[go: up one dir, main page]

JPH11181127A - Preparation of oriented film, oriented film and liquid crystal display equipped therewith - Google Patents

Preparation of oriented film, oriented film and liquid crystal display equipped therewith

Info

Publication number
JPH11181127A
JPH11181127A JP36520297A JP36520297A JPH11181127A JP H11181127 A JPH11181127 A JP H11181127A JP 36520297 A JP36520297 A JP 36520297A JP 36520297 A JP36520297 A JP 36520297A JP H11181127 A JPH11181127 A JP H11181127A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment film
side chain
alignment
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36520297A
Other languages
Japanese (ja)
Other versions
JP3945789B2 (en
Inventor
Yoshihiro Kawatsuki
喜弘 川月
Hiroshi Ono
博司 小野
Takeya Sakai
丈也 酒井
Masao Uetsuki
正雄 植月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayashi Telempu Corp
Original Assignee
Hayashi Telempu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayashi Telempu Corp filed Critical Hayashi Telempu Corp
Priority to JP36520297A priority Critical patent/JP3945789B2/en
Publication of JPH11181127A publication Critical patent/JPH11181127A/en
Application granted granted Critical
Publication of JP3945789B2 publication Critical patent/JP3945789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a multiple number of arbitrarily chosen orientations in one same oriented film, which is enabled by a photoorientation technique of a polymeric oriented film to accelerate orientation of a liq. crystal encapsulated in a liq. crystal panel. SOLUTION: Irradiation of ultraviolet rays 7 with a linear polarity is applied to a photosensitive polymeric film with a side chain 4, the main chain consisting of a hydrocarbon, an acrylate, a methacrylate, a siloxane or the like, and the film comprising, at a specific ratio, a substituent such as biphenyl, terphenyl, phenyl benzoate, azobenzene or the like, a side chain comprising a structure combined with a photosensitive group such as a cinnamic group and a side chain combined with no photosensitive group, to obtain an oriented film having an arbitrarily chosen orientation property, while facilitating dimerization reaction of the photosensitive group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、感光性の側鎖型高
分子膜に、直線偏光性の紫外線を照射する配向膜の製造
方法に関する。この配向膜は液晶パネルに封入した液晶
の配向を促進し、液晶表示装置の(製造方法の)改良に
役立つものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an alignment film in which a photosensitive side-chain type polymer film is irradiated with linearly polarized ultraviolet rays. This alignment film promotes the alignment of the liquid crystal sealed in the liquid crystal panel, and is useful for improving the liquid crystal display device (of the manufacturing method).

【0002】[0002]

【従来の技術】液晶表示装置は、ブラウン管式の表示装
置と比較して、「平板状であるため狭い空間でも設置で
きる」、「軽量で持ち運び易い」、「デジタル映像であ
るため高速の映像通信に馴染む」、「低電圧で駆動する
ため消費電力が少ない」などの利点を持っており、有力
な映像情報発生手段として急成長の途上にある。現在普
及している液晶表示装置の多くは、ねじれネマッチク液
晶を利用している。
2. Description of the Related Art Compared with a CRT type display device, a liquid crystal display device is "flat and can be installed in a small space", "light and easy to carry", and "high speed video communication because it is a digital image". It is advantageous in that it has low power consumption because it is driven by a low voltage, and is rapidly growing as a powerful video information generating means. Many of the currently popular liquid crystal display devices use twisted nematic liquid crystals.

【0003】図2の模式断面図によって、液晶表示装置
の一般的構造を説明する。液晶表示装置(120)は、
2枚のパネル(121、121)に液晶(122)を挟
み封入してなる。パネル(121、121)の構成は、
偏光板(123、123)、ガラス基板(124、12
4)、透明電極(125、125)、配向膜(126、
126)を積層してなる。一方の偏光板(123)の外
側にある不図示の光源からの光線は、液晶表示装置を透
過し、他方の偏光板(123)側へ透過する。液晶表示
装置は、液晶分子(122)の配列状態を透明電極(1
25、125)からの加電圧によって変化させ、その結
果液晶に生じた光学的性質の変化を偏光板(123、1
23)で顕在化させることにある。無電圧状態では液晶
分子は、厚さ方向に順次角度を変えながらねじれ配列し
ている。配向膜は(126、126)液晶の界面(配向
膜と接する面)での配向方向を制御する作用をなし、液
晶表示装置の構成上必要不可欠である。
The general structure of a liquid crystal display device will be described with reference to the schematic sectional view of FIG. The liquid crystal display device (120)
A liquid crystal (122) is sandwiched and sealed between two panels (121, 121). The configuration of the panels (121, 121)
Polarizing plates (123, 123), glass substrates (124, 12)
4), transparent electrodes (125, 125), alignment films (126,
126) are laminated. Light rays from a light source (not shown) outside one of the polarizing plates (123) pass through the liquid crystal display device and pass through to the other polarizing plate (123). The liquid crystal display device changes the alignment state of the liquid crystal molecules (122) to the transparent electrodes (1).
25, 125), and the resulting change in the optical properties of the liquid crystal is reflected by the polarizing plates (123, 125).
23). In the no-voltage state, the liquid crystal molecules are twisted while sequentially changing the angle in the thickness direction. The alignment film controls the alignment direction at the interface of the (126, 126) liquid crystal (the surface in contact with the alignment film), and is indispensable for the configuration of the liquid crystal display device.

【0004】図3に従来の最も一般的な配向膜の製造方
法の一例(ラビング法)を示す。基板(131)にポリ
イミト などの高分子化合物(132)を塗布し、表面を
ナイロンやポリエステル繊維を植毛した布(134)を
巻きつけたドラム(133)で擦り、表面に極微細な溝
を形成した配向膜とする製造方法である。この配向膜は
溝の方向にそって液晶の配向方向を制御する作用があ
る。ラビング法では、微細な埃や静電気による放電が生
じやすく、液晶パネルの製造工程において問題となって
いる。ラビング法以外では、酸化珪素を基板に対して斜
めから蒸着して得られる斜方蒸着法が採用されてきた。
この配向膜は蒸着した酸化珪素の傾斜方向にそって液晶
の配向方向を制御する作用がある。この方法では基板上
での蒸着角や蒸着膜厚の均一性を保つことが難しいこと
やプロセスが大掛かりになってしまうなどの問題点があ
った。また、これらの配向膜の製造方法では、全面にお
いて配向方向は一定一方向のみに限られており、配向方
向や程度を任意に異ならせた領域を形成することはでき
なかった。このように配向方向が限定された配向膜を液
晶表示装置に用いると、液晶を見る方向によって位相差
が大きくなり(結果として視野角依存性の大きなものと
なり)可視角が狭くなる。
FIG. 3 shows an example (rubbing method) of a conventional method of manufacturing the most general alignment film. A high molecular compound (132) such as polyimito is applied to the substrate (131), and the surface is rubbed with a drum (133) wound with a cloth (134) in which nylon or polyester fibers are planted to form an extremely fine groove on the surface. This is a manufacturing method for forming an oriented film. This alignment film has the function of controlling the alignment direction of the liquid crystal along the direction of the groove. In the rubbing method, discharge due to fine dust or static electricity is likely to occur, which is a problem in a liquid crystal panel manufacturing process. In addition to the rubbing method, an oblique evaporation method obtained by obliquely depositing silicon oxide on a substrate has been employed.
This alignment film has the function of controlling the alignment direction of the liquid crystal along the tilt direction of the deposited silicon oxide. This method has problems that it is difficult to maintain the uniformity of the deposition angle and the thickness of the deposited film on the substrate, and the process becomes large. Further, in these methods of manufacturing an alignment film, the alignment direction is limited to only one fixed direction over the entire surface, and it is impossible to form a region in which the alignment direction and the degree are arbitrarily different. When an alignment film having a limited alignment direction is used in a liquid crystal display device, the phase difference increases depending on the direction in which the liquid crystal is viewed (the result is a large viewing angle dependency), and the visible angle becomes narrow.

【0005】[0005]

【発明が解決しようとする課題】近年、上記のような従
来法の問題点を解決する配向膜の製法として光照射を利
用して(高分子)液晶を配向させる液晶光配向技術が注
目されてきている。この技術には大きく分けて光2量体
反応を用いる方法、アゾ系ポリマーの光異性化を用いる
方法、アルキル側鎖付ポリイミドの液晶垂直配向膜に直
線偏光紫外線をする方法がある。従来の液晶光配向技術
には以下の課題がある。光2量体反応ないしアゾ系ポリ
マーの光異性化を用いる方法では、照射直線偏光紫外線
の電界方向と配向膜の分子配向方向が直交してしまい、
液晶パネルにおいて液晶配向の欠陥を防ぐのに必要なプ
レチルト角の発現が困難である。アルキル側鎖付ポリイ
ミドを用いる方法では、プレチルト角の発現は可能なも
のの、この方法では紫外線によりアルキル側鎖を切断す
るため、微小な塵が発生し液晶パネルの製造において問
題である。本発明では、液晶光配向技術の上記課題を解
決した配向膜の製造方法を提供する。
In recent years, attention has been paid to a liquid crystal photo-alignment technique for aligning a (polymer) liquid crystal by using light irradiation as a method for producing an alignment film which solves the above-mentioned problems of the conventional method. ing. This technique is roughly classified into a method using a photodimer reaction, a method using photoisomerization of an azo-based polymer, and a method of applying linearly polarized ultraviolet rays to a liquid crystal vertical alignment film of a polyimide having an alkyl side chain. The conventional liquid crystal optical alignment technology has the following problems. In the method using photodimer reaction or photoisomerization of an azo polymer, the direction of the electric field of irradiated linearly polarized ultraviolet light is orthogonal to the molecular orientation direction of the alignment film.
In a liquid crystal panel, it is difficult to develop a pretilt angle required to prevent defects in liquid crystal alignment. In the method using the polyimide with an alkyl side chain, a pretilt angle can be developed, but in this method, the alkyl side chain is cut by ultraviolet rays, so that fine dust is generated, which is a problem in the production of a liquid crystal panel. The present invention provides a method for manufacturing an alignment film that has solved the above-mentioned problems of the liquid crystal photo-alignment technology.

