JPH11194288A - Light beam exit lens system and optical scanning device using the same - Google Patents
Light beam exit lens system and optical scanning device using the sameInfo
- Publication number
- JPH11194288A JPH11194288A JP36896497A JP36896497A JPH11194288A JP H11194288 A JPH11194288 A JP H11194288A JP 36896497 A JP36896497 A JP 36896497A JP 36896497 A JP36896497 A JP 36896497A JP H11194288 A JPH11194288 A JP H11194288A
- Authority
- JP
- Japan
- Prior art keywords
- light beam
- lens
- lens system
- exit
- biconvex single
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Mechanical Optical Scanning Systems (AREA)
- Lenses (AREA)
Abstract
(57)【要約】
【課題】 収差の少ない光ビーム射出レンズ系を構成
し、またこの光ビーム射出レンズ系を光走査装置に用い
ることで小型で高精細な光走査を行なうことができる光
ビーム射出レンズ系及びそれを用いた光走査装置を得る
こと。
【解決手段】 光源手段1から出射した光束の状態を両
凸単レンズ4によって他の状態に変換する光ビーム射出
レンズ系101において、該両凸単レンズの焦点距離を
f、該両凸単レンズの入射側と射出側のレンズ面の曲率
半径を各々R1,R2、該両凸単レンズの射出側の光軸
上のレンズ面から射出光束の結像点までの距離をSK、
該光ビーム射出レンズ系の開口数をNAとしたとき、
−0.09<(R1+R2)/(R1×R2)<−0.
01 −0.11<f/SK<0.11NA<0.1
3なる条件を満足すること。
(57) Abstract: A light beam capable of performing a small, high-definition optical scan by forming a light beam emission lens system with less aberration and using the light beam emission lens system in an optical scanning device. An emission lens system and an optical scanning device using the same. SOLUTION: In a light beam emitting lens system 101 for converting a state of a light beam emitted from a light source means 1 to another state by a biconvex single lens 4, the focal length of the biconvex single lens is f, and the biconvex single lens is The curvature radii of the entrance and exit lens surfaces are R1 and R2, respectively, and the distance from the lens surface on the exit-side optical axis of the biconvex single lens to the imaging point of the exit light beam is SK.
When the numerical aperture of the light beam exit lens system is NA,
−0.09 <(R1 + R2) / (R1 × R2) <− 0.
01−0.11 <f / SK <0.11NA <0.1
The three conditions must be satisfied.
Description
【0001】[0001]
【発明の属する技術分野】本発明は光ビーム射出レンズ
系及びそれを用いた光走査装置に関し、特に光源手段か
ら光変調され出射した光束(光ビーム)を両凸単レンズ
を介して回転多面鏡より成る光偏向器で偏向反射させた
後、fθ特性を有する走査レンズ系(fθレンズ)を介
して被走査面上を光走査して画像情報を記録するように
した、例えば電子写真プロセスを有するレーザービーム
プリンタやデジタル複写機等の装置に好適なものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam emitting lens system and an optical scanning device using the same, and more particularly, to a rotating polygon mirror which converts a light beam (light beam) which has been light-modulated and emitted from a light source means via a biconvex single lens. After the light is deflected and reflected by an optical deflector comprising a scanning lens system (fθ lens) having fθ characteristics, the surface to be scanned is optically scanned to record image information. It is suitable for devices such as laser beam printers and digital copiers.
【0002】[0002]
【従来の技術】従来よりレーザービームプリンタ(LB
P)等の光走査装置においては画像信号に応じて、例え
ば半導体レーザーより成る光源手段から光変調され出射
した発散光束(光ビーム)をコリメーターレンズにより
略平行光束に変換し、該コリメーターレンズ近傍に配し
たアパーチャ(絞り)によって所定のビーム幅で所定の
光量に制限し、シリンドリカルレンズに入射させてい
る。そしてシリンドリカルレンズに入射した略平行光束
のうち主走査断面内においてはそのまま略平行光束の状
態で射出する。また副走査断面内においては収束してポ
リゴンミラーから成る光偏向器の偏向面にほぼ線像とし
て結像している。そして光偏向器の偏向面で偏向反射さ
れた画像情報に基づく光束をfθ特性を有する走査レン
ズ系(fθレンズ)を介して被走査面としての感光ドラ
ム面上に導光し、該光偏向器を所定方向に回転させるこ
とにより、該感光ドラム面上を主走査方向に略等速度直
線運動で光走査して画像情報の記録を行なっている。2. Description of the Related Art Conventionally, a laser beam printer (LB) has been used.
In an optical scanning device such as P), a divergent light beam (light beam) which is light-modulated and emitted from a light source means composed of, for example, a semiconductor laser is converted into a substantially parallel light beam by a collimator lens in accordance with an image signal. An aperture (aperture) disposed in the vicinity restricts the light amount to a predetermined value with a predetermined beam width, and makes the light amount enter a cylindrical lens. Then, of the substantially parallel light beams incident on the cylindrical lens, the light beams are emitted as they are in the state of substantially parallel light beams in the main scanning section. In the sub-scan section, the light converges and forms a substantially linear image on the deflection surface of the optical deflector composed of a polygon mirror. A light flux based on the image information deflected and reflected by the deflecting surface of the optical deflector is guided through a scanning lens system (fθ lens) having fθ characteristics onto a photosensitive drum surface as a surface to be scanned. Is rotated in a predetermined direction, thereby optically scanning the photosensitive drum surface in the main scanning direction at a substantially constant speed linear motion to record image information.
【0003】この種の光走査装置に用いられる光ビーム
射出レンズ系は半導体レーザーを光源とし、該半導体レ
ーザーから出射される発散光束をコリメーターレンズで
略平行光束に変換すると共に、該コリメーターレンズ近
傍に配置したアパーチャーにより所定のビーム幅で、所
定の光量の光束に制限して射出している。A light beam emission lens system used in this type of optical scanning apparatus uses a semiconductor laser as a light source, converts a divergent light beam emitted from the semiconductor laser into a substantially parallel light beam by a collimator lens, and converts the divergent light beam into a substantially parallel light beam. Light is emitted with a predetermined beam width and a predetermined amount of light by an aperture disposed in the vicinity.
【0004】このような光ビーム射出レンズ系が、例え
ば特開昭60−121412号公報や特開平7−174
997号公報等で種々と提案されている。特開昭60−
121412号公報においては射出面が非球面の両凸単
レンズを用いた非球面コリメーターレンズが開示されて
いる。特開平7−174997号公報において射出面が
凸球面の平凸単レンズを用いたコリメートレンズが開示
されている。Such a light beam emitting lens system is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-112412 and Japanese Patent Application Laid-Open No. 7-174.
