH7.4のクレブス・リンガー・リン緩衝液
(以下、KRPと称する)中で、S−NOα1PI(0.0
13、0.04、0.12mM)、GSNO(10、10
0、1000mM)および未修飾α1PI(0.013、
0.04、0.12mM)と37℃で1時間反応させた。
なお、薬剤を添加しないものを対照とした。反応液をブ
レイン・ハート・インフュージョン液体培地にて10倍
に希釈し、37℃で培養することにより細菌を増殖させ
た。S−NOα1PI、GSNOおよび未修飾α1PI
存在下における各細菌の増殖率を6時間の培養による濁
度の上昇を基に評価した。結果を表7に示す。S−NO
α1PIおよびGSNOは各細菌の増殖を阻害し、その
活性を比較すると、前者は後者の約100倍活性が強か
った。一方、未修飾α1PIは細菌の増殖に対して全く
抑制効果を示さなかった。
Example 5 (Antibacterial effect of S-nitrosated α1PI) Staphylo
coccus aureus ATCC 25923 (hereinafter referred to as S. aureus ) .
aureus ), Staphylococcus
s pyrogenes S121 (hereinafter, S. pyogene)
s ), Escherichia coli AT
CC25922 (hereinafter referred to as E. coli ), Salmon
ella typhi GIFU10751 (hereinafter, S.typ)
hi ) and Salmonella typhi
murium LT2 (hereinafter S. typhimurium)
The antibacterial effect of S-NOα1PI against GSNO and unmodified α1PI was evaluated using the increase in turbidity accompanying bacterial growth as an index. S. aureus , S. pyog
enes , E. coli , S. typhi and S. ty
phymurium (1 × 10 6 colony forming units / ml each) was added to Krebs-Ringer-Linn buffer pH 7.4.
(Hereinafter referred to as KRP) in S-NOα1PI (0.0
13, 0.04, 0.12 mM), GSNO (10, 10
0, 1000 mM) and unmodified α1PI (0.013,
0.04, 0.12 mM) at 37 ° C for 1 hour.
In addition, what did not add a chemical | medical agent was set as the control. The reaction solution was diluted 10-fold with a Brain Heart Infusion liquid medium, and cultured at 37 ° C. to grow the bacteria. S-NOα1PI, GSNO and unmodified α1PI
The growth rate of each bacterium in the presence was evaluated based on the increase in turbidity by culturing for 6 hours. Table 7 shows the results. S-NO
α1PI and GSNO inhibited the growth of each bacterium, and comparing their activities, the former was approximately 100 times more active than the latter. On the other hand, unmodified α1PI did not show any inhibitory effect on bacterial growth.

【0031】[0031]

【表7】 薬 剤 菌 種 (増殖率(%)) 添加濃度(mM) A B C D E 対照 100 100 100 100 100 GSNO 0.1 96 150 116 116 106 1 86 100 109 136 106 10 0 43 1 7 3 S−NOα1PI 0.013 76 144 122 99 100 0.04 8 39 2 3 3 0.12 6 6 1 2 1 α1PI 0.013 102 214 114 131 92 0.04 104 269 106 139 105 0.12 109 184 116 120 116 A:S.aureus, B:S.pyogenes, C:E.coli, D:S.typhi, E:S.typhimurium Table 7 Drug Bacterial Species (Growth Rate (%)) Addition Concentration (mM) ABCDE Control 100 100 100 100 100 GSNO 0.196 150 116 116 106 106 186 100 109 109 136 106 10 0 43 173 3 S-NOα1PI 0.013 76 144 122 99 100 0.04 839 23 3 3 0.12 66 61 2 1 α1PI 0.013 102 214 114 114 131 92 0.04 104 269 106 139 105 0.12 109 184 116 120 120 116 A: S. aureus , S. aureus pyogenes , C: E. coli , D: S. typhi , E: S. typhimurium

フロントページの続き (51)Int.Cl.6 識別記号 FI A61K 31/00 643 A61K 31/00 643D (72)発明者 濱本 高義 熊本県熊本市清水町麻生田1999−8 (72)発明者 友清 和彦 熊本県熊本市龍田町弓削70−1 (72)発明者 中垣 智弘 熊本県菊池郡合志町豊岡2527−311 (72)発明者 宮本 誠二 熊本県菊池郡西合志町須屋2066−8Continuation of the front page (51) Int.Cl. 6 Identification code FI A61K 31/00 643 A61K 31/00 643D (72) Inventor Takayoshi Hamamoto 1999-8 Asoda, Shimizu-cho, Kumamoto-shi, Kumamoto (72) Inventor Kazuhiko Tomoyoshi 70-1 Yuge, Tatsuta-cho, Kumamoto-shi, Kumamoto (72) Inventor Tomohiro Nakagaki 2527-311, Toyooka, Koshimachi, Kikuchi-gun, Kumamoto (72) Inventor Seiji Miyamoto 2066-8, Suya, Nishi-Goshi-cho, Kikuchi-gun, Kumamoto

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Sニトロソ化α1プロテアーゼインヒビ
ターを本態とする一酸化窒素供与剤。
1. A nitric oxide donor based on S-nitrosated α1 protease inhibitor.
【請求項2】 請求項1記載の一酸化窒素供与剤を主要
構成成分とする血管循環不全改善剤。
2. A vascular circulatory insufficiency improving agent comprising the nitric oxide donor according to claim 1 as a main component.
【請求項3】 請求項1記載の一酸化窒素供与剤を主要
構成成分とする抗血小板剤。
3. An antiplatelet agent comprising the nitric oxide donor according to claim 1 as a main component.
【請求項4】 請求項1記載の一酸化窒素供与剤を主要
構成成分とする虚血・再潅流障害抑制剤。
4. An ischemic / reperfusion injury inhibitor comprising the nitric oxide donor according to claim 1 as a main component.
【請求項5】 請求項1記載の一酸化窒素供与剤を主要
構成成分とする抗菌剤。
5. An antibacterial agent comprising the nitric oxide donor according to claim 1 as a main component.
JP10267445A 1997-09-04 1998-09-03 New nitrogen monoxide supplying agent Pending JPH11147838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10267445A JPH11147838A (en) 1997-09-04 1998-09-03 New nitrogen monoxide supplying agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25787997 1997-09-04
JP9-257879 1997-09-04
JP10267445A JPH11147838A (en) 1997-09-04 1998-09-03 New nitrogen monoxide supplying agent

Publications (1)

Publication Number Publication Date
JPH11147838A true JPH11147838A (en) 1999-06-02

Family

ID=26543435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10267445A Pending JPH11147838A (en) 1997-09-04 1998-09-03 New nitrogen monoxide supplying agent

Country Status (1)

Country Link
JP (1) JPH11147838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247475A (en) * 2000-03-02 2001-09-11 Chemo Sero Therapeut Res Inst New cysteine protease inhibitor
US7166577B2 (en) 2003-12-26 2007-01-23 Nipro Corporation Albumin having enhanced antimicrobial activity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247475A (en) * 2000-03-02 2001-09-11 Chemo Sero Therapeut Res Inst New cysteine protease inhibitor
US7166577B2 (en) 2003-12-26 2007-01-23 Nipro Corporation Albumin having enhanced antimicrobial activity

Similar Documents

Publication Publication Date Title
Havemann et al. Physiology and pathophysiology of neutral proteinases of human granulocytes
ES2276396T3 (en) ANTICOAGULATING PROTEINS AND INHIBITORS OF SERINE PROTEASA EXTRACTED FROM NEMATODES.
Bourin et al. Glycosaminoglycans and the regulation of blood coagulation
Davie et al. The coagulation cascade: initiation, maintenance, and regulation
Markwardt Past, present and future of hirudin
CA1126652A (en) Antithrombin preparation and process for the production thereof
US6063764A (en) Method for using lipoprotein associated coagulation inhibitor to treat sepsis
US5441931A (en) Human amyloid protein precursor homologue and Kunitz-type inhibitors
EP0333356A2 (en) Hirudin peptides
US20080318841A1 (en) Method For Preparing a Factor H Concentrate and the Use Thereof in the Form of a Drug
EP0529031A1 (en) Improved inhibitors of thrombin
CA2174231C (en) Process for preparing an inter-alpha-trypsine inhibitor concentrate for therapeutical use, and concentrate thus obtained
JPH10501404A (en) Method for producing effective recombinant serine protease inhibitors and use of these inhibitors
Kirschfink et al. C1 inhibitor in anti-inflammatory therapy: from animal experiment to clinical application
PT991666E (en) Alpha 1-antitrypsin preparation and method for the production thereof
JPH04500802A (en) hirudin peptide
JPS58225023A (en) Production method of α-1-proteinase inhibitor
US7166577B2 (en) Albumin having enhanced antimicrobial activity
JPH11147838A (en) New nitrogen monoxide supplying agent
Bruning et al. Prothrombal: a new concentrate of human prothrombin complex for clinical use
JP4649954B2 (en) Albumin with enhanced antibacterial activity
JP2011506489A (en) Compositions that modulate hemostasis and methods of use thereof
Salte et al. Serine protease and glycerophospholipid: cholesterol acyltransferase of Aeromonas salmonicida work in concert in thrombus formation; in vitro the process is counteracted by plasma antithrombin and α2‐macroglobulin
Dodt Anticoagulatory substances of bloodsucking animals: from hirudin to hirudin mimetics
US5955294A (en) Nematode-extracted serine protease inhibitors and anticoagulant proteins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209