JPH11194141A - Current detector - Google Patents
Current detectorInfo
- Publication number
- JPH11194141A JPH11194141A JP10013425A JP1342598A JPH11194141A JP H11194141 A JPH11194141 A JP H11194141A JP 10013425 A JP10013425 A JP 10013425A JP 1342598 A JP1342598 A JP 1342598A JP H11194141 A JPH11194141 A JP H11194141A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- gap
- core
- iron core
- current detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 28
- 230000004907 flux Effects 0.000 claims abstract description 24
- 239000004020 conductor Substances 0.000 claims abstract description 12
- 230000035699 permeability Effects 0.000 claims abstract description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 57
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000000696 magnetic material Substances 0.000 claims description 11
- 239000000843 powder Substances 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 230000005355 Hall effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Transformers For Measuring Instruments (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気機器等に接続
された電線に流れる電流の大きさを検出する電流検出器
に係り、とくに、インバータなどを使用して電流値の調
整を行ったり、電流値の監視を行ったりする際に使用さ
れるものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current detector for detecting a magnitude of a current flowing through an electric wire connected to an electric device or the like, and more particularly, to adjusting a current value using an inverter or the like. The present invention relates to a device used for monitoring a current value.
【0002】[0002]
【従来の技術】従来、電流検出器は、例えば図6に示す
概念図で構成されたものが開示されている(例えば、特
開昭63−85367号公報)。すなわち、ケイ素鋼板
の帯状薄板をリング状に巻き付けた積層鉄心、あるいは
圧粉鉄心を使用したフェライト磁気鉄心と呼ばれる圧粉
鉄心からなる磁気鉄心10をそなえ、磁気鉄心10の一
部分を切り欠いでギャップ110を設けた磁気回路を構
成させ、この磁気鉄心10の中心付近に導体Wを通し、
前記ギャップ110に磁電変換素子としてのホール素子
20を挿入している。電源201からホール素子20に
制御電流Io を通電すると、導体Wに流れる貫通電流I
o によって生じる磁束に応じてホール電圧Vh が検出さ
れ、ホール電圧Vh はホール素子20に接続されたオペ
アンプ202によって増幅するようにしてある。2. Description of the Related Art Conventionally, there has been disclosed a current detector constituted by a conceptual diagram shown in FIG. 6 (for example, Japanese Patent Application Laid-Open No. 63-85367). That is, a magnetic iron core 10 made of a laminated iron core formed by winding a strip of silicon steel sheet in a ring shape or a dust iron core called a ferrite magnetic iron core using a dust iron core is provided. And a conductor W is passed through the vicinity of the center of the magnetic core 10,
The Hall element 20 as a magnetoelectric conversion element is inserted into the gap 110. When a control current Io is applied from the power supply 201 to the Hall element 20, a through current I
The Hall voltage Vh is detected according to the magnetic flux generated by o, and the Hall voltage Vh is amplified by the operational amplifier 202 connected to the Hall element 20.
【0003】一般に、長さLg のギャップ110を有す
るリング状の磁気回路の、概ね中心を貫通する導体Wに
貫通電流Io を通すと、磁気鉄心10を通過する磁束B
は、磁気回路の磁性材料の透磁率をμs 、磁気回路の磁
路長をLc 、真空の透磁率をμo として、次の式で示さ
れる。 B=(μs・μo ・Io )/(μs・Lg +Lc ) 通常、μs・Lg >> Lc なので、上記式は次の式とな
る。 B=(μo・Io )/Lg この式から磁束Bは、ほぼ貫通電流Io に比例し、磁路
材料の磁気飽和までこの関係が維持されることがわか
る。この磁気回路を形成する磁気鉄心10のギャップ1
10にホール素子20を挿入し、ホール素子20に制御
電流Io を流すと、貫通電流Io に比例したホール電圧
Vh がオペアンプ202を介して検出できる。In general, when a through current Io is passed through a conductor W passing through the center of a ring-shaped magnetic circuit having a gap 110 having a length Lg, a magnetic flux B passing through a magnetic core 10 is formed.
Is given by the following equation, where μs is the magnetic permeability of the magnetic material of the magnetic circuit, Lc is the magnetic path length of the magnetic circuit, and μo is the magnetic permeability of the vacuum. B = (μs · μo · Io) / (μs · Lg + Lc) Normally, μs · Lg >> Lc, so the above equation is as follows. B = (μo · Io) / Lg From this equation, it can be seen that the magnetic flux B is almost proportional to the through current Io, and this relationship is maintained until the magnetic saturation of the magnetic path material. Gap 1 of magnetic core 10 forming this magnetic circuit
When the Hall element 20 is inserted into the element 10 and a control current Io is supplied to the Hall element 20, a Hall voltage Vh proportional to the through current Io can be detected via the operational amplifier 202.
【0004】しかし、磁気鉄心10の磁束を過大に増加
させると磁気飽和が発生したり、ホール素子20に0.
5 テスラ程度より大きい磁束が印加されると、磁束と
ホール電圧Vh が非直線となり、貫通電流Io とホール
電圧Vh の直線性が失われる。このため一般に電流検出
器では、導体Wに流れる定格電流値に応じて、磁気鉄心
10のギャップ11の対向面を機械加工して、ギャップ
110の長さLg を変化させ、様々な定格電流に対応さ
せている。なお、磁気鉄心10を、磁性材料の帯状薄板
を巻き付けて構成するようにしたものでは、一般に長手
方向に高透磁率となる方向性磁性鋼帯が使用されるた
め、磁性材料を巻き付けた際に曲げによって発生する歪
みを除去するために、積層後に焼き鈍しを行い、その後
でギャップ110部分を切断し研磨加工して製作されて
いる。However, if the magnetic flux of the magnetic core 10 is excessively increased, magnetic saturation may occur or the Hall element 20 may have a magnetic saturation of 0.0.