Various proposals have been made in, for example, Japanese Patent Publication No. 997. JP-A-60-
Japanese Patent Publication No. 121412 discloses an aspherical collimator lens using a biconvex single lens having an aspheric exit surface. Japanese Patent Application Laid-Open No. 7-174997 discloses a collimating lens using a plano-convex single lens whose exit surface is a convex spherical surface.
【0005】[0005]
【発明が解決しようとする課題】しかしながら凸球面の
平凸単レンズにて光ビーム射出レンズ系を構成した場合
は、該光ビーム射出レンズ系に所定の正の屈折力を持た
せるために該平凸単レンズの曲率半径がきつくなり、レ
ンズ製造上、特に研磨工程において大量加工ができなく
なってくるという問題点がある。またモールド成形によ
り製造する場合は精度良く平面を成形することが困難で
あるという成形上の問題点もある。However, when the light beam exit lens system is composed of a plano-convex single lens having a convex spherical surface, the light beam exit lens system is required to have a predetermined positive refractive power. There is a problem that the radius of curvature of the convex single lens becomes too large, and mass processing cannot be performed in lens manufacturing, particularly in a polishing step. In the case of manufacturing by molding, there is also a molding problem that it is difficult to accurately form a flat surface.
【0006】また非球面の両凸単レンズにて光ビーム射
出レンズ系を構成した場合は、環境安定性を考えると両
凸単レンズの材質をガラスにする必要があるが、この場
合、非球面レンズの製造は球面レンズの製造に比べて簡
易に製造することが困難であるという問題点がある。When the light beam exit lens system is composed of an aspherical biconvex single lens, the material of the biconvex single lens must be glass in consideration of environmental stability. There is a problem that it is more difficult to manufacture a lens easily than to manufacture a spherical lens.
【0007】本発明の第1の目的は球面より成る両凸単
レンズを有する光ビーム射出レンズ系を適切に構成する
ことにより、収差の少ない簡易な構成の光ビーム射出レ
ンズ系の提供にある。A first object of the present invention is to provide a light beam exit lens system having a simple configuration with less aberration by appropriately configuring a light beam exit lens system having a biconvex single lens having a spherical surface.
【0008】また本発明の第2の目的は上記の光ビーム
射出レンズ系を光走査装置に用いることにより、小型で
高精細な光走査を行なうことができる光走査装置の提供
にある。A second object of the present invention is to provide a small-sized optical scanning device capable of performing high-definition optical scanning by using the above-mentioned light beam emitting lens system in an optical scanning device.
【0009】[0009]
【課題を解決するための手段】本発明の光ビーム射出レ
ンズ系は、(1) 光源手段から出射した光束の状態を両凸
単レンズによって他の状態に変換する光ビーム射出レン
ズ系において、該両凸単レンズの焦点距離をf、該両凸
単レンズの入射側と射出側のレンズ面の曲率半径を各々
R1,R2、該両凸単レンズの射出側の光軸上のレンズ
面から射出光束の結像点までの距離をSK、該光ビーム
射出レンズ系の開口数をNAとしたとき、 −0.09<(R1+R2)/(R1×R2)<−0.
01 −0.11<f/SK<0.11 NA<0.13 なる条件を満足することを特徴としている。According to the present invention, there is provided a light beam emitting lens system for: (1) a light beam emitting lens system for converting a state of a light beam emitted from a light source means into another state by a biconvex single lens. The focal length of the biconvex single lens is f, the radii of curvature of the entrance and exit lens surfaces of the biconvex single lens are R1 and R2, respectively, and the biconvex single lens exits from the lens surface on the optical axis of the exit side of the biconvex single lens. Assuming that the distance of the light beam to the imaging point is SK and the numerical aperture of the light beam exit lens system is NA, -0.09 <(R1 + R2) / (R1 * R2) <-0.
It is characterized by satisfying the following condition: 01−0.11 <f / SK <0.11 NA <0.13
【0010】特に(1-1) 前記両凸単レンズの材質の屈折
率をnとしたとき、 1.59< n <1.85 なる条件を満足することを特徴としている。In particular, (1-1) when the refractive index of the material of the biconvex single lens is n, the condition that 1.59 <n <1.85 is satisfied.
【0011】本発明に光走査装置は、(2) 上記(1) から
(1-1) の何れか一項記載の光ビーム射出レンズ系を用
い、該光ビーム射出レンズ系より射出された光束をシリ
ンドリカルレンズを介して偏向手段の偏向面において主
走査方向に長手の線状に結像させ、該偏向手段で偏向反
射された光束を走査レンズ系を介して被走査面上にスポ
ット状に結像させて、該被走査面上を光走査する際、該
光ビーム射出レンズ系の射出側の光軸上のレンズ面と該
偏向手段の偏向面との間隔をCP、該偏向手段の偏向面
と該被走査面との間隔をPDとしたとき、 −0.05<(CP+PD)/SK<0.90 なる条件を満足することを特徴としている。According to the present invention, there is provided an optical scanning device comprising:
(1-1) using the light beam emission lens system according to any one of (1) to (3), a light beam emitted from the light beam emission lens system is a line elongated in the main scanning direction on a deflection surface of a deflection unit via a cylindrical lens. When the light beam deflected and reflected by the deflecting means is formed into a spot on a surface to be scanned via a scanning lens system and the light beam is scanned on the surface to be scanned, the light beam is emitted. When the distance between the lens surface on the optical axis of the exit side of the lens system on the optical axis and the deflecting surface of the deflecting means is CP, and the distance between the deflecting surface of the deflecting means and the surface to be scanned is PD, -0.05 < It is characterized by satisfying the condition of (CP + PD) / SK <0.90.
【0012】(3) 光源手段から出射した光束の状態を両
凸単レンズによって他の状態に変換する光ビーム射出レ
ンズ系より射出された光束をシリンドリカルレンズを介
して偏向手段の偏向面において主走査方向に長手の線状
に結像させ、該偏向手段で偏向反射された光束を走査レ
ンズ系を介して被走査面上にスポット状に結像させて、
該被走査面上を光走査する光走査装置において、該両凸
単レンズの焦点距離をf、該両凸単レンズの入射側と射
出側のレンズ面の曲率半径を各々R1,R2、該両凸単
レンズの射出側の光軸上のレンズ面から射出光束の結像
点までの距離をSK、該光ビーム射出レンズ系の開口数
をNA、該両凸単レンズの材質の屈折率をn、該両凸単
レンズの射出側の光軸上のレンズ面と該偏向手段の偏向
面との間隔をCP、該偏向手段の偏向面と該被走査面と
の間隔をPDとしたとき、 −0.09<(R1+R2)/(R1×R2)<−0.