【0006】[0006]

【課題を解決するための手段】課題を解決する本発明の
手段は、液晶パネルの液晶の配向を促進する高分子の配
向膜の製造方法であって、感光性の側鎖型高分子膜に直
線偏光性の紫外線を照射して任意の配向特性をもった配
向膜を得ることを特徴とする配向膜の製造方法、感光性
の側鎖型高分子の構造として、側鎖には少なくとも化学
式1、および/または化学式2で表される構造を含み、
化学式3ないし化学式4で表される構成をとることを特
徴とする配向膜の製造方法、感光性の側鎖型高分子が、
主鎖に、炭化水素、アクリレート、メタクリレート、シ
ロキサンから選択される構造を含む単独重合体または共
重合体であることを特徴とする配向膜の製造方法、直線
偏光性の紫外線を照射する際の感光性の側鎖型高分子膜
の温度が、この側鎖型高分子の等方相への転移温度との
差10℃以内の範囲にあることを特徴とする配向膜の製
造方法、感光性の側鎖型高分子膜ないしはその支持体を
加熱、および/または冷却する工程を含むことを特徴と
する配向膜の製造方法、およびこの配向膜の製造方法に
よって得られることを特徴とする配向膜とこの配向膜を
備えたことを特徴とする液晶表示装置にある。
Means for Solving the Problems An object of the present invention to solve the problem is a method for producing a polymer alignment film which promotes the alignment of liquid crystal in a liquid crystal panel. A method for producing an alignment film, characterized in that an alignment film having an arbitrary alignment characteristic is obtained by irradiating a linearly polarized ultraviolet ray, and the structure of the photosensitive side-chain polymer is such that at least the chemical formula 1 And / or a structure represented by Chemical Formula 2;
A method for producing an alignment film, having a structure represented by Chemical Formulas 3 and 4, wherein the photosensitive side chain polymer is
A method for producing an alignment film, wherein the main chain is a homopolymer or a copolymer containing a structure selected from hydrocarbons, acrylates, methacrylates, and siloxanes, and a method for irradiating linearly polarized ultraviolet rays. A method for producing an alignment film, wherein the temperature of the side chain type polymer film is within a range of 10 ° C. or less from the transition temperature of the side chain type polymer to the isotropic phase. A method for producing an alignment film, comprising a step of heating and / or cooling the side chain type polymer film or its support, and an alignment film obtained by the method for producing an alignment film. A liquid crystal display device comprising the alignment film.

【0007】[0007]

【作用】本発明の製造方法(による配向膜は)、以下の
ような特異の作用をもっている。直線偏光性の紫外線の
照射時間によって、また共重合組成によって(側鎖の)
配向方向を変える制御が自由にできること。その結果、
配向膜の任意の部位を任意の配向特性に配向させた配向
膜を得ることができ、このような配向膜を液晶表示装置
に組み合わせることで、液晶のプレチルト角をはじめ、
所要の特性を改善することができる。本発明の配向膜
は、高分子を基板に塗布(スピンコート)して製膜し、
特定の方向から直線偏光(紫外線)を照射することによ
って、高分子の側鎖を照射した直線偏光紫外線の電界振
動方向に対し平行方向かつ照射光進行方向に対して垂直
方向に配列させることができる。この照射を基板面に対
して斜め方向からおこなうことによって、高分子の側鎖
を傾斜させて配列させることができる。この傾斜は、光
の照射方向を変えることによって任意の方向に設定でき
る。また、光反応により生成する2量体を直線偏光紫外
線の電界振動方向の垂直方向にも配向させることができ
る。このように配向させた高分子膜に液晶分子が接触す
ると、配向膜側の高分子側鎖ないし桂皮酸基の2量体と
の相互作用によって、液晶を配向させることができる。
また側鎖を傾けて配向させることにより液晶側のチルト
角の制御も可能である。図6は、これを模式的に示して
おり、上方の液晶パネル(61)と下方の配向膜(6
2)の接する界面(63)において、配向膜の側鎖(6
4)が配向、傾斜していると、界面近傍の液晶パネル内
の液晶分子(65)はこの作用を受けチルト角αをもっ
て界面に傾斜、配向する。
The production method of the present invention (the alignment film) has the following specific effects. Depending on the irradiation time of the linearly polarized ultraviolet light and the copolymer composition (of the side chain)
The ability to freely control the orientation direction. as a result,
It is possible to obtain an alignment film in which any part of the alignment film is aligned with any alignment characteristics, and by combining such an alignment film with a liquid crystal display device, the pre-tilt angle of the liquid crystal,
The required characteristics can be improved. The alignment film of the present invention is formed by applying (spin coating) a polymer on a substrate,
By irradiating linearly polarized light (ultraviolet light) from a specific direction, it is possible to arrange the linearly polarized ultraviolet light irradiated on the side chain of the polymer in a direction parallel to the electric field oscillation direction and perpendicular to the irradiation light traveling direction. . By performing this irradiation in an oblique direction with respect to the substrate surface, the side chains of the polymer can be inclined and arranged. This inclination can be set in any direction by changing the direction of light irradiation. In addition, the dimer generated by the photoreaction can be oriented also in the direction perpendicular to the electric field vibration direction of the linearly polarized ultraviolet light. When the liquid crystal molecules come into contact with the polymer film thus aligned, the liquid crystal can be aligned by the interaction with the polymer side chain or the dimer of cinnamic acid group on the alignment film side.
Further, the tilt angle on the liquid crystal side can be controlled by tilting and aligning the side chains. FIG. 6 schematically shows this, in which the upper liquid crystal panel (61) and the lower alignment film (6) are formed.
At the interface (63) in contact with 2), the side chains (6
When 4) is oriented and tilted, the liquid crystal molecules (65) in the liquid crystal panel near the interface are tilted and oriented to the interface with a tilt angle α due to this effect.

【0008】マスク露光により、同一の配向膜内に照射
光の電界振動方向、照射方向、照射時間の異なる複数の
領域を設けると、界面近傍の液晶パネル内の液晶分子に
も対応した配向方向の異なる複数の領域を設定できる。
たとえば図7は配向膜(70)と基板(75)の一部領
域を拡大表示しているが、4つの隣合う領域(70a、
70b、70c、70d)に、それぞれ電界振動方向が
90度づつ異なる直線偏光性の紫外線(71a、71
b、71c、71d)を照射することによって、各領域
にある不図示の側鎖がそれぞれ異なる方向に配向した結
果、これに接する液晶パネル内の液晶分子(72a、7
2b、72c、72d)はそれぞれ異なる配向状態を呈
している。また、図8は図7と同様の配向膜(80)と
基板(85)の一部領域の拡大表示であり、2つの隣り
合う領域(80a、80b)に対して照射角度の異なる
直線偏光性の紫外線(81a、81b)を照射すること
によって、両領域にある側鎖が異なる角度に配向した結
果、これに接する液晶パネル内の液晶分子(82a、8
2b)は異なるチルト角β、γをもって配向している状
態を示す。液晶表示装置において、1画素内の隣接する
任意の領域の側鎖を任意の配向方向、角度に配向させた
液晶が得られると、液晶を見る方向による位相差ずれを
解消でき、視野角の拡大などに役立つ。
When a plurality of regions having different electric field oscillation directions, irradiation directions and irradiation times of irradiation light are provided in the same alignment film by mask exposure, the alignment direction corresponding to the liquid crystal molecules in the liquid crystal panel near the interface is provided. A plurality of different areas can be set.
For example, FIG. 7 shows an enlarged view of a part of the alignment film (70) and a part of the substrate (75).
70b, 70c, 70d), linearly polarized ultraviolet rays (71a, 71) whose electric field oscillation directions differ by 90 degrees, respectively.
b, 71c, 71d), the side chains (not shown) in the respective regions are oriented in different directions. As a result, the liquid crystal molecules (72a, 7
2b, 72c, and 72d) exhibit different alignment states. FIG. 8 is an enlarged view of a part of the alignment film (80) and the substrate (85) similar to FIG. 7, and shows linearly polarized light having different irradiation angles with respect to two adjacent regions (80a, 80b). Irradiates the liquid crystal molecules (82a, 81b) in the liquid crystal panel in contact with the side chains in the two regions at different angles.
2b) shows a state where the liquid crystal molecules are oriented with different tilt angles β and γ. In a liquid crystal display device, if a liquid crystal in which the side chain of an adjacent arbitrary region in one pixel is aligned in an arbitrary alignment direction and angle can be obtained, a phase difference shift due to a direction in which the liquid crystal is viewed can be eliminated, and a viewing angle can be increased. Useful for