When a magnetic flux larger than about 5 Tesla is applied, the magnetic flux and the Hall voltage Vh become non-linear, and the linearity between the through current Io and the Hall voltage Vh is lost. Therefore, in general, in the current detector, the facing surface of the gap 11 of the magnetic iron core 10 is machined according to the rated current value flowing through the conductor W to change the length Lg of the gap 110 so as to cope with various rated currents. Let me. In the case where the magnetic core 10 is formed by winding a strip of magnetic material, a directional magnetic steel strip having a high magnetic permeability in the longitudinal direction is generally used. In order to remove distortion caused by bending, annealing is performed after lamination, and then the gap 110 is cut and polished to manufacture.
【0005】ところで、図6に示す従来の電流検出器に
おいて、ホール素子20をギャップ110の中心に固定
しようとしても、保持位置に微妙な寸法のずれが発生す
る。このため、一般にこれらの電流検出器の磁気鉄心1
0は、ギャップ110内の磁束が平行になるようにし
て、ホール素子20の位置が多少ずれても測定磁束に影
響を生じないように構成されており、このように、ギャ
ップ110内の磁束を平行にするために、ギャップ11
0の断面積の平方根の値(ギャップ110の断面が正方
形の場合は一辺の長さ、断面が円の場合は直径)が、ギ
ャップ長さLg の3倍程度以上の値になるようにしてあ
る。すなわち、磁気鉄心10の断面積Aとギャップ11
0の長さLg の関係は、 A/Lg2 ≧3 ・・・・(1)式 になるようにしてしてある。Incidentally, in the conventional current detector shown in FIG. 6, even if an attempt is made to fix the Hall element 20 to the center of the gap 110, a slight displacement of the holding position occurs. For this reason, the magnetic core 1 of these current detectors is generally used.
0 is configured so that the magnetic flux in the gap 110 is parallel, so that even if the position of the Hall element 20 is slightly shifted, the measured magnetic flux is not affected. Gap 11 to make it parallel
The value of the square root of the cross-sectional area of 0 (the length of one side when the cross section of the gap 110 is a square, and the diameter when the cross section is a circle) is set to be about three times or more the gap length Lg. . That is, the sectional area A of the magnetic core 10 and the gap 11
The relationship of the length Lg of 0 is such that A / Lg 2 ≧ 3 (1)
【0006】[0006]
【発明が解決しようとする課題】ところが、検出すべき
貫通電流の電流値Io が大きい場合は、磁気鉄心10を
飽和させないために、ギャップ長さLg を大きくして磁
気抵抗を増し、ギャップ110を通過する磁束を抑える
必要がある。しかし、ギャップ長さLg を大きくする
と、ギャップ110内の磁束を平行にするために、前記
(1)式により磁気鉄心10の断面積を大きくする必要
があり、電流検出器の外形が大きくなり価格も高価なも
のになるという問題があった。また、検出すべき貫通電
流に、PWM制御やチョッパ制御を行った際には高調波
電流成分が重畳され、商用周波数程度の低周波電流を検
出する場合と異なり、磁気鉄心10を構成するケイ素鋼
板等の渦電流損失が大きくなる。このため、磁気鉄心1
0の発熱量が大きくなって、使用温度範囲の制限が狭め
られたり温度変化による電流検出特性の悪化を招く欠点
がある。また、磁気鉄心10の製造工程には、歪みを除
去するための焼き鈍し工程と、ギャップ110の切削研
磨加工工程が必要で、作業工数が多くなり磁気鉄心10
の製造単価を上昇させ、電流検出器の価格が高価になっ
ている。本発明は、磁気鉄心の断面積を大きくすること
なく、磁気鉄心の磁気抵抗を調整でき、電流の測定範囲
の広い、小形で安価な電流検出器を提供することを目的
とする。However, when the current value Io of the through current to be detected is large, the gap length Lg is increased to increase the magnetic resistance and the gap 110 to prevent the magnetic iron core 10 from being saturated. It is necessary to suppress the passing magnetic flux. However, when the gap length Lg is increased, it is necessary to increase the cross-sectional area of the magnetic core 10 according to the above equation (1) in order to make the magnetic flux in the gap 110 parallel. However, there was a problem that it became expensive. In addition, when PWM control or chopper control is performed on the through current to be detected, a harmonic current component is superimposed, and unlike the case of detecting a low-frequency current about the commercial frequency, a silicon steel plate forming the magnetic iron core 10 Eddy current loss increases. Therefore, the magnetic core 1
However, there is a disadvantage that the heat generation amount of 0 becomes large, the limitation of the operating temperature range is narrowed, and the current detection characteristic is deteriorated due to a temperature change. In addition, the manufacturing process of the magnetic core 10 requires an annealing process for removing distortion and a cutting and polishing process for the gap 110.
And the price of the current detector becomes expensive. SUMMARY OF THE INVENTION It is an object of the present invention to provide a small and inexpensive current detector that can adjust the magnetic resistance of a magnetic core without increasing the cross-sectional area of the magnetic core, and has a wide current measurement range.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、検出すべき電流が流れる導体を囲んで前
記導体により発生する磁束を通過させる磁気鉄心と、前
記磁気鉄心の磁気回路の途中に設けられたギャップと、
前記ギャップ内に設置された磁電変換素子とを備えた電
流検出器において、前記磁気鉄心の断面積を前記磁電変
換素子の断面積より僅かに大きくした程度とし、前記断
面積の磁気回路に、前記磁電変換素子を挿入した第1の
ギャップと、前記磁気鉄心と異なる透磁率を有する磁気
抵抗調整体を挿入した少なくとも1個の第2のギャップ
を設けている。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a magnetic core surrounding a conductor through which a current to be detected flows and passing a magnetic flux generated by the conductor, and a magnetic circuit of the magnetic core. The gap provided in the middle of
In a current detector including a magnetoelectric conversion element installed in the gap, a cross-sectional area of the magnetic iron core is set to be slightly larger than a cross-sectional area of the magnetoelectric conversion element. A first gap into which a magnetoelectric conversion element is inserted and at least one second gap into which a magnetoresistance adjuster having a magnetic permeability different from that of the magnetic iron core is inserted are provided.