01 −0.11<f/SK<0.11 NA<0.13 1.59< n <1.85 −0.05<(CP+PD)/SK<0.90 なる条件を満足することを特徴としている。(3) The main scanning of the light beam emitted from the light beam emitting lens system for converting the state of the light beam emitted from the light source means to another state by a biconvex single lens through the cylindrical lens on the deflection surface of the deflection means. Image in the form of a long line in the direction, the light beam deflected and reflected by the deflecting means is imaged in the form of a spot on the surface to be scanned via a scanning lens system,
In an optical scanning device that optically scans the surface to be scanned, the focal length of the biconvex single lens is f, and the radii of curvature of the entrance and exit lens surfaces of the biconvex single lens are R1 and R2, respectively. The distance from the lens surface on the optical axis on the exit side of the convex single lens to the imaging point of the emitted light beam is SK, the numerical aperture of the light beam exit lens system is NA, and the refractive index of the material of the biconvex single lens is n. Where CP is the distance between the lens surface on the optical axis on the exit side of the biconvex single lens and the deflecting surface of the deflecting means, and PD is the distance between the deflecting surface of the deflecting means and the surface to be scanned. 0.09 <(R1 + R2) / (R1 × R2) <− 0.
01-0.11 <f / SK <0.11 NA <0.13 1.59 <n <1.85-0.05 <(CP + PD) / SK <0.90 I have.
【0013】[0013]
【発明の実施の形態】図1は本発明の光ビーム射出レン
ズ系を光走査装置に用いたときの実施形態1の要部概略
図であり、主走査断面の光軸方向に展開して示してい
る。図2は図1に示した光ビーム射出レンズ系の周辺を
示した要部概略図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view of a main portion of a first embodiment when a light beam emitting lens system according to the present invention is used in an optical scanning device, and is developed in the optical axis direction of a main scanning section. ing. FIG. 2 is a schematic view of a main part showing the periphery of the light beam exit lens system shown in FIG.
【0014】図中、1は光源手段であり、例えば半導体
レーザより成っている。2はカバーガラス、3はアパー
チャー(開口絞り)であり、通過光束(光ビーム)を所
定のビーム幅で、所定の光量に制限している。4は両レ
ンズ面が凸面で球面より成る両凸単レンズであり、光源
手段1から出射された発散光束を収束光束もしくは略平
行光束に変換している。4aは両凸単レンズ4の入射側
のレンズ面(入射面)、4bは両凸単レンズ4の射出側
のレンズ面(射出面)である。In FIG. 1, reference numeral 1 denotes a light source means, which is composed of, for example, a semiconductor laser. Reference numeral 2 denotes a cover glass, and reference numeral 3 denotes an aperture (aperture stop) for limiting a passing light beam (light beam) to a predetermined light amount with a predetermined beam width. Reference numeral 4 denotes a biconvex single lens whose both lens surfaces are convex and spherical, and converts a divergent light beam emitted from the light source means 1 into a convergent light beam or a substantially parallel light beam. Reference numeral 4a denotes an entrance-side lens surface (incident surface) of the biconvex single lens 4, and 4b denotes an exit-side lens surface (exit surface) of the biconvex single lens 4.
【0015】尚、光源手段1、カバーガラス2、アパー
チャー3、両凸単レンズ4の各要素は光ビーム射出レン
ズ系101の一要素を構成している。Each element of the light source means 1, the cover glass 2, the aperture 3, and the biconvex single lens 4 constitutes one element of the light beam emission lens system 101.
【0016】5はシリンドリカルレンズであり、副走査
方向に所定の屈折力を有しており、光ビーム射出レンズ
系101を通過した光束を副走査断面内で後述する光偏
向器の偏向面近傍にほぼ線像として結像させている。6
は偏向手段としての光偏向器であり、例えば回転多面鏡
(ポリゴンミラー)より成っており、モーター等の駆動
手段(不図示)により所定方向に一定速度で回転してい
る。6aは光偏向器6の偏向面(ポリゴン反射面)であ
る。201は走査レンズ系であり、fθ特性を有する単
一の走査レンズ(fθレンズ)7より成り、光偏向器6
の偏向面6aで偏向反射された画像情報に基づく光束を
被走査面としての感光ドラム面8上にスポット状に結像
させ、かつ光偏向器6の偏向面6aの面倒れを補正して
いる。Reference numeral 5 denotes a cylindrical lens which has a predetermined refracting power in the sub-scanning direction, and converts a light beam passing through the light beam exit lens system 101 into a vicinity of a deflecting surface of an optical deflector to be described later in a sub-scanning section. The image is formed almost as a line image. 6
Reference numeral denotes an optical deflector as a deflecting means, which is, for example, a rotating polygon mirror (polygon mirror), and is rotated at a constant speed in a predetermined direction by a driving means (not shown) such as a motor. Reference numeral 6a denotes a deflecting surface (polygon reflecting surface) of the optical deflector 6. Reference numeral 201 denotes a scanning lens system which includes a single scanning lens (fθ lens) 7 having fθ characteristics, and an optical deflector 6
The light flux based on the image information deflected and reflected by the deflecting surface 6a is formed into a spot image on the photosensitive drum surface 8 as the surface to be scanned, and the tilt of the deflecting surface 6a of the optical deflector 6 is corrected. .
【0017】本実施形態において半導体レーザー1より
出射した発散光束はアパーチャー3によって所定のビー
ム幅で、所定の光量に制限され、両凸単レンズ4により
略平行光束(もしくは収束光束)に変換されてシリンド
リカルレンズ5に入射している。シリンドリカルレンズ
5に入射した光束のうち主走査断面においてはそのまま
の状態で射出する。また副走査断面においては収束して
光偏向器6の偏向面6aにほぼ線像(主走査方向に長手
の線像)として結像している。そして光偏向器6の偏向
面6aで偏向反射された光束は走査レンズ7を介して感
光ドラム面8上に導光され、該光偏向器6を所定方向に
回転させることによって、該感光ドラム面8上を主走査
方向に略等速度直線運動で光走査している。これにより
記録媒体としての感光ドラム面8上に画像記録を行なっ
ている。In this embodiment, the divergent light beam emitted from the semiconductor laser 1 is limited to a predetermined light amount with a predetermined beam width by the aperture 3, and is converted into a substantially parallel light beam (or convergent light beam) by the biconvex single lens 4. The light enters the cylindrical lens 5. The luminous flux incident on the cylindrical lens 5 is emitted as it is in the main scanning section. In the sub-scan section, the light converges and is formed on the deflection surface 6a of the optical deflector 6 as a substantially linear image (a linear image elongated in the main scanning direction). The light beam deflected and reflected by the deflecting surface 6a of the optical deflector 6 is guided to the photosensitive drum surface 8 via the scanning lens 7, and the optical deflector 6 is rotated in a predetermined direction, thereby causing the photosensitive drum surface to rotate. 8 is optically scanned in the main scanning direction at a substantially constant speed linear motion. Thus, an image is recorded on the photosensitive drum surface 8 as a recording medium.