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施形態を説明
する。本発明の単独重合体または共重合体は、液晶性高
分子のメソゲン成分として多用されているビフェニル、
ターフェニル、フェニルベンゾエート、アゾベンゼンな
どの置換基と、桂皮酸基(または、その誘導体基)など
の感光性基を結合した構造を含む側鎖を有すると共に、
感光性基の結合していないメソゲン成分を含む側鎖をあ
る割合で含有した、炭化水素、アクリレート、メタクリ
レート、シロキサンなどの構造を主鎖に有する高分子で
ある。これらの高分子体を溶液状に基板上に塗布(スピ
ンコート)し、乾燥させて高分子の塗布膜を形成する。
この高分子塗布膜は、製膜時には無配向であり、化学式
1示される感光性の側鎖部は特定方向を向いていない。
この状態を図4を参照して説明すると、塗布膜(40)
中には長楕円で示される感光基を有し照射偏光紫外線の
振動方向に対応した向きにある感光性の側鎖(41)と
感光性の乏しい側鎖(42)が無配向に存在している。
この塗布膜に直線偏光の紫外線を照射すると、感光性の
側鎖(41)において照射直線偏光の電界振動方向に沿
い配置されている桂皮酸基(または、その誘導体基)な
どの感光性基の2量化が最も鋭敏に起こる。この2量化
反応は、反応式1に示すようにシクロプロパン結合を直
線状に形成し、照射した直線偏光の電界方向と垂直方向
に配列する。
Embodiments of the present invention will be described below. The homopolymer or copolymer of the present invention is biphenyl which is frequently used as a mesogen component of a liquid crystalline polymer,
Having a side chain including a structure in which a substituent such as terphenyl, phenylbenzoate, or azobenzene is bonded to a photosensitive group such as a cinnamic acid group (or a derivative group thereof);
It is a polymer having a main chain having a structure of a hydrocarbon, acrylate, methacrylate, siloxane or the like containing a certain proportion of a side chain containing a mesogen component to which no photosensitive group is bonded. These polymers are applied (spin-coated) on a substrate in the form of a solution and dried to form a polymer coating film.
This polymer coating film is non-oriented at the time of film formation, and the photosensitive side chain portion represented by the chemical formula 1 does not face a specific direction.
This state will be described with reference to FIG.
There is a photosensitive side chain (41) and a poorly photosensitive side chain (42) in the direction corresponding to the vibration direction of the irradiation polarized ultraviolet light having a photosensitive group represented by a long ellipse in a non-oriented state. I have.
When this coating film is irradiated with linearly-polarized ultraviolet light, a photosensitive group such as a cinnamic acid group (or a derivative thereof) disposed along the direction of electric field oscillation of the irradiated linearly-polarized light in the photosensitive side chain (41). Dimerization occurs most sensitively. In this dimerization reaction, cyclopropane bonds are formed linearly as shown in Reaction Formula 1, and are arranged in the direction perpendicular to the electric field direction of the irradiated linearly polarized light.

【0010】[0010]

【化5】 反応式1中に記した長方形は、側鎖型高分子液晶におい
て、高分子の主鎖と感光基をつなぐ分子鎖であり、液晶
成分と屈曲成分を含む。この2量化反応を進めるには、
化学式1の桂皮酸基の部分が反応し得る波長の直線偏光
の照射を要する。この波長は、化学式1で示された−R
1 〜−R5 の種類によっても異なるが、一般に200 〜50
0nm であり、中でも250 〜400nm の有効性が高い場合が
多い。
Embedded image The rectangle described in Reaction Formula 1 is a molecular chain connecting the main chain of the polymer and the photosensitive group in the side chain type polymer liquid crystal, and includes a liquid crystal component and a bending component. To proceed with this dimerization reaction,
Irradiation of linearly polarized light having a wavelength at which the cinnamate group of the chemical formula 1 can react is required. This wavelength is represented by the formula -R
It varies depending on the type of 1 ~-R 5, in general 200-50
0 nm, and in particular, the effectiveness of 250 to 400 nm is often high.

【0011】紫外線の照射後の比較的2量化反応が進行
していない塗布膜の配向状態を図5によって説明する。
塗布膜(50)内には、2量化反応のなされた側鎖(5
1)と、化学式2で示される感光性基を有していない
か、化学式1で示される感光性基を有していても(直線
偏光の電界方向に配列していないため)2量化を起こさ
なかった側鎖(52)がある。2量化した側鎖は照射し
た直線偏光の電界方向と垂直に配向している。また2量
化を起こさなかった側鎖(52)も2量化した側鎖(5
1)と同じ方向に配向する。結果、高分子塗布膜全体に
おいて、照射した直線偏光の電界振動方向に側鎖が配列
している。次に紫外線の照射後、2量化反応が十分に進
行した状態になると、2量体の配向が側鎖の配向よりも
優勢になる。図10は、このような配向膜内の配向態様
の紫外線照射時間に対する変化を示すものである。図に
おいて横軸に紫外線の照射時間をとり、縦軸に複屈折度
を表す値ΔNをとると、照射時間100秒までは、ΔN
が単調に増大するが、照射時間が100秒を越えたあた
りから、ΔNは減少し始める。これは側鎖の配向度の減
少を意味するものではなく、高分子膜内において紫外線
の照射によって形成された2量体の密度が高くなり、2
量体の配向が優勢になるという配向の態様変化が起こっ
たことによる。
The orientation state of a coating film in which the dimerization reaction has not progressed after irradiation with ultraviolet rays will be described with reference to FIG.
In the coating film (50), the side chains (5
1) and dimerization occurs even if it does not have the photosensitive group represented by the chemical formula 2 or has the photosensitive group represented by the chemical formula 1 (because it is not arranged in the direction of the electric field of linearly polarized light). There are missing side chains (52). The dimerized side chains are oriented perpendicular to the direction of the applied linearly polarized electric field. In addition, the side chain (52) that did not undergo dimerization was also replaced by the dimerized side chain (5).
Orient in the same direction as in 1). As a result, in the entire polymer coating film, side chains are arranged in the direction of the electric field oscillation of the irradiated linearly polarized light. Next, when the dimerization reaction sufficiently proceeds after irradiation with ultraviolet rays, the dimer orientation becomes dominant over the side chain orientation. FIG. 10 shows a change in the alignment mode in such an alignment film with respect to the ultraviolet irradiation time. In the figure, when the irradiation time of ultraviolet rays is taken on the horizontal axis and the value ΔN representing the birefringence is taken on the vertical axis, ΔN
Increases monotonically, but ΔN starts decreasing around the irradiation time exceeding 100 seconds. This does not mean that the degree of orientation of the side chain is reduced, and the density of the dimer formed by the irradiation of the ultraviolet rays in the polymer film increases, and
This is due to a change in the orientation mode in which the orientation of the monomer becomes dominant.

【0012】この分子運動による配列は、高分子(塗布
する基板)を加熱することにより分子が運動しやすくな
り促進される。加熱温度は、感光反応した部分(すなわ
ち配向の固定された部分)の軟化点より低く、感光反応
しなかった側鎖および感光性基を有さない側鎖部分の軟
化点より高いことが望ましい。たとえば側鎖(化学式
1)においてn=6、m=2、k=6、R1 〜R5
H、R6 =CN、X=none、Y=none、主鎖
(化学式3)においてZ=CH3 、W=COO−、a:
b=45:55の例では、75〜77℃が適当である。
また、高分子塗布膜(塗布する基板)をTi ±10℃、
好ましくはTi ±5℃、さらに好ましくはTi ±2℃
(ここで、Tiは液晶相から等方相へ変化するときの相転
移温度)の加温下で偏光紫外線照射することにより配向
を促進することができる。このように偏光照射したのち
加熱し未反応側鎖を配向させた膜または加熱下で偏光露
光し配向させた膜を該高分子の軟化点温度以下まで冷却
すると分子が凍結され、分子の配向が固定された配向膜
が得られる。また、化学式2で示される感光性基を有さ
ない側鎖は、光2量化反応の架橋点の密度を下げ、再配
向時の分子運動の自由度を向上させ、自身の分子配向性
により再配向を促進する。このような観点から化学式3
ないし化学式4においてa:b=100:0〜0:99
で作製可能であるが、a:b=100:0〜30:70
であることがより望ましい。
The arrangement by the molecular motion is facilitated by heating the polymer (substrate to be coated) so that the molecule can easily move. The heating temperature is desirably lower than the softening point of the photoreacted portion (that is, the portion in which the orientation is fixed) and higher than the softening point of the side chain that has not been photoreacted and the side chain portion having no photosensitive group. For example, in the side chain (chemical formula 1), n = 6, m = 2, k = 6, and R 1 to R 5 =
H, R 6 = CN, X = none, Y = none, Z = CH 3 in the main chain (formula 3), W = COO—, a:
In the example of b = 45: 55, 75-77 ° C. is appropriate.
In addition, the polymer coating film (substrate to be coated) is T i ± 10 ° C.
Preferably T i ± 5 ° C, more preferably T i ± 2 ° C
(Here, Ti is a phase transition temperature when the phase changes from a liquid crystal phase to an isotropic phase.) The orientation can be promoted by irradiating polarized ultraviolet rays while heating. When the film irradiated with polarized light and then heated and the unreacted side chain is oriented or the film exposed and polarized under heating is cooled to a temperature below the softening point of the polymer, the molecules are frozen and the orientation of the molecules is reduced. A fixed alignment film is obtained. In addition, the side chain having no photosensitive group represented by the chemical formula 2 lowers the density of cross-linking points in the photodimerization reaction, improves the degree of freedom of molecular motion at the time of reorientation, and reorganizes due to its own molecular orientation. Promotes orientation. From such a viewpoint, chemical formula 3
Or in Formula 4, a: b = 100: 0 to 0:99
But a: b = 100: 0 to 30:70
Is more desirable.