【0008】[0008]
【発明の態様】2個のコ字形の鉄心部材の脚部を互いに
対向させ、対向する各脚部の間に第1のギャップおよび
第2のギャップを形成させた磁気鉄心をそなえ、この磁
気鉄心で囲まれた空間部に検出すべき電流が流れる導体
を挿通し、前記磁気鉄心の断面積を磁電変換素子の断面
積より僅かに大きい程度にし、第1のギャップに前記磁
電変換素子を挿入してギャップ長さを磁電変換素子の厚
さより僅かに大きくし、第2のギャップに磁気鉄心と異
なる透磁率を有する磁気抵抗調整体を挿入して磁気抵抗
を調整し、ギャップ長さを磁気抵抗調整体に応じて調整
させている。なお、前記磁気鉄心は、磁性板を積層し、
あるいは磁性体の粉末を樹脂で一体に固形化したもので
も使用でき、複数個の鉄心部材に分割して角形あるいは
丸形に構成している。また、磁気抵抗調整体は、非磁性
体金属薄板の積層体や、非磁性体金属薄板と磁性体金属
薄板との積層体、磁性体の粉末を樹脂で一体に固形化し
たもの、あるいは多孔質の磁性体からなるものを用いる
ことができる。また、前記磁電変換素子はホール効果素
子で構成したものである。なお、前記第1のギャップに
磁電変換素子を保護するギャップストッパを設けること
ができる。また、磁気鉄心を収納する箱体をそなえ、こ
の箱体に前記磁気鉄心と磁気抵抗調整体とを密着させた
状態で保持するための弾性体の鉄心保持板を設けること
ができる。According to an aspect of the present invention, there is provided a magnetic core in which legs of two U-shaped iron core members are opposed to each other, and a first gap and a second gap are formed between the opposed legs. A conductor through which a current to be detected flows is inserted into a space surrounded by a circle, the cross-sectional area of the magnetic core is set to be slightly larger than the cross-sectional area of the magnetoelectric conversion element, and the magnetoelectric conversion element is inserted into the first gap. The gap length is slightly larger than the thickness of the magneto-electric conversion element, and a magnetic resistance adjuster having a magnetic permeability different from that of the magnetic core is inserted into the second gap to adjust the magnetic resistance. Adjusted according to the body. In addition, the said magnetic iron core laminates a magnetic plate,
Alternatively, a magnetic material powder that is solidified integrally with a resin can be used, and is divided into a plurality of iron core members to form a square or round shape. The magnetoresistive adjuster is a laminated body of a non-magnetic metal sheet, a laminated body of a non-magnetic metal sheet and a magnetic metal sheet, a magnetic substance powder solidified integrally with a resin, or a porous body. Can be used. Further, the magnetoelectric conversion element is constituted by a Hall effect element. Note that a gap stopper for protecting the magneto-electric conversion element can be provided in the first gap. Further, a box for accommodating the magnetic core can be provided, and an elastic core holding plate for holding the magnetic core and the magnetic resistance adjuster in close contact with each other can be provided in the box.
【0009】[0009]
【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は、本発明の第1の実施例の電流検出器を示す
斜視図である。1は磁気鉄心で、2個のコ字状に形成し
た鉄心部材12、13で構成し、脚部12aと脚部13
aとの対向端面間に長さLg1 の第1のギャップ14を
設け、脚部12bと脚部13bとの対向端面間に長さL
g2 の第2のギャップ15を形成している。なお、前記
鉄心部材12、13は、方向性磁性帯の薄板鋼板から脚
部相互の連結部を透磁率の高い方向に合わせてプレスで
打ち抜いたコ字状の打ち抜き板11を積層して形成して
いる。16は鉄心部材12、13によって矩形に囲まれ
た空間部で、導線Wを通すようにしてある。また、鉄心
部材12、13の打ち抜き板11の表面には、それぞれ
プレスでの打ち抜きと同時にエンボス部17を数個所に
設けており、角部の内側には磁束漏れ防止のために円弧
部(アール)18が設けられている。なお、鉄心部材1
2、13を形成する打ち抜き板11の磁路の幅は、第1
のギャップ14に挿入する磁電変換素子2の幅方向の寸
法(2.3mm)より若干大きい程度の寸法(例えば4
mm)とし、板厚は、厚くすると渦電流損が大きくな
り、薄くするとプレス時のハンドリングが難しくなるた
め、0.1mm程度に選定されており、積層して磁電変
換素子2の長さ方向の寸法(例えば4mm)から若干大
きい程度(例えば5mm)になるように、所要枚数例え
ば50枚程度を重ねており、プレスで圧縮する際に重な
り合った打ち抜き板11のエンボス部17がはまり込ん
で連結固定され、鉄心部材12、13を形成する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a current detector according to a first embodiment of the present invention. Reference numeral 1 denotes a magnetic iron core, which is composed of two U-shaped iron core members 12 and 13, and includes a leg 12 a and a leg 13.
A first gap 14 having a length Lg1 is provided between the opposed end faces of the leg 12a and the length Lg1 between the opposed end faces of the leg 12b and the leg 13b.
The second gap 15 of g2 is formed. The iron core members 12 and 13 are formed by laminating a U-shaped punched plate 11 punched out from a thin steel plate of a directional magnetic strip by pressing a joint between legs in a direction of high magnetic permeability. ing. Reference numeral 16 denotes a space surrounded by the iron core members 12 and 13 in a rectangular shape, through which the conducting wire W passes. In addition, embossed portions 17 are provided at several places on the surface of the punched plate 11 of the iron core members 12 and 13 at the same time as punching with a press, and arc-shaped portions are formed inside the corners to prevent magnetic flux leakage. ) 18 are provided. The core member 1
The width of the magnetic path of the punched plate 11 that forms
Of the magneto-electric conversion element 2 to be inserted into the gap 14 (2.3 mm) in the width direction (for example, 4 mm).
mm), the plate thickness is selected to be about 0.1 mm because the eddy current loss increases as the thickness increases, and the handling during pressing becomes difficult when the thickness decreases. A required number of sheets, for example, about 50 sheets are stacked so as to be slightly larger (for example, 5 mm) from the dimension (for example, 4 mm). Thus, iron core members 12 and 13 are formed.