【0018】本実施形態における光ビーム射出レンズ系
101は上述の如く球面より成る両凸単レンズ4を有
し、該両凸単レンズ4の焦点距離をf、該両凸単レンズ
4の入射側と射出側のレンズ面4a,4bの曲率半径を
各々R1,R2、該両凸単レンズ4の射出側の光軸上の
レンズ面4bから射出光束の結像点Qまでの距離をS
K、該光ビーム射出レンズ系101の開口数をNAとし
たとき、 −0.09<(R1+R2)/(R1×R2)<−0.01 ‥(1) −0.11<f/SK<0.11 ‥(2) NA<0.13 ‥(3) なる条件を満足させている。The light beam exit lens system 101 in the present embodiment has the biconvex single lens 4 having a spherical surface as described above, the focal length of the biconvex single lens 4 is f, and the incident side of the biconvex single lens 4 is The curvature radii of the exit-side lens surfaces 4a and 4b are R1 and R2, respectively, and the distance from the lens surface 4b on the exit-side optical axis of the biconvex single lens 4 to the imaging point Q of the exit light beam is S.
K, where NA is the numerical aperture of the light beam exit lens system 101, −0.09 <(R1 + R2) / (R1 × R2) <− 0.01 (1) −0.11 <f / SK < 0.11 ‥ (2) NA <0.13 ‥ (3)
【0019】また両凸単レンズ4の材質の屈折率をnと
したとき、 1.59< n <1.85 ‥(4) なる条件を満足させている。Assuming that the refractive index of the material of the biconvex single lens 4 is n, the condition 1.59 <n <1.8585 (4) is satisfied.
【0020】更に両凸単レンズ4の射出側の光軸上のレ
ンズ面4bと光偏向器6の偏向面6aとの間隔をCP、
該光偏向器6の偏向面6aと被走査面8との間隔をPD
としたとき、 −0.05<(CP+PD)/SK<0.90 ‥(5) なる条件を満足させている。Further, the distance between the lens surface 4b on the optical axis on the exit side of the biconvex single lens 4 and the deflection surface 6a of the optical deflector 6 is CP,
The distance between the deflecting surface 6a of the optical deflector 6 and the surface 8 to be scanned is PD
In this case, the condition of -0.05 <(CP + PD) / SK <0.90 (5) is satisfied.
【0021】本実施形態においては光ビーム射出レンズ
系101のレンズを球面より成る両凸単レンズ4より構
成したことにより、従来の平凸単レンズに比べて所定の
正の屈折力を2つのレンズ面で分担することになり、球
面の曲率半径Rを緩くでき、レンズ製造上、特に研磨工
程において大量加工が可能となり、簡易に製造すること
ができる。また球面を両凸形状としたことによりモール
ド成形でも良好なる面精度を得ることができる。In this embodiment, the lens of the light beam exit lens system 101 is constituted by a biconvex single lens 4 having a spherical surface, so that a predetermined positive refracting power is provided by two lenses as compared with a conventional plano-convex single lens. Since the surfaces are shared, the radius of curvature R of the spherical surface can be reduced, and a large amount of processing can be performed in lens manufacturing, particularly in the polishing step, and the lens can be easily manufactured. In addition, since the spherical surface has a biconvex shape, good surface accuracy can be obtained even in molding.
【0022】次の本発明の各条件式の技術的意味につい
て説明する。Next, the technical meaning of each conditional expression of the present invention will be described.
【0023】条件式(1)は両凸単レンズ4の形状に関
するものである。条件式(1)の下限値を越えると両凸
単レンズ4の入射面4aの曲率半径R1が極めて緩くな
って、射出面4bの曲率半径R2がきつくなり、研磨工
程において射出面4bの大量加工が困難になり、コスト
高になってしまうので良くない。さらに望ましくは条件
式(1)の下限値を−0.08に設定すると良い。Conditional expression (1) relates to the shape of the biconvex single lens 4. If the lower limit of conditional expression (1) is exceeded, the radius of curvature R1 of the entrance surface 4a of the biconvex single lens 4 becomes extremely loose, the radius of curvature R2 of the exit surface 4b becomes tight, and a large amount of the exit surface 4b is processed in the polishing step. Is difficult and the cost is high. It is more desirable to set the lower limit of conditional expression (1) to -0.08.
【0024】また条件式(1)の上限値については、そ
の条件式(1)の値が0のとき、R1=―R2となり、
所謂対称レンズとなり、その近傍の値0のときは両凸単
レンズ4の入射面4aと射出面4bとの判別が困難にな
り、組立作業上、厳密なチェック工程が必要になり、レ
ンズ管理のためのコストが高くなる。その為上限値が−
0.01より0に近づくのは良くない。Regarding the upper limit of conditional expression (1), when the value of conditional expression (1) is 0, R1 = −R2,
When it is a so-called symmetric lens, and when the value is 0 near the symmetric lens, it is difficult to discriminate between the entrance surface 4a and the exit surface 4b of the biconvex single lens 4, a strict check step is required in assembling work, and lens management Costs are high. Therefore, the upper limit is-
It is not good to approach 0 from 0.01.
【0025】また両凸単レンズ4の光軸に対して垂直な
面内において、例えば該両凸単レンズ4の光軸上からず
らして光源を配置する複数光源を有する場合や、製造誤
差等により該両凸単レンズ4の光軸に対して垂直な面内
において、該両凸単レンズ4の光軸と光源との相対位置
がずれた場合にコマ収差が発生するが、条件式(1)の
上限値を越えて入射面4aの曲率半径R1が光源手段1
側にきつい凸形状になると、該コマ収差が大きくなり良
くない。Further, in a plane perpendicular to the optical axis of the biconvex single lens 4, for example, when there are a plurality of light sources which are arranged so as to be shifted from the optical axis of the biconvex single lens 4, or due to a manufacturing error or the like, In a plane perpendicular to the optical axis of the biconvex single lens 4, coma occurs when the relative position between the optical axis of the biconvex single lens 4 and the light source is displaced. Exceeds the upper limit of the light source means 1
If the convex shape is sharp on the side, the coma aberration becomes large, which is not good.