【0013】高分子材料の原料化合物に関する合成方法
を以下に示す。(単量体1)4,4’−ビフェニルジオ
ールと2−クロロエタノールを、アルカリ条件下で加熱
することにより、4−ヒドロキシ−4’−ヒドロキシエ
トキシビフェニルを合成した。この生成物に、アルカリ
条件下で1,6−ジブロモヘキサンを反応させ、4−
(6−ブロモヘキシルオキシ)−4’−ヒドロキシエト
キシビフェニルを合成した。次いで、リチウムメタクリ
レートを反応させ、4−ヒドロキシエトキシ−4’−
(6’−ビフェニルオキシヘキシル)メタクリレートを
合成した。最後に、塩基性の条件下において、塩化シン
ナモイルを加え、化学式5に示されるメタクリル酸エス
テルを合成した。
A method for synthesizing a raw material compound of a polymer material will be described below. (Monomer 1) 4,4′-biphenyldiol and 2-chloroethanol were heated under alkaline conditions to synthesize 4-hydroxy-4′-hydroxyethoxybiphenyl. This product was reacted with 1,6-dibromohexane under alkaline conditions to obtain 4-
(6-Bromohexyloxy) -4′-hydroxyethoxybiphenyl was synthesized. Next, lithium methacrylate was reacted to give 4-hydroxyethoxy-4′-
(6′-biphenyloxyhexyl) methacrylate was synthesized. Finally, cinnamoyl chloride was added under basic conditions to synthesize a methacrylic ester represented by Chemical Formula 5.

【化6】 Embedded image

【0014】(単量体2)4−ヒドロキシ−4’−シア
ノビフェニルをアルカリ条件下で1,6−ジブロモヘキ
サンと反応させ、4−(6−ブロモヘキシルオキシ)−
4’−シアノビフェニルを合成した。次いで、リチウム
メタクリレートを反応させ、4−シアノ−4’−(6’
−ビフェニルオキシヘキシル)メタクリレートを合成し
た。化学式6に示されるメタクリル酸エステルを合成し
た。
(Monomer 2) 4-hydroxy-4'-cyanobiphenyl is reacted with 1,6-dibromohexane under alkaline conditions to give 4- (6-bromohexyloxy)-
4′-cyanobiphenyl was synthesized. Next, lithium methacrylate was reacted to obtain 4-cyano-4 ′-(6 ′).
-Biphenyloxyhexyl) methacrylate was synthesized. A methacrylic acid ester represented by Chemical Formula 6 was synthesized.

【化7】 Embedded image

【0015】(単量体3)4,4’−ビフェニルジオー
ルと2−クロロヘキサノールを、アルカリ条件下で加熱
することにより、4−ヒドロキシ−4’−ヒドロキシエ
トキシビフェニルを合成した。この生成物に、アルカリ
条件下で1,6−ジブロモヘキサンを反応させ、4−
(6−ブロモヘキシルオキシ)−4’−ヒドロキシエト
キシビフェニルを合成した。次いで、リチウムメタクリ
レートを反応させ、4−ヒドロキシエトキシ−4’−
(6’−ビフェニルオキシヘキシル)メタクリレートを
合成した。最後に、塩基性の条件下において、4−メト
キシ塩化シンナモイルを加え、化学式7に示されるメタ
クリル酸エステルを合成した。
(Monomer 3) 4-Hydroxy-4'-hydroxyethoxybiphenyl was synthesized by heating 4,4'-biphenyldiol and 2-chlorohexanol under alkaline conditions. This product was reacted with 1,6-dibromohexane under alkaline conditions to obtain 4-
(6-Bromohexyloxy) -4′-hydroxyethoxybiphenyl was synthesized. Next, lithium methacrylate was reacted to give 4-hydroxyethoxy-4′-
(6′-biphenyloxyhexyl) methacrylate was synthesized. Finally, under basic conditions, 4-methoxycinnamoyl chloride was added to synthesize a methacrylate represented by the formula (7).

【化8】 Embedded image

【0016】(重合体1)単量体1をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体1
を得た。この重合体1は、47−75℃の温度領域にお
いて、液晶性を呈した。
(Polymer 1) Polymer 1 is obtained by dissolving Monomer 1 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing.
I got This polymer 1 exhibited liquid crystallinity in a temperature range of 47 to 75 ° C.

【0017】(重合体2)単量体1と単量体2を様々な
割合でテトラヒドロフラン中に溶解し、反応開始剤とし
てAIBN(アゾビスイソブチロニトリル)を添加して重合
することにより重合体2を得た(a:b=55:4
5)。この重合体2は、44−95℃の温度領域におい
て、液晶性を呈した。
(Polymer 2) Monomer 1 and Monomer 2 are dissolved in tetrahydrofuran at various ratios and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Merged 2 was obtained (a: b = 55: 4)
5). This polymer 2 exhibited liquid crystallinity in a temperature range of 44 to 95 ° C.

【0018】(重合体3)単量体1と単量体2を様々な
割合でテトラヒドロフラン中に溶解し、反応開始剤とし
てAIBN(アゾビスイソブチロニトリル)を添加して重合
することにより重合体3を得た(a:b=30:7
0)。この重合体3は、45−101℃の温度領域にお
いて、液晶性を呈した。
(Polymer 3) Monomer 1 and Monomer 2 are dissolved in tetrahydrofuran at various ratios, and polymerized by adding AIBN (azobisisobutyronitrile) as a reaction initiator and polymerizing. Merged 3 was obtained (a: b = 30: 7)
0). This polymer 3 exhibited liquid crystallinity in a temperature range of 45 to 101 ° C.

【0019】(重合体4)単量体3をテトラヒドロフラ
ン中に溶解し、反応開始剤としてAIBN(アゾビスイソブ
チロニトリル)を添加して重合することにより重合体4
を得た。この重合体4も液晶性を呈した。
(Polymer 4) Polymer 4 is obtained by dissolving monomer 3 in tetrahydrofuran, adding AIBN (azobisisobutyronitrile) as a reaction initiator, and polymerizing.
I got This polymer 4 also exhibited liquid crystallinity.

【0020】[0020]

【実施例】本発明の高分子材料は、熱分析による相転移
温度の発現、偏光顕微鏡観察による液晶温度領域での、
複屈折性の光学模様の発現から、液晶性の材料であるこ
とを確認した。化学式1〜化学式3において、a:b=
55:45、n=6、m=2、k=6、X,Y=none、
W=−COO−、R1 〜R5 =H、R6 =−CNであ
る、本発明の高分子材料の熱分析曲線は、昇温過程で4
4℃に吸熱ピーク、95℃にも吸熱ピークが認められ、
偏光顕微鏡観察で、該温度領域で複屈折性の光学模様を
発現する液晶性の材料であった。該高分子材料の直線偏
光紫外線照射による側鎖の配向を、基板に塗布し製膜し
た高分子塗布膜に偏光紫外線照射し、高分子塗布膜の照
射光の電界振動方向と平行方向、垂直方向の偏光赤外ス
ペクトルを比較することにより検証した。図9には、偏
光照射30秒後の照射光の電界振動方向と平行方向と垂
直方向の偏光赤外の差スペクトルΔAを示した。偏光照
射により平行方向の−CN、O−Ph、Phの吸収が大
きくなっており、照射光の電界振動方向に側鎖が配向し
たことを確認した。このとき、高分子塗布膜の複屈折は
最大となり、更に露光すると図10に示すように複屈折
が低下してくる。この複屈折の低下は、シンナモイル基
が2量体を形成し直線偏光の電界振動方向と垂直に配向
したことを示唆している。図1には本発明の配向膜の製
造方法(装置)を示す。電源(2)によって励起された
紫外線ランプ(1)で発生した無秩序光(6)は、光学
素子(3)(例えばグランテーラープリズム)をもって
直線偏光紫外線(7)に変換され、基板(5)上に塗布
(コート)された樹脂膜(4)を照射する。
EXAMPLES The polymer material of the present invention exhibits a phase transition temperature by thermal analysis and a liquid crystal temperature range by observation with a polarizing microscope.
The birefringent optical pattern was confirmed to be a liquid crystal material. In Chemical Formulas 1 to 3, a: b =
55:45, n = 6, m = 2, k = 6, X, Y = none,
The thermal analysis curve of the polymer material of the present invention in which W = —COO—, R 1 to R 5 = H, and R 6 = —CN shows that 4
An endothermic peak was observed at 4 ° C, and an endothermic peak was also observed at 95 ° C.
It was a liquid crystalline material that exhibited a birefringent optical pattern in the temperature region when observed with a polarizing microscope. The side chain orientation of the polymer material by linearly polarized ultraviolet light irradiation is applied to the polymer coating film formed on the substrate by applying polarized ultraviolet light, and the direction parallel to the electric field oscillation direction of the irradiation light of the polymer coating film and the vertical direction. This was verified by comparing the polarized infrared spectra of. FIG. 9 shows a difference spectrum ΔA of polarized infrared light in a direction parallel to and perpendicular to the direction of the electric field oscillation of the irradiation light 30 seconds after the irradiation of the polarized light. The absorption of -CN, O-Ph, and Ph in the parallel direction was increased by the polarized light irradiation, and it was confirmed that the side chains were oriented in the direction of the electric field oscillation of the irradiated light. At this time, the birefringence of the polymer coating film is maximized, and further exposure reduces the birefringence as shown in FIG. This decrease in birefringence suggests that the cinnamoyl group formed a dimer and was oriented perpendicular to the electric field oscillation direction of linearly polarized light. FIG. 1 shows a method (apparatus) for producing an alignment film of the present invention. The disordered light (6) generated by the ultraviolet lamp (1) excited by the power supply (2) is converted into linearly polarized ultraviolet light (7) by the optical element (3) (for example, a Glan-Taylor prism), and is converted on the substrate (5). The resin film (4) applied (coated) is irradiated.