【0010】2はホール効果素子からなる磁電変換素子
で、第1のギャップ14内に挿入配置され、図2に示す
ように、電源21から磁電変換素子2に制御電流Ic を
流すと、図1の導線Wを流れる貫通電流Io によって生
じる磁束φが磁電変換素子2に作用し、貫通電流Io に
比例したホール電圧Vh がオペアンプ22を介して検出
できる。3は第2のギャップ15に挿入され、磁気鉄心
1と異なる透磁率を有する磁気抵抗調整体、例えば銅な
どの非磁性体で、第2のギャップ15の長さを規制し、
磁気鉄心1の磁気抵抗を調節している。4は2個の鉄心
部材12、13を収納する箱体で、鉄心部材12、13
を矩形状の空間部16が構成されるように配置されてい
る。41は第1のギャップ14の対向面に接触させて設
け、ギャップを保持する非磁性体のギャップストッパ
で、第1のギャップ14の長さLg1 を規制するととも
に、鉄心部材12、13が磁電変換素子2を圧縮して傷
つけないように保護している。42、43は箱体4に固
定させた鉄心保持板で、鉄心部材12、13の外側位置
に複数個所設け、磁気鉄心1を保持するようにした弾性
板である。Reference numeral 2 denotes a magneto-electric conversion element comprising a Hall effect element, which is inserted and disposed in the first gap 14 and, when a control current Ic is supplied from the power supply 21 to the magneto-electric conversion element 2 as shown in FIG. The magnetic flux φ generated by the through current Io flowing through the conducting wire W acts on the magnetoelectric conversion element 2, and the Hall voltage Vh proportional to the through current Io can be detected via the operational amplifier 22. Numeral 3 denotes a non-magnetic material such as copper, which is inserted into the second gap 15 and has a magnetic permeability different from that of the magnetic core 1, and regulates the length of the second gap 15.
The magnetic resistance of the magnetic core 1 is adjusted. Numeral 4 denotes a box housing the two core members 12 and 13,
Are arranged such that a rectangular space 16 is formed. Reference numeral 41 denotes a nonmagnetic gap stopper which is provided in contact with the opposing surface of the first gap 14 and holds the gap. The gap stopper 41 regulates the length Lg1 of the first gap 14, and the core members 12 and 13 are used for the electromagnetic conversion. The element 2 is compressed to protect it from being damaged. Reference numerals 42 and 43 denote elastic core holding plates fixed to the box body 4. Elastic plates are provided at a plurality of positions outside the iron core members 12 and 13 to hold the magnetic iron core 1.
【0011】長さLg1 の第1のギャップ14と、長さ
Lg2 の第2のギャップ15を有する磁気鉄心1の概ね
中心を貫通する導体Wに貫通電流Io を通すと、磁気鉄
心1の磁性材料の透磁率をμs 、磁気鉄心10の磁路長
をLc 、真空の透磁率をμoとし、μs Lg >> Lc と
考えると、磁気鉄心10を通過する磁束Bは次式で示さ
れる。 B≒(μo ×Io )/(Lg1+Lg2) 磁束Bはほぼ貫通電流Io に比例し、第1のギャップ1
4の長さLg1 と第2のギャップ15の長さLg2 の和
に反比例となることがわかる。このように、第1のギャ
ップ14と第2のギャップ15をそなえた磁気鉄心1
は、第2のギャップ15に挿入した磁気抵抗調整体3の
長さLg2 を変えることによって磁気抵抗が変えられる
ので、導体Wの定格電流が変わり、貫通電流Ioの大き
さに応じて磁気鉄心1の磁気抵抗を変える必要があると
きも、第1のギャップ14の長さLg1 を磁電変換素子
2を挿入するに足る小さな値から変える必要がなく、第
1のギャップ14の断面積を長さLg1 の3倍以上に維
持させ、磁束を平行に保つことができる。なお、磁気抵
抗を増大させるために、第2のギャップ15の長さLg
2 を、磁気鉄心1の断面積に関係なく大きくすること
によって、第2のギャップ15内の磁束が平行にならな
くても、磁電変換素子2には影響を与えないので問題に
はならない。When a through current Io is passed through a conductor W passing substantially through the center of a magnetic core 1 having a first gap 14 having a length Lg1 and a second gap 15 having a length Lg2, the magnetic material of the magnetic core 1 is formed. Is μs, the magnetic path length of the magnetic core 10 is Lc, the magnetic permeability of vacuum is μo, and μs Lg >> Lc, the magnetic flux B passing through the magnetic core 10 is expressed by the following equation. B ≒ (μo × Io) / (Lg1 + Lg2) The magnetic flux B is almost proportional to the through current Io, and the first gap 1
It can be seen that the length Lg1 is inversely proportional to the sum of the length Lg1 and the length Lg2 of the second gap 15. As described above, the magnetic core 1 having the first gap 14 and the second gap 15
Can change the magnetic resistance by changing the length Lg2 of the magnetoresistive adjuster 3 inserted in the second gap 15, so that the rated current of the conductor W changes and the magnetic core 1 changes in accordance with the magnitude of the through current Io. When it is necessary to change the magnetic resistance of the first gap 14, there is no need to change the length Lg1 of the first gap 14 from a small value enough to insert the magnetoelectric conversion element 2, and the sectional area of the first gap 14 is changed to the length Lg1. , And the magnetic flux can be kept parallel. In order to increase the magnetic resistance, the length Lg of the second gap 15 is
By making 2 larger regardless of the cross-sectional area of the magnetic core 1, even if the magnetic flux in the second gap 15 does not become parallel, it does not affect the magnetoelectric conversion element 2 and does not pose a problem.