【0026】また本実施形態の光ビーム射出レンズ系1
01においては、条件式(2)のように略平行光束に近
い光束を射出するものなので球面収差を良好に補正する
上で射出面4bでの収束作用が強いほうが良いが、条件
式(1)の上限値を越えて対称レンズに近づいて射出面
4bの収束作用が弱い形になると球面収差を良好に補正
することが困難になるので良くない。入射面4aと射出
面4bの判別及びコマ収差と球面収差を良好に補正する
為に、更に望ましくは条件式(1)の上限値を−0.0
2に設定すると良い。The light beam exit lens system 1 of the present embodiment
In condition 01, since a light beam close to a substantially parallel light beam is emitted as in conditional expression (2), it is better to have a stronger convergence effect on the exit surface 4b to satisfactorily correct spherical aberration. When the convergence of the exit surface 4b is weakened by approaching the symmetric lens beyond the upper limit of the above, it is difficult to satisfactorily correct the spherical aberration, which is not good. In order to discriminate between the entrance surface 4a and the exit surface 4b and to properly correct coma and spherical aberration, it is more desirable to set the upper limit of conditional expression (1) to -0.0.
It is good to set to 2.
【0027】即ち、条件式(1)の数値範囲を −0.08<(R1+R2)/(R1×R2)<−0.02 ‥(1a) の如く設定するのが良い。That is, it is preferable to set the numerical range of the conditional expression (1) as follows: -0.08 <(R1 + R2) / (R1 × R2) <-0.02 (1a)
【0028】条件式(2)は光ビーム射出レンズ系10
1により射出される光束の収束度合いを両凸単レンズ4
の焦点距離fに比して表わしたものである。光ビーム射
出レンズ系101から略平行光束が射出される場合は1
/SK=0となりf/SK=0となる。発散光束が射出
される場合はSK<0となりf/SKはマイナスの値と
なる。収束光束が射出される場合はSK>0となりf/
SKはプラスの値となる。Conditional expression (2) satisfies the light beam exit lens system 10
1. The degree of convergence of the light beam emitted by 1
Is expressed in comparison with the focal length f. 1 when a substantially parallel light beam is emitted from the light beam emission lens system 101
/ SK = 0 and f / SK = 0. When a divergent light beam is emitted, SK <0, and f / SK becomes a negative value. When a convergent light beam is emitted, SK> 0 and f /
SK has a positive value.
【0029】この光ビーム射出レンズ系101は条件式
(2)の下限値(-0.11) から上限値(0.11)までの範囲内
の収束度合いの光束を射出するものである。この光ビー
ム射出レンズ系101の射出側に他の光学系を組み合せ
て他の装置を構成する場合にf/SK=0であれば、該
他の光学系の光軸方向の位置誤差による該他の装置全体
のピント位置変化は発生しない。しかしながら条件式
(2)の下限値もしくは上限値を越えると該他の光学系
の光軸方向の位置誤差による該他の装置全体のピント位
置変化が大きくなってしまい良くない。The light beam exit lens system 101 emits a light beam having a degree of convergence within the range from the lower limit (-0.11) to the upper limit (0.11) of the conditional expression (2). When f / SK = 0 when another optical system is combined with the exit side of the light beam exit lens system 101 to form another apparatus, the other error due to the position error of the other optical system in the optical axis direction. The focus position of the entire device does not change. However, if the lower limit value or the upper limit value of the conditional expression (2) is exceeded, a change in the focus position of the other apparatus as a whole due to a position error of the other optical system in the optical axis direction is undesirably large.
【0030】条件式(3)は光ビーム射出レンズ系10
1の開口数NAに関するものである。条件式(3)の上
限値を越えて開口数NAが大きくなると球面収差が大き
くなり、これを補正する為にはレンズ系を複数枚構成も
しくは非球面を導入する必要があり、本発明の目的とす
る簡易な構成の光ビーム射出レンズ系を得ることができ
なくなってくるので良くない。更に望ましくは条件式
(3)の上限値を0.10に設定すると球面収差を小さ
くするだけでなく製造誤差による収差変化も小さくでき
るので良い。また開口数NAを小さくすると射出光量の
低下や光源手段1と両凸単レンズ4との間隔が大型化に
なるので更に望ましくは条件式(3)の下限値を0.0
4を越えないように設定すると良い。Conditional expression (3) satisfies the light beam exit lens system 10
It relates to a numerical aperture NA of 1. If the numerical aperture NA increases beyond the upper limit of conditional expression (3), spherical aberration increases. To correct this, it is necessary to configure a plurality of lens systems or introduce an aspherical surface. This is not good because a light beam emission lens system having a simple configuration cannot be obtained. More preferably, setting the upper limit of conditional expression (3) to 0.10 not only reduces the spherical aberration but also reduces the change in aberration due to manufacturing errors. Further, when the numerical aperture NA is reduced, the amount of emitted light decreases and the distance between the light source means 1 and the biconvex single lens 4 increases, so that it is more desirable to set the lower limit of conditional expression (3) to 0.0.
It is good to set so that it does not exceed 4.
【0031】即ち、条件式(3)の数値範囲を 0.04<NA<0.10 ‥(3a) の如く設定するのが良い。That is, the numerical range of the conditional expression (3) is preferably set as follows: 0.04 <NA <0.10 (3a).
【0032】条件式(4)は両凸単レンズ4の材質の屈
折率に関するものである。条件式(4)の下限値を越え
て材質の屈折率が低くなると、両凸単レンズ4に所定の
屈折力を持たせるためのレンズ面の曲率半径がきつくな
り球面収差が悪化し、またレンズ面の曲率半径がきつく
なり研磨工程において大量加工が困難になり、コスト高
になってしまうので良くない。また条件式(4)の上限
値を越えて材質の屈折率が高くなるとレンズ材料が高価
になってしまい簡易な構成の光ビーム射出レンズ系を得
ることができなくなってくるので良くない。Condition (4) relates to the refractive index of the material of the biconvex single lens 4. If the refractive index of the material is lower than the lower limit value of the conditional expression (4), the radius of curvature of the lens surface for giving the biconvex single lens 4 a predetermined refractive power becomes tight, and the spherical aberration deteriorates. This is not good because the radius of curvature of the surface is too tight, and mass processing is difficult in the polishing process, which increases the cost. If the refractive index of the material becomes higher than the upper limit value of the conditional expression (4), the lens material becomes expensive, and it becomes impossible to obtain a light beam emission lens system having a simple configuration, which is not good.
【0033】条件式(5)は両凸単レンズ4の光軸上の
射出面4bと光偏向器6の偏向面6aとの間隔CPと、
該偏向面6aと被走査面8との間隔PDとに対する、該
両凸単レンズ4の光軸上の射出面4bから射出光束の結
像点Qまでの距離SKの関係を表わしたものである。Conditional expression (5) represents the distance CP between the exit surface 4b on the optical axis of the biconvex single lens 4 and the deflection surface 6a of the optical deflector 6, and
The relationship between the distance PD between the exit surface 4b on the optical axis of the biconvex single lens 4 and the imaging point Q of the exit light beam with respect to the distance PD between the deflection surface 6a and the surface 8 to be scanned is shown. .