【0021】(実施例1)重合体1をクロロホルムに溶
解し、光学的に等方性の基板に、約100 nm の厚さで
スピンコートした。こうして調製した樹脂膜に、グラン
テーラープリズムを用いて直線偏光に変換した紫外線
を、室温で30秒間照射した。次いでマスクパターンを
用い、マスクされた領域以外のみ電界方向の等しい直線
偏光を更に20分間照射した。該基板を150℃まで加
熱し、100℃まで冷却して10分間保持後、室温まで
冷却した。この基板と通常の配向膜の基板を用い、メル
クジャパン(株)製の液晶E7を挟持した液晶セルを組み
立てた。該液晶セルを直交ニコル、平行ニコル下で観察
したところ、マスクパターンと合致した模様の明暗反転
が観察された。
Example 1 Polymer 1 was dissolved in chloroform and spin-coated on an optically isotropic substrate to a thickness of about 100 nm. The resin film thus prepared was irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism at room temperature for 30 seconds. Next, using a mask pattern, linearly polarized light having the same electric field direction was irradiated for another 20 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a substrate of a normal alignment film, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan K.K. was assembled. Observation of the liquid crystal cell under crossed Nicols and parallel Nicols revealed that the pattern matched with the mask pattern was inverted in brightness.

【0022】(実施例2)重合体2をクロロホルムに溶
解し、光学的に等方性の基板に、約100 nm の厚さで
スピンコートした。こうして調製した樹脂膜に、グラン
テーラープリズムを用いて直線偏光に変換した紫外線
を、室温で30秒間照射した。次いでマスクパターンを
用い、マスクされた領域以外のみ電界方向の等しい直線
偏光を更に20分間照射した。該基板を150℃まで加
熱し、100℃まで冷却して10分間保持後、室温まで
冷却した。この基板と通常の配向膜の基板を用い、メル
クジャパン(株)製の液晶E7を挟持した液晶セルを組み
立てた。該液晶セルを直交ニコル、平行ニコル下で観察
したところ、マスクパターンと合致した模様の明暗反転
が観察された。
Example 2 Polymer 2 was dissolved in chloroform and spin-coated on an optically isotropic substrate to a thickness of about 100 nm. The resin film thus prepared was irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism at room temperature for 30 seconds. Next, using a mask pattern, linearly polarized light having the same electric field direction was irradiated for another 20 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a substrate of a normal alignment film, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan K.K. was assembled. Observation of the liquid crystal cell under crossed Nicols and parallel Nicols revealed that the pattern matched with the mask pattern was inverted in brightness.

【0023】(実施例3)重合体4をクロロホルムに溶
解し、光学的に等方性の基板に、約100 nm の厚さで
スピンコートした。こうして調製した樹脂膜に、グラン
テーラープリズムを用いて直線偏光に変換した紫外線
を、室温で30秒間照射した。次いでマスクパターンを
用い、マスクされた領域以外のみ電界方向の等しい直線
偏光を更に20分間照射した。該基板を150℃まで加
熱し、100℃まで冷却して10分間保持後、室温まで
冷却した。この基板と通常の配向膜の基板を用い、メル
クジャパン(株)製の液晶E7を挟持した液晶セルを組み
立てた。該液晶セルを直交ニコル、平行ニコル下で観察
したところ、マスクパターンと合致した模様の明暗反転
が観察された。
Example 3 The polymer 4 was dissolved in chloroform and spin-coated on an optically isotropic substrate to a thickness of about 100 nm. The resin film thus prepared was irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism at room temperature for 30 seconds. Next, using a mask pattern, linearly polarized light having the same electric field direction was irradiated for another 20 minutes except for the masked region. The substrate was heated to 150 ° C., cooled to 100 ° C., held for 10 minutes, and then cooled to room temperature. Using this substrate and a substrate of a normal alignment film, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan Ltd. was assembled. Observation of the liquid crystal cell under crossed Nicols and parallel Nicols revealed that the pattern matched with the mask pattern was inverted in brightness.

【0024】(実施例4)重合体1をクロロホルムに溶
解し、光学的に等方性の基板に、約100 nm の厚さで
スピンコートした。こうして調整した樹脂膜を72℃に
加温して、グランテーラープリズムを用いて直線偏光に
変換した紫外線を、30秒間照射した。次いでマスクパ
ターンを用い、マスクされた領域以外のみ電界方向の等
しい直線偏光を更に10分間照射した。該基板を150
℃まで加熱し、100℃まで冷却して10分間保持後、
室温まで冷却した。この基板と通常の配向膜の基板をも
ちい、メルクジャパン(株)製の液晶E7をを挟持した液
晶セルを組み立てた。該液晶セルを直交ニコル、平行ニ
コル下でで観察したところマスクパターンと合致した模
様の明暗反転が観察された。
Example 4 Polymer 1 was dissolved in chloroform and spin-coated on an optically isotropic substrate to a thickness of about 100 nm. The resin film thus adjusted was heated to 72 ° C., and irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism for 30 seconds. Next, using a mask pattern, linearly polarized light having the same electric field direction was irradiated for an additional 10 minutes except for the masked region. 150 substrates
After heating to 100 ° C, cooling to 100 ° C and holding for 10 minutes,
Cooled to room temperature. Using this substrate and a substrate of a normal alignment film, a liquid crystal cell sandwiching a liquid crystal E7 manufactured by Merck Japan K.K. was assembled. Observation of the liquid crystal cell under crossed Nicols and parallel Nicols revealed that the pattern matched with the mask pattern was inverted.

【0025】これら実施例1から実施例4において、マ
スクパターンに一致した明暗反転が観察されたことか
ら、それぞれの領域の液晶の配向方向が相互に異なる領
域が1枚の配向膜(液晶)に同時に形成されたことを立
証するものである。
In each of Examples 1 to 4, since bright / dark inversion matching the mask pattern was observed, regions where the liquid crystal alignment directions of the respective regions were different from each other were formed on one alignment film (liquid crystal). It proves that they were formed at the same time.

【0026】(実施例5)重合体1をクロロホルムに溶
解し、ITO (インジウム錫酸化物)で覆った基板上に約
100 nm の厚さでスピンコートした。該基板を水平面
に対して30度傾くように配置し、グランテーラープリ
ズムを用いて直線偏光に変換した紫外線を、水平面に対
し垂直方向から72℃で30秒間照射し室温まで冷却し
た。この基板を用い、メルクジャパン(株)製の液晶ZL
I 2061をコートし、クリスタルローテーション法で
プレチルト角を測定をした。該基板を用いたときの液晶
のプレチルト角は3.6°であった。このような基板を
2枚作製して液晶ZLI 2061を挟持することにより、
厚さ12μmのTN型液晶セルを組み立てた。このTN型液
晶セルの駆動電圧は2V であった。液晶セル全面にわた
り配向欠陥の無いことが確認された。
Example 5 Polymer 1 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 30 degrees with respect to the horizontal plane, and irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism from the vertical direction at 72 ° C. for 30 seconds and cooled to room temperature. Using this substrate, a liquid crystal ZL manufactured by Merck Japan Ltd.
I2061 was coated, and the pretilt angle was measured by a crystal rotation method. The pretilt angle of the liquid crystal when using this substrate was 3.6 °. By manufacturing two such substrates and sandwiching the liquid crystal ZLI 2061,
A TN type liquid crystal cell having a thickness of 12 μm was assembled. The driving voltage of this TN type liquid crystal cell was 2V. It was confirmed that there was no alignment defect over the entire surface of the liquid crystal cell.

【0027】(実施例6)重合体2をクロロホルムに溶
解し、ITO (インジウム錫酸化物)で覆った基板上に約
100 nm の厚さでスピンコートした。該基板を水平面
に対して30度傾くように配置し、グランテーラープリ
ズムを用いて直線偏光に変換した紫外線を、水平面に対
し垂直方向から、雰囲気温度89℃で5分間照射後、室
温まで冷却した。この基板を用い、メルクジャパン
(株)製の液晶ZLI 2061をコートし、クリスタルロ
ーテーション法でプレチルト角を測定した。該基板を用
いたときの液晶のプレチルト角は4.2°であった。
Example 6 Polymer 2 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 30 degrees with respect to the horizontal plane, and irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism from the direction perpendicular to the horizontal plane at an atmosphere temperature of 89 ° C. for 5 minutes and then cooled to room temperature. . Using this substrate, a liquid crystal ZLI 2061 manufactured by Merck Japan Ltd. was coated, and the pretilt angle was measured by a crystal rotation method. The pretilt angle of the liquid crystal when using this substrate was 4.2 °.

【0028】(実施例7)重合体3をクロロホルムに溶
解し、ITO (インジウム錫酸化物)で覆った基板上に約
100 nm の厚さでスピンコートした。該基板を水平面
に対して30度傾くように配置し、グランテーラープリ
ズムを用いて直線偏光に変換した紫外線を、水平面に対
し垂直方向から、雰囲気温度89℃で5分間照射後、室
温まで冷却した。この基板を用い、メルクジャパン
(株)製の液晶ZLI 2061をコートし、クリスタルロ
ーテーション法でプレチルト角を測定した。該基板を用
いたときの液晶のプレチルト角は1.7°であった。
Example 7 The polymer 3 was dissolved in chloroform and spin-coated to a thickness of about 100 nm on a substrate covered with ITO (indium tin oxide). The substrate was arranged so as to be inclined by 30 degrees with respect to the horizontal plane, and irradiated with ultraviolet light converted to linearly polarized light using a Glan-Taylor prism from the direction perpendicular to the horizontal plane at an atmosphere temperature of 89 ° C. for 5 minutes and then cooled to room temperature. . Using this substrate, a liquid crystal ZLI 2061 manufactured by Merck Japan Ltd. was coated, and the pretilt angle was measured by a crystal rotation method. The pretilt angle of the liquid crystal when using this substrate was 1.7 °.