【0012】したがって、常に第1のギャップ14はギ
ャップ長さを小さくして磁束を平行に維持できるととも
に、第2のギャップ15により磁気抵抗調整体3の厚み
を変化させるだけで、第1のギャップ14と磁電変換素
子2に影響を与えずに測定すべき貫通電流Io の定格値
に応じて磁気回路の磁気抵抗を調整することができ、か
つ部品の標準化をはかることができ、低価格化が可能に
なる。また、小さい断面積の磁気鉄心1でも貫通電流が
大きい電流検出器に使用することができ、価格を安価に
することができる。また、PWMやチョッパ制御などの
ように、検出すべき貫通電流Io に、高調波電流成分が
重畳された場合でも、磁気鉄心1の体積を小さくできる
ため、渦電流損失による磁気鉄心1の発熱量を押さえる
ことができる。また箱体4には、鉄心保持板42、43
で磁気鉄心1を保持させ、大きな面積で鉄心部材12、
13を箱体4に接するようにしてあるので、渦電流のた
め発生する熱を有効に箱体へ放熱させ、磁気回路の温度
上昇を抑制することができる。また、鉄心部材12、1
3は平板な方向性磁性帯をプレス型で加工するので、曲
げ応力が加わらず、焼きなまし工程などが不要となるの
で、少ない作業工数で安価に磁気鉄心10を製作でき、
工程数も少なく単純な工程であるため容易に自動化がで
き、製造設備費も安価でよい。Therefore, the first gap 14 can always keep the magnetic flux parallel by reducing the gap length, and the first gap 14 can be changed only by changing the thickness of the magnetoresistive adjuster 3 by the second gap 15. 14 and the magneto-electric conversion element 2, the magnetic resistance of the magnetic circuit can be adjusted in accordance with the rated value of the through current Io to be measured, and the components can be standardized. Will be possible. Further, even the magnetic core 1 having a small cross-sectional area can be used for a current detector having a large through current, and the cost can be reduced. Further, even when a harmonic current component is superimposed on a through current Io to be detected, such as in PWM or chopper control, the volume of the magnetic core 1 can be reduced, and thus the heat generation of the magnetic core 1 due to eddy current loss. Can be held down. The box 4 also includes iron core holding plates 42 and 43.
To hold the magnetic core 1, and the core member 12 with a large area,
Since the box 13 is in contact with the box 4, the heat generated by the eddy current can be effectively radiated to the box, and the temperature rise of the magnetic circuit can be suppressed. Further, the iron core members 12, 1
No. 3 processes a flat directional magnetic strip with a press die, so that bending stress is not applied and an annealing process is not required. Therefore, the magnetic iron core 10 can be manufactured at low cost with a small number of work steps.
Since the number of steps is small and the steps are simple, automation can be easily performed, and manufacturing equipment costs can be reduced.
【0013】図3は、本発明の第2の実施例による電流
検出器を示す正面図である。第2の実施例では、半月状
の鉄心部材12、13を用いて、磁気鉄心1をドーナッ
ツ形に形成し、この鉄心の途中に第1のギャップ14お
よび第2のギャップ15を設けて、磁電変換素子2と磁
気抵抗調整体3を挿入している。このため、導体Wによ
って形成される磁束の流れに沿って滑らかな曲線の磁気
回路が形成されるので、コ字形の鉄心部材を対向させた
磁気回路に比べて、コーナーでの磁束漏れを最小限にで
きる。なお、鉄心保持板42をそなえた箱体4の形状
は、周囲を磁気鉄心1に沿って円形にすることができる
が、電流検出器を設置する際に固定が不安定になる場合
は、箱体4を例えば6角形や8角形にすることもでき
る。FIG. 3 is a front view showing a current detector according to a second embodiment of the present invention. In the second embodiment, the magnetic iron core 1 is formed in a donut shape using the semi-lunar iron core members 12 and 13, and a first gap 14 and a second gap 15 are provided in the middle of the iron core. The conversion element 2 and the magnetoresistance adjuster 3 are inserted. For this reason, a magnetic circuit having a smooth curve is formed along the flow of the magnetic flux formed by the conductor W, so that magnetic flux leakage at corners is minimized as compared with a magnetic circuit in which a U-shaped iron core member is opposed. Can be. The shape of the box 4 having the iron core holding plate 42 can be circular around the magnetic iron core 1. However, if the fixing becomes unstable when installing the current detector, the box 4 The body 4 can be, for example, hexagonal or octagonal.
【0014】図4は、本発明の第3の実施例による電流
検出器を示す正面図である。この実施例では、磁気鉄心
1をL状にした同一形状の4個の鉄心部材19に分割
し、各鉄心部材19の両端面をそれぞれ空隙を介して相
互に対向させてロ字形の磁気鉄心1を形成し、4個のギ
ャップをそなえている。4個のギャップの内の1個は、
第1のギャップ14を形成して、磁電変換素子2を挿入
して貫通電流Io を測定するようにし、他の3個のギャ
ップは、磁気鉄心1の磁気抵抗を調整するための磁気抵
抗調整体3を挿入して第2のギャップ15a、15b、
15cを形成している。第1のギャップ14と、これと
対向する側にある第2のギャップ15aは、ギャップの
長さをLg1 とし、両側の第2のギャップ15b、15
cのギャップ長さLg2 を磁気抵抗に応じて調整するよ
うにしている。したがって、この実施例では、鉄心部材
19の形状が同一であるため、プレス型が安価にできる
とともに、打ち抜き板の形状により薄板鋼板のフープ材
からプレスするときの、歩留りが良くなり、磁気抵抗を
調整する場合にも、ギャップを切削することなく、鉄心
部材の位置を変えるだけで行うことができる。17は打
ち抜き板を積層連結するエンボス部、42は箱体4に取
り付けた鉄心保持板である。FIG. 4 is a front view showing a current detector according to a third embodiment of the present invention. In this embodiment, the magnetic core 1 is divided into four L-shaped core members 19 having the same shape, and both end surfaces of each core member 19 are opposed to each other via a gap, so that the square-shaped magnetic core 1 is formed. Are formed, and four gaps are provided. One of the four gaps is
The first gap 14 is formed, the magneto-electric conversion element 2 is inserted, and the through current Io is measured. The other three gaps are provided with a magneto-resistance adjuster for adjusting the magnetic resistance of the magnetic iron core 1. 3 to insert the second gaps 15a, 15b,
15c. The first gap 14 and the second gap 15a on the opposite side have a gap length of Lg1, and the second gaps 15b, 15 on both sides.