【0034】偏向面6aと被走査面8との間隔PDは装
置全体の大きさを具体的に表わす数値の一つとなるが、
この間隔PDを小さくする方法としては光ビーム射出レ
ンズ系101から射出される光束の収束度合いを高め
る、即ち1/SKを大きくすることが考えられる。この
原理を図3(A),(B)を用いて説明する。図3
(A),(B)は各々主走査断面の光軸方向に展開した
ときの要部概略図(模式図)である。図3(A)は光ビ
ーム射出レンズ系102から略平行光束が射出(1/S
K=0)される場合、図3(B)は光ビーム射出レンズ
系103から収束光束が射出(1/SK>0)される場
合を各々示している。図3(A),(B)において図1
に示した要素と同一要素には同符番を付している。The distance PD between the deflecting surface 6a and the surface 8 to be scanned is one of numerical values specifically representing the size of the entire apparatus.
As a method of reducing the interval PD, it is conceivable to increase the degree of convergence of the light beam emitted from the light beam emission lens system 101, that is, increase 1 / SK. This principle will be described with reference to FIGS. FIG.
3A and 3B are schematic diagrams (schematic diagrams) of main parts when developed in the optical axis direction of the main scanning section. FIG. 3A shows that a substantially parallel light beam is emitted from the light beam emission lens system 102 (1 / S
3B shows a case where a convergent light beam is emitted from the light beam exit lens system 103 (1 / SK> 0). 3A and 3B, FIG.
The same elements as those shown in FIG.
【0035】図3(A),(B)において17,27は
各々走査レンズである。尚走査レンズ27の焦点距離は
Sfである。Lは両凸単レンズ(14,24) の光軸上の射出
面(14b,24b) から走査レンズ(17,27) までの距離、SD
A,SDBは各々走査レンズ(17,27) から被走査面8ま
での距離である。In FIGS. 3A and 3B, reference numerals 17 and 27 denote scanning lenses, respectively. Note that the focal length of the scanning lens 27 is Sf. L is the distance from the exit surface (14b, 24b) on the optical axis of the biconvex single lens (14, 24) to the scanning lens (17, 27), SD
A and SDB are the distances from the scanning lens (17, 27) to the surface 8 to be scanned.
【0036】図3(A),(B)より明らかなように距
離SDA,SDBはSDA>SDBであり、光ビーム射
出レンズ系の光束の収束度合いを高める、即ち1/SK
を大きくすることで装置全体の小型化が図れる。また図
3(B)に示すように光ビーム射出レンズ系103が1
/SK>0の収束光束を射出する場合でも走査レンズ2
7の焦点距離をSfより長いSf' にしてSDB=SD
Aとすることも可能であることから、光ビーム射出レン
ズ系の光束の収束度合いを高める、即ち1/SKを大き
くすることで走査レンズの屈折力を弱くできる。よって
走査レンズは最低限のコバ厚を残して肉厚を薄くし、精
度良く簡易に製造することができる。As is clear from FIGS. 3A and 3B, the distances SDA and SDB satisfy SDA> SDB, and the convergence of the light beam of the light beam exit lens system is increased, that is, 1 / SK.
The size of the entire apparatus can be reduced by increasing. Further, as shown in FIG.
/ SK> 0 even when a convergent light beam is emitted.
7 with Sf 'longer than Sf, SDB = SD
Since it is also possible to set A, the refracting power of the scanning lens can be weakened by increasing the degree of convergence of the light beam of the light beam exit lens system, that is, by increasing 1 / SK. Therefore, the scanning lens can be manufactured with a small thickness, leaving a minimum edge thickness, and easily and accurately.
【0037】条件式(5)の下限値を越えると光ビーム
射出レンズ系101の光束の収束度合いが低くなり装置
全体を小型にすることが困難になる、もしくは走査レン
ズ7の屈折力を大きくする必要があり、コバ厚を残して
肉厚を厚くしなければならず、走査レンズ7を精度良く
簡易に製造することが困難になるので良くない。更に望
ましくは光ビーム射出レンズ系101から収束光束を射
出するようにし、条件式(5)の下限値を0.10に設
定すると良い。If the lower limit value of conditional expression (5) is exceeded, the degree of convergence of the light beam of the light beam exit lens system 101 will decrease, making it difficult to reduce the size of the entire apparatus, or increasing the refractive power of the scanning lens 7. It is necessary to increase the thickness while leaving the edge thickness, which makes it difficult to manufacture the scanning lens 7 accurately and simply, which is not good. More preferably, a convergent light beam is emitted from the light beam emission lens system 101, and the lower limit value of conditional expression (5) is preferably set to 0.10.
【0038】逆に条件式(5)の上限値を越えて光ビー
ム射出レンズ系101の光束の収束度合いが高くなりす
ぎると、光偏向器6の位置誤差による被走査面8上での
光スポットの結像位置ズレが大きくなり、高精細な光走
査ができなくなってくるので良くない。更に望ましくは
条件式(5)の上限値を0.80に設定すると良い。On the other hand, if the convergence of the light beam of the light beam exit lens system 101 becomes too high beyond the upper limit value of the conditional expression (5), the light spot on the surface 8 to be scanned 8 due to the position error of the light deflector 6. Is not good because the deviation of the imaging position becomes large, and high-definition optical scanning becomes impossible. It is more desirable to set the upper limit of conditional expression (5) to 0.80.
【0039】即ち、条件式(5)の数値範囲を 0.10<(CP+PD)/SK<0.80 ‥(5a) の如く設定するのが良い。That is, the numerical range of the conditional expression (5) may be set as follows: 0.10 <(CP + PD) / SK <0.80 (5a)
【0040】尚、本実施形態における走査レンズ系は単
一のレンズより構成したが、複数枚のレンズより構成し
ても良い。Although the scanning lens system in this embodiment is constituted by a single lens, it may be constituted by a plurality of lenses.
【0041】次に本発明の数値実施例1〜3を示す。図
4〜図6は各々本発明の数値実施例1〜3の球面収差図
である。又前述の各条件式と数値実施例における諸数値
との関係を表−1に示す。Next, Numerical Examples 1 to 3 of the present invention will be described. 4 to 6 are spherical aberration diagrams of Numerical Examples 1 to 3 of the present invention, respectively. Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.