【0029】[0029]

【発明の効果】以上に記述したように、本発明によれ
ば、光反応によって配向膜が得られると共に、この膜を
液晶ディスプレイ用の配向膜に応用できる。該配向膜で
は、ラビングなど、液晶分子の配向操作が不要な配向膜
が調製されるので、液晶表示装置の組立工程で生じる欠
陥が著しく低減される。液晶表示装置における視野角の
拡大においては、1画素を分割し液晶配向方向を変えた
り、低チルト角と高チルト角の配向状態を発現させた
り、チルト角を反転させる画素分割配向が有効な技術で
ある。本発明の高分子材料では、照射光の電界振動方
向、光照射量、照射方向を変えることにより液晶分子の
配向方向、プレチルト角が異なる膜を同一基板上に作製
することもでき、該画素分割配向も可能となる。更に、
直線偏光の照射量により液晶分子の配向を90°回転さ
せることができ、1つのマスクパターンで2方向に配向
方向を制御できるので、マスクパターンを2つ必要とぜ
ず位置合せも不要とすることができる。光架橋で耐熱性
がすぐれる配向膜になる。
As described above, according to the present invention, an alignment film can be obtained by photoreaction, and this film can be applied to an alignment film for a liquid crystal display. In the alignment film, an alignment film that does not require alignment operation of liquid crystal molecules such as rubbing is prepared, so that defects generated in a process of assembling a liquid crystal display device are significantly reduced. In expanding the viewing angle of a liquid crystal display device, a technique is effective in which one pixel is divided to change the liquid crystal alignment direction, a low tilt angle and a high tilt angle alignment state is developed, and a tilt angle is inverted. It is. In the polymer material of the present invention, films having different orientation directions of liquid crystal molecules and different pretilt angles can be formed on the same substrate by changing the direction of electric field oscillation of irradiation light, the amount of light irradiation, and the irradiation direction. Orientation is also possible. Furthermore,
The alignment of liquid crystal molecules can be rotated by 90 ° by the amount of irradiation of linearly polarized light, and the alignment direction can be controlled in two directions with one mask pattern, so that no two mask patterns are required and no alignment is required. Can be. An alignment film having excellent heat resistance is obtained by photocrosslinking.

【0030】[0030]

【図面の簡単な説明】[Brief description of the drawings]

図1は、本発明の配向膜の製造方法を示す概念図であ
る。図2は、液晶表示装置の構成図。図3は、従来の配
向膜の製造方法を示す例図。図4は、偏光照射により感
光した側鎖の模式図。図5は、偏光照射後の分子運動に
より配列した側鎖の模式図。図6は、本発明の高分子材
料による液晶の配向状態の模式図。図7、8は、本発明
の配向膜による画素分割した液晶配向の模式図である。
図9は、偏光照射後の照射光の電界振動方向と平行方向
と垂直方向の赤外の差スペクトルΔAを測定したグラ
フ。図10は、偏光照射時間による複屈折率の変化を示
すグラフである。
FIG. 1 is a conceptual diagram illustrating a method for manufacturing an alignment film according to the present invention. FIG. 2 is a configuration diagram of a liquid crystal display device. FIG. 3 is an example showing a conventional method for manufacturing an alignment film. FIG. 4 is a schematic view of a side chain exposed by polarized light irradiation. FIG. 5 is a schematic diagram of side chains arranged by molecular motion after irradiation of polarized light. FIG. 6 is a schematic view of an alignment state of liquid crystal by the polymer material of the present invention. FIGS. 7 and 8 are schematic diagrams of liquid crystal alignment in which pixels are divided by the alignment film of the present invention.
FIG. 9 is a graph showing a measured infrared difference spectrum ΔA in a direction parallel to and perpendicular to the direction of electric field oscillation of irradiation light after irradiation of polarized light. FIG. 10 is a graph showing a change in a birefringence index according to a polarization irradiation time.

【符号の説明】[Explanation of symbols]

1・・・紫外線ランプ 2・・・電源 3・・・光学素子(グランテーラープリズム) 4・・・樹脂膜 5・・・基板 6・・・無秩序光 7・・・直線偏光紫外線 120・・・液晶表示装置 122・・・液晶 123・・・偏光板 124・・・ガラス基板 125・・・透明電極 126・・・配向膜 DESCRIPTION OF SYMBOLS 1 ... Ultraviolet lamp 2 ... Power supply 3 ... Optical element (Gran Taylor prism) 4 ... Resin film 5 ... Substrate 6 ... Disordered light 7 ... Linearly polarized ultraviolet light 120 ... Liquid crystal display device 122: liquid crystal 123: polarizing plate 124: glass substrate 125: transparent electrode 126: alignment film

フロントページの続き (51)Int.Cl.6 識別記号 FI // C08J 5/18 C08J 5/18 Continued on the front page (51) Int.Cl. 6 Identification symbol FI // C08J 5/18 C08J 5/18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 液晶パネルの液晶の配向を促進する高分
子の配向膜の製造方法であって、感光性の側鎖型高分子
膜に直線偏光性の紫外線を照射して任意の配向特性をも
った配向膜を得ることを特徴とする配向膜の製造方法。
1. A method for producing a polymer alignment film for accelerating the alignment of liquid crystal in a liquid crystal panel, comprising irradiating a photosensitive side-chain type polymer film with linearly polarized ultraviolet light to obtain an arbitrary alignment characteristic. What is claimed is: 1. A method for producing an alignment film, comprising:
【請求項2】 請求項1の配向膜の製造方法において、
感光性の側鎖型高分子の構造として、側鎖には少なくと
も化学式1、および/または化学式2で表される構造を
含み、化学式3ないし化学式4で表される構成をとるこ
とを特徴とする配向膜の製造方法。 【化1】 【化2】 【化3】 【化4】 但し、化学式1〜化学式4において、n、m、k=1〜
12、a :b=100:0〜1:99 R1 〜R6 =−H、−CN、−C=C−、−C=C(C
N)2 、−C=CH−CN、ハロゲン基、メトキシ基な
どのアルキルオキシ基、X、Y=none、−COO、
−OCO−、−N=N−、−C=C−、−C6 4 −、
Z=−H、−CH3 、−C2 5 、−C3 7 、ハロゲ
ン基、W=none、−COO、−OCO−、−(O−
CH2 )−である。
2. The method for manufacturing an alignment film according to claim 1, wherein
As the structure of the photosensitive side chain type polymer, the side chain includes at least the structure represented by Chemical Formula 1 and / or Chemical Formula 2, and has a structure represented by Chemical Formula 3 or Chemical Formula 4. A method for manufacturing an alignment film. Embedded image Embedded image Embedded image Embedded image However, in Chemical Formulas 1 to 4, n, m, k = 1 to
12, a: b = 100: 0 to 1:99 R 1 to R 6 = -H, -CN, -C = C-, -C = C (C
N) 2 , —C = CH—CN, an alkyloxy group such as a halogen group or a methoxy group, X, Y = none, —COO,
-OCO -, - N = N - , - C = C -, - C 6 H 4 -,
Z = -H, -CH 3, -C 2 H 5, -C 3 H 7, halogen, W = none, -COO, -OCO -, - (O-
CH 2) -.
【請求項3】請求項1の配向膜の製造方法において、直
線偏光性の紫外線を照射する際の感光性の側鎖型高分子
膜の温度が、この側鎖型高分子の等方相への転移温度と
の差10℃以内の範囲にあることを特徴とする配向膜の
製造方法。
3. The method for producing an alignment film according to claim 1, wherein the temperature of the photosensitive side chain type polymer film when irradiating linearly polarized ultraviolet light is changed to the isotropic phase of the side chain type polymer. Characterized in that the difference from the transition temperature is within 10 ° C.
【請求項4】請求項1の配向膜の製造方法において、感
光性の側鎖型高分子膜ないしはその支持体を加熱、およ
び/または冷却する工程を含むことを特徴とする配向膜
の製造方法。
4. The method for producing an alignment film according to claim 1, further comprising a step of heating and / or cooling the photosensitive side chain type polymer film or its support. .
【請求項5】請求項1から請求項4の配向膜の製造方法
によって得られることを特徴とする配向膜。
5. An alignment film obtained by the method for producing an alignment film according to claim 1.
【請求項6】請求項5の配向膜を備えたことを特徴とす
る液晶表示装置。
6. A liquid crystal display device comprising the alignment film according to claim 5.
JP36520297A 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film Expired - Fee Related JP3945789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36520297A JP3945789B2 (en) 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36520297A JP3945789B2 (en) 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film

Publications (2)

Publication Number Publication Date
JPH11181127A true JPH11181127A (en) 1999-07-06
JP3945789B2 JP3945789B2 (en) 2007-07-18

Family

ID=18483688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36520297A Expired - Fee Related JP3945789B2 (en) 1997-12-19 1997-12-19 Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film

Country Status (1)