The gap length Lg2 of c is adjusted according to the magnetic resistance. Therefore, in this embodiment, since the shape of the iron core member 19 is the same, the press die can be made inexpensive, and the yield when pressing from a hoop material of a thin steel plate is improved by the shape of the punched plate, and the magnetic resistance is reduced. The adjustment can be performed by simply changing the position of the iron core member without cutting the gap. Reference numeral 17 denotes an embossed portion for stacking and connecting the punched plates, and reference numeral 42 denotes an iron core holding plate attached to the box 4.
【0015】図5は、本発明の第4の実施例による電流
検出器を示す正面図である。3個の分割された鉄心部材
19A,19B,19Cによって磁気鉄心1を形成し、
第1のギャップ14を介して対向するL字状の鉄心部材
19Aおよび鉄心部材19Bと、鉄心部材19A、19
Bに対向させて磁気回路を形成する棒状の鉄心部材19
Cとを設け、鉄心部材19A、19Bと鉄心部材19C
との間に第2のギャップ15d、15eを形成し、それ
ぞれに磁気抵抗調整体3を挿入したものである。このた
め、図4に示した第4の実施例と同様に、磁気鉄心1の
磁気抵抗を調整する場合、磁気抵抗調整体3の長さを変
えるだけでよく、磁気抵抗調整体3A、3Bを等しくし
ておけば、鉄心部材19A、19Bと鉄心部材19Cと
の間隔を変えるようにすればよいので、磁気抵抗を調整
するために、鉄心部材を機械加工で切削する必要がな
く、鉄心部材の数が少ないので、コストや工数を大幅に
低減できる。FIG. 5 is a front view showing a current detector according to a fourth embodiment of the present invention. The magnetic core 1 is formed by the three divided core members 19A, 19B, 19C,
L-shaped core members 19A and 19B facing each other via the first gap 14, and core members 19A and 19B.
B-shaped iron core member 19 forming a magnetic circuit opposite to B
C, and core members 19A and 19B and a core member 19C.
And second gaps 15d and 15e are formed between them, and the magnetoresistive adjuster 3 is inserted into each of them. Therefore, similarly to the fourth embodiment shown in FIG. 4, when adjusting the magnetic resistance of the magnetic iron core 1, only the length of the magnetic resistance adjuster 3 needs to be changed, and the magnetic resistance adjusters 3A and 3B are not used. If equal, the distance between the iron core members 19A, 19B and the iron core member 19C may be changed, so that it is not necessary to cut the iron core member by machining in order to adjust the magnetic resistance. Since the number is small, costs and man-hours can be significantly reduced.
【0016】なお、上記の実施例では、磁気抵抗調整体
3を銅などの非磁性金属で構成した例について説明した
が、非磁性金属板だけあるいは磁性金属板を含む非磁性
金属板の積層体や、鉄粉などの磁性体の粉末を樹脂など
に混入して固形化した塑性物などで、鉄心部材とは透磁
率が異なる磁気抵抗調整体3を構成することができ、磁
気抵抗調整体3を磁性体のブロックに多数の穴を開ける
か、磁性体の燒結体によって多孔質に形成することによ
り、透磁率が鉄心部材とは異なる磁気抵抗調整体3を構
成してもよい。また、磁気抵抗を調整するために、第2
のギャップ長さを変えるようにしてあるが、例えば、磁
性金属板と非磁性金属板の割合、磁性体の粉末の割合を
任意に決めることにより、鉄心部材の大きさを変えるこ
となく、磁気鉄心1の磁気抵抗を任意に設定して磁気開
路の抵抗率を変えるようにしてもよい。In the above embodiment, the example in which the magnetoresistive adjuster 3 is made of a nonmagnetic metal such as copper has been described. However, only the nonmagnetic metal plate or a laminate of nonmagnetic metal plates including the magnetic metal plate is described. Alternatively, the magnetic resistance adjuster 3 having a different magnetic permeability from that of the iron core member can be formed of a plastic material obtained by mixing a powder of a magnetic substance such as iron powder into a resin or the like and solidifying the magnetic material. By forming a large number of holes in a block of a magnetic material or by forming a porous body using a sintered body of a magnetic material, the magnetic resistance adjuster 3 having a magnetic permeability different from that of the iron core member may be formed. In order to adjust the magnetic resistance, the second
However, for example, by arbitrarily determining the ratio of the magnetic metal plate and the non-magnetic metal plate, and the ratio of the powder of the magnetic material, the magnetic core can be changed without changing the size of the core member. The magnetic resistance of the magnetic open circuit may be changed by arbitrarily setting the magnetic resistance of the first magnetic field.
【0017】[0017]
【発明の効果】以上のように、本発明によれば、磁気鉄
心の磁気回路の途中に第1のギャップおよび第2のギャ
ップを設け、第1のギャップに磁電変換素子を挿入し、
第2のギャップに磁気抵抗調整体を挿入して、磁気鉄心
の磁気抵抗を調整するようにしてあるので、測定すべき
貫通電流の値が大きく、大きな磁気抵抗が必要な場合で
も、第1のギャップを磁電変換素子の厚さに応じた小さ
なギャップに保ち、磁気鉄心の断面積を小さくしても、
第1のギャップの長さの2乗の3倍以上に維持できるの
で、磁気鉄心が小形になり、常に第1のギャップ内の磁
束の平行性を確保して磁電変換素子の性能を保持できる
とともに、電流検出器の外形を小さくすることができ、
安価な電流検出器を提供することができる。さらに、磁
気鉄心の大きさが小さいため、PWM制御やチョッパ制
御などのように、検出すべき貫通電流に、高調波電流成
分が重畳された場合でも、渦電流損失による磁気鉄心の
発熱量が少ない、高性能な電流検出器を提供することが
できる。As described above, according to the present invention, the first gap and the second gap are provided in the middle of the magnetic circuit of the magnetic iron core, and the magnetoelectric conversion element is inserted into the first gap.