【0042】尚、数値実施例1〜3において、 光源波長λ = 780nm、 カバーガラスの厚み = 0.25mm カバーガラスの屈折率= 1.50875 d1 =光源からアパーチャまでの距離 d2 =アパーチャから両凸単レンズの光軸上の入射面
までの距離 d3 =両凸単レンズの光軸上の入射面から射出面まで
の距離 SK =両凸単レンズの光軸上の射出面から結像点まで
の距離 n =両凸単レンズの屈折率 R1 =両凸単レンズの入射面の曲率半径 R2 =両凸単レンズの射出面の曲率半径 NA =光ビーム射出レンズ系の開口数 CP =両凸単レンズの光軸上の射出面と偏向面との間
隔 S1 =走査レンズの前側主点Hから偏向面までの距離 HH’=走査レンズの前側主点Hから後側主点H’まで
の距離 S2 =走査レンズの後側主点H’から被走査面までの
距離 W =有効走査幅 Sf =走査レンズの主走査方向の焦点距離 PD =−S1 + HH' + S2 とする。In the numerical examples 1-3, the light source wavelength λ = 780 nm, the thickness of the cover glass = 0.25 mm, the refractive index of the cover glass = 1.50875 d1 = the distance from the light source to the aperture d2 = the biconvex from the aperture Distance d3 from the entrance surface on the optical axis of the single-lens single lens to the exit surface SK = Distance from the exit surface on the optical axis of the single-convex single lens to the image point Distance n = refractive index of biconvex single lens R1 = radius of curvature of entrance surface of biconvex single lens R2 = radius of curvature of exit surface of biconvex single lens NA = numerical aperture of light beam exit lens system CP = biconvex single lens S1 = Distance from front principal point H of scanning lens to deflection surface HH ′ = Distance from front principal point H of scanning lens to rear principal point H ′ on optical axis S2 = Is the back principal point H 'of the scanning lens The focal length PD = -S1 + HH '+ S2 in the main scanning direction distance W = effective scanning width Sf = scanning lens to the scanned surface.
【0043】 数値実施例1 d1= 24.727 SK = 421.5 d2= 0.500 CP = 75.1 d3= 2.000 S1 = −35.7 R1=182.212 HH' = 4.8 R2=−20.831 S2 = 133.4 W = 206.0 Sf = 239.8 数値実施例2 d1= 33.459 SK =1352.2 d2= 0.800 CP = 110.2 d3= 2.000 S1 = −45.2 R1=178.475 HH' = 7.7 R2=−30.430 S2 = 204.7 W = 310.0 Sf = 251.1 数値実施例3 d1= 14.388 SK = 287.7 d2= 0.300 CP = 38.5 d3= 2.000 S1 = −7.4 R1=182.212 HH' = 3.9 R2=−12.404 S2 = 131.2 W = 206.0 Sf = 304.8Numerical Example 1 d1 = 24.727 SK = 421.5 d2 = 0.500 CP = 75.1 d3 = 2.000 S1 = −35.7 R1 = 182.212 HH ′ = 4.8 R2 = -2.831 S2 = 133.4 W = 206.0 Sf = 239.8 Numerical Example 2 d1 = 33.459 SK = 1352.2 d2 = 0.800 CP = 110.2 d3 = 2.000 S1 = -45.2 R1 = 178.475 HH '= 7.7 R2 =-30.430 S2 = 204.7 W = 310.0 Sf = 251.1 Numerical Example 3 d1 = 14.388 SK = 287. 7 d2 = 0.300 CP = 38.5 d3 = 2.000 S1 = -7.4 R1 = 182.212 HH '= 3.9 R2 = -12.404 S2 = 131.2 W = 06.0 Sf = 304.8
【0044】[0044]
【表1】 [Table 1]
【0045】[0045]
【発明の効果】第1の発明によれば前述の如く球面より
成る両凸単レンズを有する光ビーム射出レンズ系を適切
に構成することにより、収差の少ない簡易な構成の光ビ
ーム射出レンズ系を達成することができる。According to the first aspect of the present invention, by appropriately configuring the light beam exit lens system having the biconvex single lens having a spherical surface as described above, a light beam exit lens system having a simple configuration with less aberration is provided. Can be achieved.
【0046】第2の発明によれば前述の如く上記の光ビ
ーム射出レンズ系を光走査装置に用いることにより、小
型で高精細な光走査を行なうことができる光走査装置を
達成することができる。According to the second aspect of the present invention, as described above, by using the above-mentioned light beam emission lens system for an optical scanning device, it is possible to achieve an optical scanning device capable of performing a small and high-definition optical scanning. .
【図1】 本発明の光ビーム射出レンズ系を光走査装置
に用いたときの実施形態1の要部概略図FIG. 1 is a schematic diagram of a main part of a first embodiment when a light beam exit lens system according to the present invention is used in an optical scanning device.
【図2】 図1の光ビーム射出レンズ系の周辺を示した
要部概略図FIG. 2 is a schematic diagram of a main part showing a periphery of a light beam exit lens system of FIG. 1;
【図3】 本発明の実施形態1を主走査断面の光軸方向
に展開したときの要部概略図FIG. 3 is a schematic diagram of a main part when the first embodiment of the present invention is developed in the optical axis direction of a main scanning section.
【図4】 本発明の数値実施例1の球面収差図FIG. 4 is a spherical aberration diagram according to Numerical Example 1 of the present invention.
【図5】 本発明の数値実施例2の球面収差図FIG. 5 is a spherical aberration diagram according to Numerical Example 2 of the present invention.
【図6】 本発明の数値実施例3の球面収差図FIG. 6 is a spherical aberration diagram according to Numerical Example 3 of the present invention.
1 光源手段 2 カバーガラス 3 アパーチャー 4 両凸単レンズ 4a 入射面 4b 射出面 5 シリンドリカルレンズ 6 偏向手段(光偏向器) 6a 偏向面 7 走査レンズ 8 被走査面 101 光ビーム射出レンズ系 201 走査レンズ系 Reference Signs List 1 light source means 2 cover glass 3 aperture 4 biconvex single lens 4a entrance surface 4b emission surface 5 cylindrical lens 6 deflection means (optical deflector) 6a deflection surface 7 scanning lens 8 scanned surface 101 light beam emission lens system 201 scanning lens system
Claims (4)
単レンズによって他の状態に変換する光ビーム射出レン
ズ系において、 該両凸単レンズの焦点距離をf、該両凸単レンズの入射
側と射出側のレンズ面の曲率半径を各々R1,R2、該
両凸単レンズの射出側の光軸上のレンズ面から射出光束
の結像点までの距離をSK、該光ビーム射出レンズ系の
開口数をNAとしたとき、 −0.09<(R1+R2)/(R1×R2)<−0.
01 −0.11<f/SK<0.11 NA<0.13 なる条件を満足することを特徴とする光ビーム射出レン
ズ系。1. A light beam emission lens system for converting the state of a light beam emitted from a light source means into another state by a biconvex single lens, wherein the focal length of the biconvex single lens is f, and the incidence of the biconvex single lens is The radii of curvature of the lens surfaces on the exit side and the exit side are R1 and R2 respectively, the distance from the lens surface on the optical axis on the exit side of the biconvex single lens to the imaging point of the exit light beam is SK, and the light beam exit lens system Where NA is the numerical aperture of −0.09 <(R1 + R2) / (R1 × R2) <− 0.
A light beam exit lens system satisfying the following condition: 01-0.11 <f / SK <0.11 NA <0.13
したとき、 1.59< n <1.85 なる条件を満足することを特徴とする請求項1の光ビー
ム射出レンズ系。2. The light beam exit lens system according to claim 1, wherein a condition of 1.59 <n <1.85 is satisfied, where n is a refractive index of a material of the biconvex single lens.
ーム射出レンズ系を用い、該光ビーム射出レンズ系より
射出された光束をシリンドリカルレンズを介して偏向手
段の偏向面において主走査方向に長手の線状に結像さ
せ、該偏向手段で偏向反射された光束を走査レンズ系を
介して被走査面上にスポット状に結像させて、該被走査
面上を光走査する際、 該光ビーム射出レンズ系の射出側の光軸上のレンズ面と
該偏向手段の偏向面との間隔をCP、該偏向手段の偏向
面と該被走査面との間隔をPDとしたとき、 −0.05<(CP+PD)/SK<0.90 なる条件を満足することを特徴とする光走査装置。3. A light beam emitted from the light beam emission lens system according to claim 1, wherein a light beam emitted from the light beam emission lens system is main-scanned on a deflection surface of a deflection unit via a cylindrical lens. When a light beam deflected and reflected by the deflecting means is formed as a spot on a surface to be scanned through a scanning lens system to optically scan the surface to be scanned. When the distance between the lens surface on the optical axis on the exit side of the light beam exit lens system and the deflecting surface of the deflecting means is CP, and the distance between the deflecting surface of the deflecting means and the surface to be scanned is PD, An optical scanning device which satisfies a condition of -0.05 <(CP + PD) / SK <0.90.
単レンズによって他の状態に変換する光ビーム射出レン
ズ系より射出された光束をシリンドリカルレンズを介し
て偏向手段の偏向面において主走査方向に長手の線状に
結像させ、該偏向手段で偏向反射された光束を走査レン
ズ系を介して被走査面上にスポット状に結像させて、該
被走査面上を光走査する光走査装置において、 該両凸単レンズの焦点距離をf、該両凸単レンズの入射
側と射出側のレンズ面の曲率半径を各々R1,R2、該
両凸単レンズの射出側の光軸上のレンズ面から射出光束
の結像点までの距離をSK、該光ビーム射出レンズ系の
開口数をNA、該両凸単レンズの材質の屈折率をn、該
両凸単レンズの射出側の光軸上のレンズ面と該偏向手段
の偏向面との間隔をCP、該偏向手段の偏向面と該被走
査面との間隔をPDとしたとき、 −0.09<(R1+R2)/(R1×R2)<−0.
01 −0.11<f/SK<0.11 NA<0.13 1.59< n <1.85 −0.05<(CP+PD)/SK<0.90 なる条件を満足することを特徴とする光走査装置。4. A light beam emitted from a light beam emitting lens system for converting a state of a light beam emitted from a light source means to another state by a biconvex single lens through a cylindrical lens on a deflection surface of a deflection means in a main scanning direction. Optical scanning for forming a linear image on the surface to be scanned, forming a light beam deflected and reflected by the deflecting means into a spot on the surface to be scanned through a scanning lens system, and optically scanning the surface to be scanned. In the apparatus, the focal length of the biconvex single lens is f, the radii of curvature of the entrance and exit lens surfaces of the biconvex single lens are R1 and R2, respectively, on the optical axis of the exit side of the biconvex single lens. The distance from the lens surface to the imaging point of the emitted light beam is SK, the numerical aperture of the light beam exit lens system is NA, the refractive index of the material of the biconvex single lens is n, and the light on the exit side of the biconvex single lens is The distance between the lens surface on the axis and the deflection surface of the deflection means is CP, When the distance between the deflecting surface and the scanned surface of the deflecting means and the PD, -0.09 <(R1 + R2) / (R1 × R2) <- 0.
01−0.11 <f / SK <0.11 NA <0.13 1.59 <n <1.85−0.05 <(CP + PD) / SK <0.90 Optical scanning device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36896497A JPH11194288A (en) | 1997-12-27 | 1997-12-27 | Light beam exit lens system and optical scanning device using the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP36896497A JPH11194288A (en) | 1997-12-27 | 1997-12-27 | Light beam exit lens system and optical scanning device using the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11194288A true JPH11194288A (en) | 1999-07-21 |
Family
ID=18493214
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP36896497A Pending JPH11194288A (en) | 1997-12-27 | 1997-12-27 | Light beam exit lens system and optical scanning device using the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11194288A (en) |
-
1997
- 1997-12-27 JP JP36896497A patent/JPH11194288A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3466863B2 (en) | Scanning optical device and image recording device using the same | |
| JP3397624B2 (en) | Scanning optical device and laser beam printer having the same | |
| EP0827004A2 (en) | Corrected scanning optical apparatus | |
| US7061658B2 (en) | Scanning image formation optical system, optical scanner using the optical system, and image forming apparatus using the optical scanner | |
| JPH05346549A (en) | Scanning optics | |
| JP2001281604A (en) | Collimator lens and optical scanner using the same | |
| JP2000002847A (en) | Scanning optical device and multi-beam scanning optical device | |
| US8314824B2 (en) | Optical scanning apparatus and image forming apparatus using the same | |
| JP2000267030A (en) | Optical scanning device | |
| JP2000081584A (en) | Scanning optical device | |
| JP2956169B2 (en) | Scanning optical device | |
| JP5269000B2 (en) | Multi-beam scanning optical apparatus and laser beam printer having the same | |
| JPH07174998A (en) | Scanning lens and optical scanner | |
| JP3595374B2 (en) | Scanning optical system and method of correcting spherical aberration in scanning optical system | |
| JP3969857B2 (en) | Imaging element array | |
| JPH11194288A (en) | Light beam exit lens system and optical scanning device using the same | |
| JPH10260371A (en) | Scanning optical device | |
| JP2000002848A (en) | Scanning optical device | |
| JP3420439B2 (en) | Optical scanning optical system and laser beam printer including the same | |
| JP3320239B2 (en) | Scanning optical device | |
| JP2004117680A (en) | Optical scanning device | |
| JPH063609A (en) | Scanning optics | |
| JP3411661B2 (en) | Scanning optical system | |
| JPH04107517A (en) | Light source unit and lens used for same | |
| JP2001059946A (en) | Optical scanning optical device and image forming apparatus using the same |