Country Link
JP (1) JP3945789B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290155A (en) * 2000-04-10 2001-10-19 Agency Of Ind Science & Technol Method of forming liquid crystal alignment film
JP2001337329A (en) * 2000-05-30 2001-12-07 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002060517A (en) * 2000-08-23 2002-02-26 Hayashi Telempu Co Ltd Film having function for orienting liquid crystal material and method for producing the same
WO2001026442A3 (en) * 1999-10-12 2002-02-28 Matsushita Electric Industrial Co Ltd Liquid crystal display element, optically anisotropic film, and methods for manufacturing them
WO2006059884A1 (en) * 2004-12-03 2006-06-08 Lg Chem, Ltd. Photoreactive compound, liquid crystal alignment layer using the compound, method of manufacturing the alignment layer, and liquid crystal display device containing the alignment layer
JP2006171043A (en) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd Alignment layer, its manufacturing technique, and liquid crystal apparatus
US7070839B2 (en) 1998-09-16 2006-07-04 Matsushita Electric Industrial Co., Ltd. Functional film, method of fabricating the same, liquid crystal display device using functional film, and method of fabricating the same
WO2006078129A1 (en) * 2005-01-20 2006-07-27 Lg Chem. Ltd. Alignment film for lcd using photoreactive polymer and lcd comprising the same
KR100715632B1 (en) 2005-09-22 2007-05-08 주식회사 엘지화학 Multifunctional monomer having a photoreactor, an alignment film for a liquid crystal display device using the same and a liquid crystal display device comprising the alignment film
JP2007193085A (en) * 2006-01-19 2007-08-02 Japan Science & Technology Agency Liquid crystal display element using nematic liquid crystal
JP2007226122A (en) * 2006-02-27 2007-09-06 Hitachi Displays Ltd Manufacturing method of liquid crystal display device and liquid crystal display device manufactured by this manufacturing method
KR100784460B1 (en) 2006-06-27 2007-12-12 (주)엔디스 Photosensitive polymer for liquid crystal alignment, liquid crystal alignment layer comprising the same, and liquid crystal display comprising the same
KR100850630B1 (en) 2005-05-30 2008-08-05 주식회사 엘지화학 Composition for liquid crystal aligning layers and liquid crystal display
WO2009025386A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
WO2009025388A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
WO2009025385A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
JP2009512903A (en) * 2005-11-07 2009-03-26 エルジー・ケム・リミテッド Liquid crystal alignment copolymer, liquid crystal alignment film including the same, and liquid crystal display including the same
WO2009051273A1 (en) * 2007-10-19 2009-04-23 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film and liquid crystal display device
KR20100055341A (en) * 2008-11-17 2010-05-26 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal aligning film, process for forming the liquid crystal aligning film, liquid crystal display device and radiation-sensitive polyorganosiloxane
WO2010080010A2 (en) 2009-01-12 2010-07-15 주식회사 엘지화학 Norbornene polymer including photoreactive functional group that has halogen substituent, method for preparing the same, and alignment layer using the same
US7795361B2 (en) 2005-01-05 2010-09-14 Lg Chem, Ltd. Photoreactive polymer and process of making the same
US7959989B2 (en) 2007-03-06 2011-06-14 Lg Chem, Ltd. Cyclic olefins compounds, polymers comprising the same and liquid crystal alignment films including the polymers
US8008415B2 (en) 2007-03-22 2011-08-30 Lg Chem, Ltd. Photoreactive exo-rich norbornene polymer and method for preparing the same
CN102241989A (en) * 2010-05-06 2011-11-16 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment layer, liquid crystal display device and polyorganosilioxane compound
WO2012005432A2 (en) 2010-07-07 2012-01-12 주식회사 엘지화학 Compound having a photoreactive functional group, a photoreactive polymer, and an alignment layer including same
WO2012005436A2 (en) 2010-07-07 2012-01-12 주식회사 엘지화학 Photoreactive norbornene-based copolymer, a production method for the same and an alignment layer comprising the same
WO2012044022A2 (en) 2010-09-27 2012-04-05 주식회사 엘지화학 Light-sensitive polymer and alignment layer including same
US8329841B2 (en) 2007-03-22 2012-12-11 Lg Chem, Ltd. Photoreactive polymer and method for preparing the same
TWI392689B (en) * 2009-04-01 2013-04-11
CN103131430A (en) * 2011-11-21 2013-06-05 Jsr株式会社 Liquid crystal aligning agent, forming method for liquid crystal alignment film, and liquid crystal display device
WO2013169037A1 (en) 2012-05-11 2013-11-14 주식회사 엘지화학 Optical film and display element comprising same
CN103509562A (en) * 2012-06-21 2014-01-15 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, phase difference film, method for forming phase difference film, liquid crystal display device, and polymer
US8946366B2 (en) 2010-09-27 2015-02-03 Lg Chem, Ltd. Cyclic olefin compound, photoreactive polymer, and alignment layer comprising the same
WO2015046964A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Photo-reactive copolymer and alignment layer comprising same
JP2016060857A (en) * 2014-09-19 2016-04-25 林テレンプ株式会社 Liquid crystal polymer film and production process therefor
US9366907B2 (en) 2012-09-10 2016-06-14 Lg Chem, Ltd. Composition for photo-alignment layer and photo-alignment layer
WO2016123818A1 (en) * 2015-02-06 2016-08-11 深圳市华星光电技术有限公司 Liquid crystal reactive film manufacturing method and reaction apparatus
JP2016527266A (en) * 2013-08-02 2016-09-08 エルジー・ケム・リミテッド Method for purifying photoreactive compound and photoreactive compound
US10042209B2 (en) 2012-08-21 2018-08-07 Lg Chem, Ltd. Optical anisotropic film
WO2018148479A1 (en) 2017-02-09 2018-08-16 Promerus, Llc Photoalignment film forming composition and lcd devices derived therefrom
CN110231737A (en) * 2018-03-06 2019-09-13 夏普株式会社 Manufacturing method with orientation ilm substrate
US20220326576A1 (en) * 2021-03-30 2022-10-13 Japan Display Inc. Alignment film material and liquid crystal display device
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith
US12092850B2 (en) 2018-04-17 2024-09-17 Meta Platforms Technologies, Llc Patterned anisotropic films and optical elements therewith