Since the magnetic resistance adjuster is inserted into the second gap to adjust the magnetic resistance of the magnetic iron core, even if the value of the through current to be measured is large and a large magnetic resistance is required, the first magnetic resistance adjuster is used. Even if the gap is kept small according to the thickness of the magnetoelectric transducer and the cross-sectional area of the magnetic core is reduced,
Since it can be maintained at least three times the square of the length of the first gap, the size of the magnetic core becomes small, and the parallelism of the magnetic flux in the first gap can always be ensured to maintain the performance of the magnetoelectric conversion element. , The outer shape of the current detector can be reduced,
An inexpensive current detector can be provided. Furthermore, since the size of the magnetic core is small, even when a harmonic current component is superimposed on a through current to be detected, such as in PWM control or chopper control, the amount of heat generated by the magnetic core due to eddy current loss is small. Thus, a high-performance current detector can be provided.
【0018】また、第2のギャップを複数個にすること
により、ギャップ長さの調整を、磁気鉄心の切削を行わ
ずに鉄心部材相互の取付位置の調整で行うことができ、
磁気鉄心を構成する鉄心部材の形状を同一にして部品の
共通化が図れ、磁気鉄心を安価に製作することができ、
小規模な設備で安価に電流検出器を提供することができ
るどの効果が得られる。なお、磁気抵抗調整体に、非磁
性体金属を含む金属薄板積層体を用い、あるいは磁性体
の粉末を樹脂で一体に固形化させたものや、多孔質の磁
性体を用いることで、抵抗値の調整を容易にすることが
できる。Further, by providing a plurality of second gaps, the gap length can be adjusted by adjusting the mounting positions of the core members without cutting the magnetic core.
The shape of the core members constituting the magnetic core can be made the same, parts can be shared, and the magnetic core can be manufactured at low cost.
Any effect that a current detector can be provided inexpensively with small-scale equipment can be obtained. Note that the resistance value can be increased by using a metal sheet laminate containing a non-magnetic metal as the magnetoresistive adjuster, or by solidifying a magnetic powder into a solid with resin, or by using a porous magnetic material. Can be easily adjusted.
【図1】本発明の第1の実施例を示す斜視図である。FIG. 1 is a perspective view showing a first embodiment of the present invention.
【図2】本発明の第1の実施例の磁気回路を示す概念図
であるFIG. 2 is a conceptual diagram showing a magnetic circuit according to a first embodiment of the present invention.
【図3】本発明の第2の実施例を示す正面図である。FIG. 3 is a front view showing a second embodiment of the present invention.
【図4】本発明の第3の実施例を示す正面図である。FIG. 4 is a front view showing a third embodiment of the present invention.
【図5】本発明の第4の実施例4を示す正面図である。FIG. 5 is a front view showing a fourth embodiment 4 of the present invention.
【図6】従来例を示す構成図である。FIG. 6 is a configuration diagram showing a conventional example.
1:磁気鉄心 2:磁電変換素子 3:磁気抵抗調整体、 11:打ち抜き板 12、13:鉄心部材 12a,12b,13a,13b:脚部 14:第1のギャップ 15 15a、15b、15c、15d、15e:第2
のギャップ 16:空間部 17:エンボス部 18:円弧部 19、19A,19B,19C:鉄心部材 21:電源 22:オペアンプ 4:箱体 41:ギャップストッパ 42、43:鉄心保持板1: magnetic core 2: magneto-electric conversion element 3: magnetic resistance adjuster, 11: punched plate 12, 13: iron core member 12a, 12b, 13a, 13b: leg 14: first gap 15 15a, 15b, 15c, 15d , 15e: second
16: Space portion 17: Emboss portion 18: Arc portion 19, 19A, 19B, 19C: Iron core member 21: Power supply 22: Operational amplifier 4: Box 41: Gap stopper 42, 43: Iron core holding plate
Claims (10)
の導体により発生する磁束を通過させる磁気鉄心と、前
記磁気鉄心の磁気回路の途中に設けられたギャップと、
前記ギャップ内に設置された磁電変換素子とを備えた電
流検出器において、前記磁気鉄心の断面積を前記磁電変
換素子の断面積とほぼ同じ程度の大きさにし、前記磁電
変換素子を挿入してギャップ長さを小さくした第1のギ
ャップと、前記磁気鉄心と異なる透磁率を有する磁気抵
抗調整体を挿入し、磁気抵抗調整体に応じたギャップ長
さに調整した第2のギャップとを設けたことを特徴とす
る電流検出器。A magnetic core that surrounds a conductor through which a current to be detected flows and allows a magnetic flux generated by the conductor to pass therethrough; and a gap provided in the magnetic circuit of the magnetic core.
In a current detector including a magneto-electric conversion element installed in the gap, a cross-sectional area of the magnetic iron core is set to approximately the same size as a cross-sectional area of the magneto-electric conversion element, and the magneto-electric conversion element is inserted. A first gap having a reduced gap length and a second gap having a magnetic resistance adjuster having a magnetic permeability different from that of the magnetic core inserted therein and adjusted to a gap length corresponding to the magnetic resistance adjuster were provided. A current detector, characterized in that:
た第1のギャップと、磁気抵抗調整体を挿入した複数の
第2のギャップをそなえたことを特徴とする請求項1ま
たは2に記載した電流検出器。2. The magnetic core according to claim 1, wherein the magnetic core includes a first gap into which a magnetoelectric conversion element is inserted and a plurality of second gaps into which a magnetoresistance adjuster is inserted. Current detector.
構成されたことを特徴とする請求項1に記載した電流検
出器。3. The current detector according to claim 1, wherein said magnetoelectric conversion element is constituted by a Hall effect element.
らなる金属体で構成されていることを特徴とする請求項
1または2に記載した電流検出器。4. The current detector according to claim 1, wherein the magnetoresistance adjuster is made of a metal body made of a nonmagnetic metal.
を含む積層体で構成されていることを特徴とする請求項
1または2に記載した電流検出器。5. The current detector according to claim 1, wherein the magnetoresistance adjuster is formed of a laminate including a nonmagnetic metal plate.
樹脂で一体に固形化されていることを特徴とする請求項
1または2に記載した電流検出器。6. The current detector according to claim 1, wherein the magnetic resistance adjuster is formed by solidifying a magnetic substance powder with a resin.
からなることを特徴とする請求項1または2に記載した
電流検出器。7. The current detector according to claim 1, wherein the magnetoresistance adjuster is made of a porous magnetic material.
材をそなえ、鉄心部材相互の脚部を対向させ、前記対向
する脚部の間に第1のギャップおよび第2のギャップを
形成したことを特徴とする請求項1ないし7のいずれか
に記載した電流検出器。8. The magnetic core includes two U-shaped core members, the legs of the core members opposing each other, and a first gap and a second gap are formed between the opposing legs. The current detector according to any one of claims 1 to 7, wherein:
のギャップを介して対向させた第1の鉄心部材および第
2の鉄心部材と、前記第1の鉄心部材と第2の鉄心部材
の他方の端面に第2のギャップを介して対向させた第3
の鉄心部材で磁気回路を形成することを特徴とする請求
項1ないし7のいずれかに記載した電流検出器。9. The magnetic core has one end face facing the first core.
A first iron core member and a second iron core member opposed to each other via a gap, and a third iron core member opposed to the other end surfaces of the first iron core member and the second iron core member via a second gap.
8. The current detector according to claim 1, wherein a magnetic circuit is formed by the iron core member.
え、前記箱体に磁気鉄心と磁気抵抗調整体とを密着させ
た状態で保持する弾性体からなる鉄心保持板を設けたこ
とを特徴とする請求項1ないし9のいずれかに記載した
電流検出器。10. A core body for accommodating the magnetic iron core, and an iron core holding plate made of an elastic body for holding the magnetic iron core and the magnetic resistance adjuster in close contact with each other is provided on the box body. The current detector according to any one of claims 1 to 9, wherein:
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10013425A JPH11194141A (en) | 1998-01-06 | 1998-01-06 | Current detector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10013425A JPH11194141A (en) | 1998-01-06 | 1998-01-06 | Current detector |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11194141A true JPH11194141A (en) | 1999-07-21 |
Family
ID=11832794
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10013425A Pending JPH11194141A (en) | 1998-01-06 | 1998-01-06 | Current detector |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11194141A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005221492A (en) * | 2004-01-08 | 2005-08-18 | Fuji Electric Systems Co Ltd | Current sensor and power monitoring system |
| JP2007147514A (en) * | 2005-11-29 | 2007-06-14 | Denso Corp | Current sensor, and core of current sensor |
| JP2011185769A (en) * | 2010-03-09 | 2011-09-22 | Autonetworks Technologies Ltd | Current detection device and electrical junction box |
| JP2012154636A (en) * | 2011-01-21 | 2012-08-16 | Aisan Ind Co Ltd | Current sensor |
| JP2017156160A (en) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | Current sensor magnetic core |
| JP2018087723A (en) * | 2016-11-28 | 2018-06-07 | Jfeスチール株式会社 | Design method of magnetic core for current sensor |
| WO2023090223A1 (en) * | 2021-11-16 | 2023-05-25 | 株式会社デンソー | Current sensor |
| JP2023073966A (en) * | 2021-11-16 | 2023-05-26 | 株式会社デンソー | current sensor |
| WO2024224929A1 (en) * | 2023-04-26 | 2024-10-31 | パナソニックIpマネジメント株式会社 | Current sensor device |
-
1998
- 1998-01-06 JP JP10013425A patent/JPH11194141A/en active Pending
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005221492A (en) * | 2004-01-08 | 2005-08-18 | Fuji Electric Systems Co Ltd | Current sensor and power monitoring system |
| JP2007147514A (en) * | 2005-11-29 | 2007-06-14 | Denso Corp | Current sensor, and core of current sensor |
| JP2011185769A (en) * | 2010-03-09 | 2011-09-22 | Autonetworks Technologies Ltd | Current detection device and electrical junction box |
| JP2012154636A (en) * | 2011-01-21 | 2012-08-16 | Aisan Ind Co Ltd | Current sensor |
| JP2017156160A (en) * | 2016-02-29 | 2017-09-07 | Jfeスチール株式会社 | Current sensor magnetic core |
| JP2018087723A (en) * | 2016-11-28 | 2018-06-07 | Jfeスチール株式会社 | Design method of magnetic core for current sensor |
| WO2023090223A1 (en) * | 2021-11-16 | 2023-05-25 | 株式会社デンソー | Current sensor |
| JP2023073966A (en) * | 2021-11-16 | 2023-05-26 | 株式会社デンソー | current sensor |
| WO2024224929A1 (en) * | 2023-04-26 | 2024-10-31 | パナソニックIpマネジメント株式会社 | Current sensor device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5523677A (en) | DC current sensor | |
| US6844799B2 (en) | Compact low cost current sensor and current transformer core having improved dynamic range | |
| JP5967423B2 (en) | A device for measuring the current flowing through a wire | |
| JP4835868B2 (en) | Current sensor | |
| EP2224461B1 (en) | Magnetic circuit with wound magnetic core | |
| CN102749491B (en) | There is the current sensor of magnetic core | |
| US5642041A (en) | Alternating current sensor employing parallel plates and having high dynamic range and accuracy | |
| CN104823059A (en) | Current sensor and method for manufacturing current sensor | |
| JP2020118448A (en) | Current sensor | |
| JP2005308635A (en) | Current sensor | |
| JPS62193109A (en) | Instrument transformer measuring current flowing through electric conductor | |
| JP2010008050A (en) | Current sensor | |
| US20160187387A1 (en) | Electrical current transducer with wound magnetic core | |
| US20110043200A1 (en) | Current sensing device and manufacturing method of the same | |
| EP2860535B1 (en) | Hall effect sensor core with multiple air gaps | |
| WO1999052427A1 (en) | Magnetic field generating device for mri | |
| JPH11194141A (en) | Current detector | |
| WO1994027157A1 (en) | Current measurement transducer based on magnetic flux density measurement | |
| JP2016148620A (en) | Current sensor | |
| US5587652A (en) | Alternating current sensor based on parallel-plate geometry and having a shunt for self-powering | |
| JP2890650B2 (en) | Current sensor | |
| JP5930400B2 (en) | Open magnetic shield structure with conductor circuit | |
| US12068098B2 (en) | Residual current sensor for high currents | |
| JP2954500B2 (en) | Current transformer | |
| JP5321749B2 (en) | Coercive force identification device |