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070839B2 (en) 1998-09-16 2006-07-04 Matsushita Electric Industrial Co., Ltd. Functional film, method of fabricating the same, liquid crystal display device using functional film, and method of fabricating the same
WO2001026442A3 (en) * 1999-10-12 2002-02-28 Matsushita Electric Industrial Co Ltd Liquid crystal display element, optically anisotropic film, and methods for manufacturing them
US6982774B1 (en) 1999-10-12 2006-01-03 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element including an optically anisotropic film having at least two regions with different orientation anisotropies, and production methods of the same
US7038750B2 (en) 1999-10-12 2006-05-02 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element, optically anisotropic film, and production methods of the same
US7307683B2 (en) 1999-10-12 2007-12-11 Matsushita Electric Industrial Co., Ltd. Liquid crystal display element, optically anisotropic film, and production methods of the same
JP2001290155A (en) * 2000-04-10 2001-10-19 Agency Of Ind Science & Technol Method of forming liquid crystal alignment film
JP2001337329A (en) * 2000-05-30 2001-12-07 Hayashi Telempu Co Ltd Alignment film and method for manufacturing the same
JP2002060517A (en) * 2000-08-23 2002-02-26 Hayashi Telempu Co Ltd Film having function for orienting liquid crystal material and method for producing the same
WO2006059884A1 (en) * 2004-12-03 2006-06-08 Lg Chem, Ltd. Photoreactive compound, liquid crystal alignment layer using the compound, method of manufacturing the alignment layer, and liquid crystal display device containing the alignment layer
US7422778B2 (en) 2004-12-03 2008-09-09 Lg Chem, Ltd. Photoreactive compound, liquid crystal alignment layer using the compound, method of manufacturing the alignment layer, and liquid crystal display device containing the alignment layer
JP2008522238A (en) * 2004-12-03 2008-06-26 エルジー・ケム・リミテッド Photoreactive compound, liquid crystal alignment film using the same, method for producing the same, and liquid crystal display device provided with the alignment film
JP2006171043A (en) * 2004-12-13 2006-06-29 Fuji Photo Film Co Ltd Alignment layer, its manufacturing technique, and liquid crystal apparatus
US7795361B2 (en) 2005-01-05 2010-09-14 Lg Chem, Ltd. Photoreactive polymer and process of making the same
USRE45219E1 (en) 2005-01-05 2014-10-28 Lg Chem, Ltd. Photoreactive polymer and process of making the same
EP1838810A4 (en) * 2005-01-20 2009-07-15 Lg Chemical Ltd Alignment film for lcd using photoreactive polymer and lcd comprising the same
US7541073B2 (en) 2005-01-20 2009-06-02 Lg Chem, Ltd. Alignment film for LCD using photoreactive polymer and LCD comprising the same
WO2006078129A1 (en) * 2005-01-20 2006-07-27 Lg Chem. Ltd. Alignment film for lcd using photoreactive polymer and lcd comprising the same
KR100850630B1 (en) 2005-05-30 2008-08-05 주식회사 엘지화학 Composition for liquid crystal aligning layers and liquid crystal display
KR100715632B1 (en) 2005-09-22 2007-05-08 주식회사 엘지화학 Multifunctional monomer having a photoreactor, an alignment film for a liquid crystal display device using the same and a liquid crystal display device comprising the alignment film
US7655284B2 (en) 2005-09-22 2010-02-02 Lg Chem, Ltd. Multi-functional monomer having a photoreactive group, alignment film for LCD using the monomer, and LCD comprising the alignment film
EP2695877A1 (en) 2005-09-22 2014-02-12 LG Chem Ltd. Multi-functional monomer having a photocreative group, alignment film for LCD using the monomer, and LCD comprising the alignment film
EP2508508A2 (en) 2005-09-22 2012-10-10 LG Chem, Ltd. Multi-functional monomer having a photocreative group, alignment film for LCD using the monomer, and LCD comprising the alignment film
EP2695876A1 (en) 2005-09-22 2014-02-12 LG Chem Ltd. Multi-functional monomer having a photocreative group, alignment film for LCD using the monomer, and LCD comprising the alignment film
EP2695878A1 (en) 2005-09-22 2014-02-12 LG Chem Ltd. Multi-functional monomer having a photocreative group, alignment film for LCD using the monomer, and LCD comprising the alignment film
JP2009512903A (en) * 2005-11-07 2009-03-26 エルジー・ケム・リミテッド Liquid crystal alignment copolymer, liquid crystal alignment film including the same, and liquid crystal display including the same
US8123977B2 (en) 2005-11-07 2012-02-28 Lg Chem, Ltd. Copolymer for liquid crystal alignment, liquid crystal aligning layer including copolymer for liquid crystal alignment, and liquid crystal display including liquid crystal aligning layer
JP2007193085A (en) * 2006-01-19 2007-08-02 Japan Science & Technology Agency Liquid crystal display element using nematic liquid crystal
JP2007226122A (en) * 2006-02-27 2007-09-06 Hitachi Displays Ltd Manufacturing method of liquid crystal display device and liquid crystal display device manufactured by this manufacturing method
KR100784460B1 (en) 2006-06-27 2007-12-12 (주)엔디스 Photosensitive polymer for liquid crystal alignment, liquid crystal alignment layer comprising the same, and liquid crystal display comprising the same
US7959989B2 (en) 2007-03-06 2011-06-14 Lg Chem, Ltd. Cyclic olefins compounds, polymers comprising the same and liquid crystal alignment films including the polymers
US8329841B2 (en) 2007-03-22 2012-12-11 Lg Chem, Ltd. Photoreactive polymer and method for preparing the same
US8008415B2 (en) 2007-03-22 2011-08-30 Lg Chem, Ltd. Photoreactive exo-rich norbornene polymer and method for preparing the same
WO2009025388A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
KR101157338B1 (en) 2007-08-21 2012-06-18 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
JPWO2009025388A1 (en) * 2007-08-21 2010-11-25 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JPWO2009025385A1 (en) * 2007-08-21 2010-11-25 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
WO2009025386A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film, and liquid crystal display device
WO2009025385A1 (en) * 2007-08-21 2009-02-26 Jsr Corporation Liquid crystal aligning agent, method for producing liquid crystal alignment film, and liquid crystal display device
KR100964434B1 (en) * 2007-08-21 2010-06-16 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, formation method of liquid crystal aligning film, and liquid crystal display element
US8399068B2 (en) 2007-08-21 2013-03-19 Jsr Corporation Liquid crystal aligning agent, method of producing a liquid crystal alignment film and liquid crystal display device
JP4458306B2 (en) * 2007-08-21 2010-04-28 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
US8304031B2 (en) 2007-08-21 2012-11-06 Jsr Corporation Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display device
JP4458305B2 (en) * 2007-08-21 2010-04-28 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
US8216649B2 (en) 2007-08-21 2012-07-10 Jsr Corporation Liquid crystal aligning agent, method of producing a liquid crystal alignment film and liquid crystal display device
CN101802691B (en) 2007-08-21 2012-04-18 Jsr株式会社 Liquid crystal aligning agent, method for producing liquid crystal aligning film, and liquid crystal display element
JP4450261B2 (en) * 2007-10-19 2010-04-14 Jsr株式会社 Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
JPWO2009051273A1 (en) * 2007-10-19 2011-03-03 Jsr株式会社 Liquid crystal aligning agent, method for forming liquid crystal aligning film, and liquid crystal display element
TWI455963B (en) * 2007-10-19 2014-10-11 Jsr Corp Liquid crystal alignment agent, method for forming liquid crystal alignment film, and liquid crystal display element
WO2009051273A1 (en) * 2007-10-19 2009-04-23 Jsr Corporation Liquid crystal aligning agent, method for forming liquid crystal alignment film and liquid crystal display device
KR20100055341A (en) * 2008-11-17 2010-05-26 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal aligning film, process for forming the liquid crystal aligning film, liquid crystal display device and radiation-sensitive polyorganosiloxane
JP2010140010A (en) * 2008-11-17 2010-06-24 Jsr Corp Liquid crystal-aligning agent, liquid crystal alignment layer, method for forming the same, and liquid crystal display element
WO2010080010A2 (en) 2009-01-12 2010-07-15 주식회사 엘지화학 Norbornene polymer including photoreactive functional group that has halogen substituent, method for preparing the same, and alignment layer using the same
TWI392689B (en) * 2009-04-01 2013-04-11
CN102241989A (en) * 2010-05-06 2011-11-16 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment layer, liquid crystal display device and polyorganosilioxane compound
CN102241989B (en) * 2010-05-06 2015-04-01 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment layer, liquid crystal display device and polyorganosilioxane compound
JP2013534937A (en) * 2010-07-07 2013-09-09 エルジー・ケム・リミテッド Compound having photoreactive functional group, photoreactive polymer, and alignment film containing the same
WO2012005436A2 (en) 2010-07-07 2012-01-12 주식회사 엘지화학 Photoreactive norbornene-based copolymer, a production method for the same and an alignment layer comprising the same
US8449954B2 (en) 2010-07-07 2013-05-28 Lg Chem, Ltd. Compound having photoreactive functional group, photoreactive polymer, and alignment film comprising the same
WO2012005432A2 (en) 2010-07-07 2012-01-12 주식회사 엘지화학 Compound having a photoreactive functional group, a photoreactive polymer, and an alignment layer including same
US8946366B2 (en) 2010-09-27 2015-02-03 Lg Chem, Ltd. Cyclic olefin compound, photoreactive polymer, and alignment layer comprising the same
US9150678B2 (en) 2010-09-27 2015-10-06 Lg Chem, Ltd. Photoreactive polymer and alignment layer comprising the same
WO2012044022A2 (en) 2010-09-27 2012-04-05 주식회사 엘지화학 Light-sensitive polymer and alignment layer including same
US9151988B2 (en) 2010-09-27 2015-10-06 Lg Chem, Ltd. Cyclic olefin compound, photoreactive polymer, and alignment layer comprising the same
CN103131430A (en) * 2011-11-21 2013-06-05 Jsr株式会社 Liquid crystal aligning agent, forming method for liquid crystal alignment film, and liquid crystal display device
WO2013169037A1 (en) 2012-05-11 2013-11-14 주식회사 엘지화학 Optical film and display element comprising same
CN103509562A (en) * 2012-06-21 2014-01-15 Jsr株式会社 Liquid crystal aligning agent, liquid crystal alignment film, phase difference film, method for forming phase difference film, liquid crystal display device, and polymer
US10042209B2 (en) 2012-08-21 2018-08-07 Lg Chem, Ltd. Optical anisotropic film
US9366907B2 (en) 2012-09-10 2016-06-14 Lg Chem, Ltd. Composition for photo-alignment layer and photo-alignment layer
JP2016527266A (en) * 2013-08-02 2016-09-08 エルジー・ケム・リミテッド Method for purifying photoreactive compound and photoreactive compound
US9963418B2 (en) 2013-08-02 2018-05-08 Lg Chem, Ltd. Purification method of photoreactive compound and photoreactive compound
WO2015046964A1 (en) 2013-09-30 2015-04-02 주식회사 엘지화학 Photo-reactive copolymer and alignment layer comprising same
US10047183B2 (en) 2013-09-30 2018-08-14 Lg Chem, Ltd. Photoreactive copolymer and alignment layer comprising the same
JP2016060857A (en) * 2014-09-19 2016-04-25 林テレンプ株式会社 Liquid crystal polymer film and production process therefor
GB2550760A (en) * 2015-02-06 2017-11-29 Shenzhen China Star Optoelect Liquid crystal reactive film manufacturing method and reaction apparatus
WO2016123818A1 (en) * 2015-02-06 2016-08-11 深圳市华星光电技术有限公司 Liquid crystal reactive film manufacturing method and reaction apparatus
EA035590B1 (en) * 2015-02-06 2020-07-13 Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд. Method for manufacturing liquid crystal alignment film and reaction apparatus for manufacturing the same
GB2550760B (en) * 2015-02-06 2021-03-31 Shenzhen China Star Optoelect Method for manufacturing liquid crystal alignment film and reaction apparatus for manufacturing the same
WO2018148479A1 (en) 2017-02-09 2018-08-16 Promerus, Llc Photoalignment film forming composition and lcd devices derived therefrom
CN110231737A (en) * 2018-03-06 2019-09-13 夏普株式会社 Manufacturing method with orientation ilm substrate
US11561507B2 (en) 2018-04-17 2023-01-24 Meta Platforms Technologies, Llc Methods for three-dimensional arrangement of anisotropic molecules, patterned anisotropic films, and optical elements therewith
US12092850B2 (en) 2018-04-17 2024-09-17 Meta Platforms Technologies, Llc Patterned anisotropic films and optical elements therewith
US20220326576A1 (en) * 2021-03-30 2022-10-13 Japan Display Inc. Alignment film material and liquid crystal display device

Also Published As

Publication number Publication date
JP3945789B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3945789B2 (en) Alignment film manufacturing method, alignment film, and liquid crystal display device provided with alignment film
JP3945790B2 (en) Birefringent film and manufacturing method thereof
KR102157012B1 (en) Method for manufacturing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP3596722B2 (en) Optical device, liquid crystal display device, and method of manufacturing optical device
KR100639536B1 (en) Alignmemt layer, and a liquid crystal display using the same
JP5402999B2 (en) Liquid crystal display element
KR101073722B1 (en) Liquid crystal display device
US20140313468A1 (en) Liquid crystal display element
JP4537718B2 (en) Liquid crystal display element
JP4528645B2 (en) Liquid crystal display element
JP2000212310A (en) Oriented film, its production and liquid crystal display device
US20050266177A1 (en) Liquid crystal display
JP4520314B2 (en) Liquid crystal display element
JPH09243984A (en) Liquid crystal element
JP2002090750A (en) Alignment film and method for manufacturing the same
JPH11501359A (en) Liquid crystal polymer
JP4676214B2 (en) Liquid crystal display element
JP3862473B2 (en) Liquid crystal element, liquid crystal functional material, and liquid crystal device
JP2002090540A (en) Birefringent film and method for manufacturing the same
JP2001072976A (en) Liquid crystal cell and its preparation
JP2005258429A (en) Liquid crystal display element
JP4338001B2 (en) Liquid crystal alignment film
JP4862281B2 (en) Liquid crystal display element
JP4992198B2 (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JP2006330310A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160420

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees