[go: up one dir, main page]

JPH11204473A - Polishing method and polishing apparatus - Google Patents

Polishing method and polishing apparatus

Info

Publication number
JPH11204473A
JPH11204473A JP714898A JP714898A JPH11204473A JP H11204473 A JPH11204473 A JP H11204473A JP 714898 A JP714898 A JP 714898A JP 714898 A JP714898 A JP 714898A JP H11204473 A JPH11204473 A JP H11204473A
Authority
JP
Japan
Prior art keywords
film
polishing
thickness
mark
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP714898A
Other languages
Japanese (ja)
Other versions
JPH11204473A5 (en
Inventor
創一 ▲片▼桐
Souichi Katagiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP714898A priority Critical patent/JPH11204473A/en
Publication of JPH11204473A publication Critical patent/JPH11204473A/en
Publication of JPH11204473A5 publication Critical patent/JPH11204473A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abrasive processing method, which can control position of an end point of an abrasive processing of an insulating film with high accuracy regardless of the positions of wiring layers, and an abrasive processing device of a structure, wherein the thickness of the residual film of the insulating film can be detected by the high resolving-power of the device. SOLUTION: A mark 9 for residual film thickness detection is provided on an insulating film 4 under an insulating film 10 on which an abrasive processing is performed, the distance between the surface of the film 4 and the surface of the film 10 and the distance between the surface of the film 4 and the surface of the mark 9 are respectively measured and the thickness of the residual film of the film 10 is found from a difference between both measured values of the distances. As a result, the thickness of the residual film of the film 10 can be polished while being monitored accurately and the end point of the polishing can be controlled with high accuracy, regardless of the position in laminated layer of the film 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は研磨加工方法および
研磨加工装置に関し、詳しくは、半導体集積回路の製造
工程の一つである配線工程における半導体ウェハ表面の
平坦化加工に特に好適な、研磨加工方法およびそれに用
いる研磨加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing method and a polishing apparatus, and more particularly, to a polishing method particularly suitable for flattening the surface of a semiconductor wafer in a wiring step which is one of manufacturing steps of a semiconductor integrated circuit. The present invention relates to a method and a polishing apparatus used for the method.

【0002】[0002]

【従来の技術】半導体装置の製造は多くの工程からなる
が、配線工程の一部として、半導体ウェハの表面上に形
成された薄膜の表面の凹凸を研磨によって平坦化する工
程が含まれる。この平坦化工程を図2を用いて説明す
る。
2. Description of the Related Art The manufacture of a semiconductor device includes many steps. As a part of a wiring step, a step of polishing and flattening irregularities on the surface of a thin film formed on the surface of a semiconductor wafer is included. This flattening step will be described with reference to FIG.

【0003】図2(a)は1層目の配線が形成されたと
きのウェハの断面を示している。トランジスタ(図示せ
ず)が形成されている半導体基板1の表面上には第1の
絶縁膜2が形成されており、その上にアルミニウム等か
らなる第1の配線層3が設けられている。配線層3をト
ランジスタに接続するため、第1の絶縁膜2に形成され
たコンタクトホールを介して配線層3が半導体基板1に
接しているので、コンタクトホールの部分では配線層3
の上面に凹みが生ずる。
FIG. 2A shows a cross section of a wafer when a first-layer wiring is formed. A first insulating film 2 is formed on a surface of a semiconductor substrate 1 on which a transistor (not shown) is formed, and a first wiring layer 3 made of aluminum or the like is provided thereon. In order to connect the wiring layer 3 to the transistor, the wiring layer 3 is in contact with the semiconductor substrate 1 via the contact hole formed in the first insulating film 2.
A dent is formed on the upper surface.

【0004】2層目の配線工程では、図2(b)に示し
たように、上記第1の配線層3の上に第2の絶縁膜4を
形成した後、その上に第2の配線層を形成するが、第2
の絶縁膜4を形成したままでは表面が平坦でなく凹凸が
生じている。そのため、この後で行われるリソグラフィ
工程において、上記凹凸を残したままで露光を行うと、
焦点ずれによる転写不良を生じてしまい、各種パターン
を高い精度で形成することは困難である。
In a second wiring step, as shown in FIG. 2B, after a second insulating film 4 is formed on the first wiring layer 3, a second wiring is formed thereon. Form a layer, but the second
When the insulating film 4 is formed, the surface is not flat but uneven. Therefore, in the subsequent lithography process, if the exposure is performed while leaving the above irregularities,
Improper transfer due to defocus occurs, and it is difficult to form various patterns with high accuracy.

【0005】このような障害を防止するため、レベル5
まで研磨加工を行なって、図2(c)に示したように、
絶縁膜4の表面を平坦化した後、図2(d)に示したよ
うに上記第2の絶縁膜4にコンタクトホール6を形成
し、さらに、図2(e)に示したように第2の配線層7
を形成する。
[0005] In order to prevent such obstacles, level 5
Polishing is performed until, as shown in FIG.
After the surface of the insulating film 4 is flattened, a contact hole 6 is formed in the second insulating film 4 as shown in FIG. 2D, and further a second hole is formed as shown in FIG. Wiring layer 7
To form

【0006】次に、図2(f)に示したように、第3の
絶縁膜10を形成した後、レベル8まで研磨加工して表
面を平坦化する。これらの工程を繰り返すことによっ
て、さらに多層の配線を形成することができる。
Next, as shown in FIG. 2F, after the third insulating film 10 is formed, the surface is flattened by polishing to level 8. By repeating these steps, a multilayer wiring can be formed.

【0007】表面の平坦化に用いられた上記研磨加工
を、図3を用いて説明する。研磨パッド11を定盤12
の上に貼りつけて回転させておく。一方、研磨加工すべ
き半導体基板1は、弾性を有する押さえパッド13を介
してウェハホルダ14に固定される。このウェハホルダ
14を回転しながら研磨パッド11上に荷重し、さらに
研磨パッド11の上に研磨液15を供給することによっ
て、半導体基板1の表面上の絶縁膜(図示せず)の凸部
が研磨除去されて平坦化される。この場合、研磨液15
として水酸化カリウム水溶液に懸濁させたコロイダルシ
リカ等を用いることにより、化学的なエッチング作用が
加わり、機械研磨のみを行った場合の数倍以上の加工速
度が得られる。この方法は一般に化学機械研磨法(CM
P法)と呼ばれる。
The above-mentioned polishing used for flattening the surface will be described with reference to FIG. Polishing pad 11 to platen 12
And rotate it. On the other hand, the semiconductor substrate 1 to be polished is fixed to a wafer holder 14 via an elastic holding pad 13. By applying a load on the polishing pad 11 while rotating the wafer holder 14 and further supplying a polishing liquid 15 on the polishing pad 11, the convex portion of the insulating film (not shown) on the surface of the semiconductor substrate 1 is polished. It is removed and planarized. In this case, the polishing liquid 15
By using colloidal silica or the like suspended in an aqueous potassium hydroxide solution, a chemical etching action is added, and a processing speed several times higher than that obtained by performing only mechanical polishing can be obtained. This method is generally a chemical mechanical polishing method (CM
P method).

【0008】[0008]

【発明が解決しようとする課題】しかし、上記従来の研
磨加工においては、研磨加工の工程を高い精度で終了さ
せるのに必要な良好な研磨終点検出法がないため、研磨
を最適な位置で正確に停止できないという問題があっ
た。例えば、図2に示したレベル5またはレベル8まで
研磨して表面を平坦化する場合、レベル5またはレベル
8まで研磨が進行したことを検出し、その時点で直ちに
研磨作業を終了させる必要がある。しかし、図3に示し
たように、半導体基板1は研摩パッド11と押さえパッ
ド13の間にはさまれて研摩が行なわれる。それぞれ弾
性を有する研摩パッド11と押さえパッド13の間の距
離の変化から、絶縁膜4の厚さの減少を0.1μmレベ
ルで知ることは極めて困難である。
However, in the conventional polishing described above, there is no good polishing end point detection method necessary for terminating the polishing process with high accuracy, so that the polishing can be accurately performed at an optimum position. There was a problem that can not be stopped. For example, when the surface is flattened by polishing to level 5 or level 8 shown in FIG. 2, it is necessary to detect that polishing has progressed to level 5 or level 8 and immediately end the polishing operation at that point. . However, as shown in FIG. 3, the semiconductor substrate 1 is polished by being sandwiched between the polishing pad 11 and the holding pad 13. From the change in the distance between the polishing pad 11 and the holding pad 13 each having elasticity, it is extremely difficult to know the decrease in the thickness of the insulating film 4 at the level of 0.1 μm.

【0009】従来の研磨終点検出方法としては、あらか
じめ研磨速度を調べておき、経過時間から残膜の厚さを
推測する方法や、研磨が進行するにともなって被加工面
の凹凸が少なくなると、研磨パッドと被加工面との摩擦
力が変化する現象に注目し、研磨定盤12の回転トルク
の変化を測定する方法などが用いられた。しかし、これ
らの方法は、いずれも研磨加工の条件が変化すると検出
精度も変動してしまうという欠点があり、研磨の終点を
高い精度で安定して知ることは困難であった。
Conventional methods for detecting the end point of polishing include a method in which the polishing rate is checked in advance and the thickness of the remaining film is estimated from the elapsed time, and a method in which the unevenness of the surface to be processed is reduced as the polishing progresses. Focusing on a phenomenon in which the frictional force between the polishing pad and the surface to be processed changes, a method of measuring a change in the rotational torque of the polishing platen 12 or the like was used. However, all of these methods have a drawback that the detection accuracy changes when the polishing processing conditions change, and it has been difficult to stably know the polishing end point with high accuracy.

【0010】この欠点を解決するため、流体マイクロと
光学式焦点位置検出器を同軸に取り付けて、残膜の厚さ
そのものを検知する方法が特開平7−285050号に
提案されている。しかし、図2(f)に示したように、
2層目以降の上層配線の絶縁膜10を研摩加工する際の
残膜の厚さ(第2の反射面から求めた絶縁膜の厚さ)の
検知が、下層の絶縁膜4の厚さ(第1の反射面から求め
た絶縁膜の厚さ)と区別ができず、研磨の終点を正確に
検知するのは困難ある。また、研磨加工中に残膜の厚さ
を検知しているため、研磨定盤と半導体基板の相対運動
に起因して生じる動圧の変動によって、流体マイクロの
検出圧力値が変動し、0.1μmの分解能で残膜の厚さ
を正確に検知することはできなかった。
In order to solve this drawback, Japanese Patent Application Laid-Open No. 7-285050 proposes a method of detecting the thickness of a residual film by attaching a fluid micro and an optical focus position detector coaxially. However, as shown in FIG.
Detection of the thickness of the remaining film (thickness of the insulating film obtained from the second reflection surface) when polishing the insulating film 10 of the upper wiring of the second layer and thereafter is determined by the thickness of the lower insulating film 4 ( (Thickness of the insulating film obtained from the first reflecting surface), and it is difficult to accurately detect the polishing end point. In addition, since the thickness of the remaining film is detected during the polishing process, the detected pressure value of the fluid micro fluctuates due to the fluctuation of the dynamic pressure caused by the relative movement between the polishing platen and the semiconductor substrate. It was not possible to accurately detect the thickness of the remaining film with a resolution of 1 μm.

【0011】このように、従来は研磨の進行を高い精度
でモニターする方法がなく、研磨の進行を高い精度で停
止させることができなかった。
As described above, conventionally, there has been no method for monitoring the progress of polishing with high accuracy, and it has not been possible to stop the progress of polishing with high accuracy.

【0012】本発明の目的は、上記従来技術の有する問
題を解決し、所望残膜の厚さを、上層の絶縁膜であって
も正確にモニタしながら加工することができる研磨加工
方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and to provide a polishing method capable of processing while accurately monitoring the thickness of a desired remaining film even in an upper insulating film. It is to be.

【0013】本発明の他の目的は、0.1μmという高
い分解能で、残膜の厚さを正確に検知して研磨加工を制
御することができる研磨加工装置を提供することであ
る。
Another object of the present invention is to provide a polishing apparatus capable of accurately detecting the thickness of the remaining film and controlling the polishing with a high resolution of 0.1 μm.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
の本発明の研磨加工方法は、基板の表面上に形成された
単層膜若しくは積層して形成された複数の膜の最上層の
膜の表面を、研磨パッドを用いて研磨加工する方法にお
いて、上記単層膜と上記基板の間若しくは上記最上層の
膜と当該最上層の膜の一層下の膜の間の所望部分に残膜
厚測定用マークを設け、当該残膜厚測定用マークの表面
および上記単層膜若しくは上記最上層の膜の表面からの
距離を測定して上記残膜厚測定用マーク上における上記
単層膜もしくは最上層の膜の膜厚を検知し、当該膜厚に
よって上記研磨加工の終点を制御することを特徴とす
る。
In order to achieve the above object, a polishing method according to the present invention is directed to a single-layer film formed on the surface of a substrate or an uppermost film of a plurality of films formed by lamination. A polishing process using a polishing pad, wherein a residual film thickness is formed at a desired portion between the single-layer film and the substrate or between the uppermost film and a film immediately below the uppermost film. A measurement mark is provided, and the distance from the surface of the remaining film thickness measurement mark and the surface of the single-layer film or the uppermost film is measured, and the single-layer film or the uppermost film on the remaining film thickness measurement mark is measured. The film thickness of the upper layer is detected, and the end point of the polishing process is controlled by the film thickness.

【0015】すなわち、例えば上記図2(f)に示した
平坦化レベル8における平坦化を行う場合、図6(e)
に示したように、絶縁膜4の上に配線層7とともに残膜
厚測定用マーク9を形成し、次に、図6(f)に示した
ように絶縁膜10を全面に形成した後、残膜厚測定用マ
ーク9および最上層の絶縁膜10の表面からの距離をそ
れぞれ測定して、得られた両測定値の差から残膜厚測定
用マーク9上における残った絶縁膜10の膜厚が求めら
れ、さらに研磨加工された量(厚さ)が求められる。し
たがって、このようにして求めた上記絶縁膜10の残っ
た膜厚や研磨加工された量(厚さ)を用いて、研磨加工
の終点を高い精度で制御することができる。
That is, for example, when the flattening is performed at the flattening level 8 shown in FIG.
As shown in FIG. 6, a mark 9 for measuring the remaining film thickness is formed together with the wiring layer 7 on the insulating film 4, and then, as shown in FIG. The distance from the surface of the remaining film thickness measuring mark 9 and the uppermost insulating film 10 was measured, and the film thickness of the remaining insulating film 10 on the remaining film thickness measuring mark 9 was determined from the difference between the two measured values. The thickness is determined, and the polished amount (thickness) is determined. Therefore, the end point of the polishing process can be controlled with high accuracy by using the remaining film thickness of the insulating film 10 and the polished amount (thickness) thus obtained.

【0016】上記残膜厚測定用マークは例えばアルミニ
ウム、銅およびタングステンからなる群から選択された
材料からなる膜を用いることができる。
For the mark for measuring the remaining film thickness, for example, a film made of a material selected from the group consisting of aluminum, copper and tungsten can be used.

【0017】上記最上層の一層下の膜は絶縁膜であり、
この絶縁膜の上には所定の形状を有する配線層が形成さ
れる場合が多い。したがって、この場合はこの絶縁膜と
上記最上層の膜の間には、上記残膜厚測定用マークと上
記配線層の両者がそれぞれ形成される。上記残膜厚測定
用マークと上記配線層の両者が同一の絶縁膜上に形成さ
れる場合は、上記残膜厚測定用マークと配線層を、同一
の膜から一回のホトエッチング工程によって同時に形成
すれば、工程は簡略化されて好ましい。
The film under the uppermost layer is an insulating film,
In many cases, a wiring layer having a predetermined shape is formed on the insulating film. Therefore, in this case, both the mark for measuring the remaining film thickness and the wiring layer are formed between the insulating film and the uppermost film. When both the residual film thickness measurement mark and the wiring layer are formed on the same insulating film, the residual film thickness measurement mark and the wiring layer are simultaneously formed from the same film by one photoetching step. If it is formed, the process is simplified and preferable.

【0018】上記研磨加工は研磨パッドと研磨すべき膜
の間に研磨液を供給しながら行うことができる。
The above polishing can be performed while supplying a polishing liquid between the polishing pad and the film to be polished.

【0019】また、本発明の研磨加工装置は、研磨加工
すべき膜が表面に形成された基板を保持する基板ホルダ
と、研磨パッドが保持された研磨定盤と、上記膜と上記
研磨パッドを所定の圧力で接触させて相対運動させるこ
とによって上記膜を研磨する手段と、当該研磨によって
減少した上記膜の厚さを検知する終点位置検出器を具備
し、当該終点位置検出器は、上記膜の表面の高さと上記
膜の下面に接して形成された残膜厚測定用マークの表面
の高さの差から上記膜の厚さを検知するものであって、
上記研磨定盤の回転中心位置若しくはその近傍に配置さ
れていることを特徴とする。
Further, the polishing apparatus of the present invention comprises a substrate holder for holding a substrate having a film to be polished formed on a surface thereof, a polishing platen for holding a polishing pad, the above-mentioned film and the above-mentioned polishing pad. Means for polishing the film by contacting and moving relative to each other at a predetermined pressure, and an end point position detector for detecting the thickness of the film reduced by the polishing, wherein the end point position detector comprises the film Detecting the thickness of the film from the difference between the height of the surface of the surface and the height of the surface of the remaining film thickness measurement mark formed in contact with the lower surface of the film,
It is characterized in that it is arranged at or near the center of rotation of the polishing platen.

【0020】すなわち、本発明の研磨加工装置は、研磨
によって減少した残膜の厚さを検知するための終点位置
検出器を具備しており、この終点位置検出器は、研磨す
べき膜の表面の高さとこの膜の下面に接して形成された
残膜厚測定用マークの表面の高さの差から上記膜の厚さ
を検知するものである。この終点位置検出器は研磨パッ
ドがその上に配置された研磨定磐の回転中心位置または
その近傍に配置されているので、研磨定盤の回転による
影響をほとんど受けずに高い精度で残膜の厚さの測定を
行うことができる。
That is, the polishing apparatus of the present invention has an end point position detector for detecting the thickness of the residual film reduced by polishing, and the end point position detector is provided with the surface of the film to be polished. The thickness of the film is detected from the difference between the height of the film and the height of the surface of the mark for measuring the remaining film thickness formed in contact with the lower surface of the film. Since the end position detector is arranged at or near the rotation center position of the polishing platen on which the polishing pad is disposed, the end film position detector is capable of removing the residual film with high accuracy without being substantially affected by the rotation of the polishing platen. A thickness measurement can be made.

【0021】上記終点位置検出器としては、流体マイク
ロメータを用いることができる。また、上記終点位置検
出器として、結像した光スポットを上記残膜厚測定用マ
ークの表面に照射し、その反射光から上記上記残膜厚測
定用マークの高さを求める第1の距離検出器と、上記膜
の表面の高さを求める第2の検出器を組合わして用いる
ことができる。
As the end point position detector, a fluid micrometer can be used. Further, as the end point position detector, a first distance detection for irradiating an imaged light spot on the surface of the mark for measuring the remaining film thickness and obtaining the height of the mark for measuring the remaining film thickness from the reflected light. The detector can be used in combination with a second detector for determining the height of the surface of the membrane.

【0022】上記研磨定盤に上記終点位置検出器を配置
するための終点位置検出器用孔を設け、この終点位置検
出器用孔に、上記基板上に形成された絶縁膜とほぼ等し
い光学的屈折率を有する液体を満たすようにすれば、高
い精度での残膜の厚さ測定に好ましい。
An end point position detector hole for disposing the end point position detector is provided on the polishing platen, and the optical refractive index substantially equal to the insulating film formed on the substrate is provided in the end point position detector hole. It is preferable to fill the liquid having the following formula to measure the thickness of the remaining film with high accuracy.

【0023】上記終点位置検出器としては、光波式干渉
膜厚測定器を用いることも可能である。
As the end point position detector, a light wave type interference film thickness measuring device can be used.

【0024】[0024]

【発明の実施の形態】基板ホルダ上に固定された表面を
平坦化すべき半導体基板を、研磨定盤上の研磨パッドに
押し付けて研磨加工を行う際に、被加工面である絶縁膜
の残膜厚を検知するため、例えば光学的距離検知器S1
および第2の距離検知器S2を用いることができる。光
学的距離検知器S1は、いわゆる焦点位置検知器であ
り、第2の位置検知器S2は、絶縁膜の被加工面の位置
を検知する。検知器S1の照射ビームは最上層の絶縁膜
の底面まで到達し、残膜厚測定用マークの表面で反射さ
れる。
BEST MODE FOR CARRYING OUT THE INVENTION When a semiconductor substrate whose surface is to be flattened and fixed on a substrate holder is pressed against a polishing pad on a polishing platen to carry out polishing, the remaining film of the insulating film which is the surface to be processed. To detect the thickness, for example, an optical distance detector S1
And the second distance detector S2 can be used. The optical distance detector S1 is a so-called focus position detector, and the second position detector S2 detects the position of the processing surface of the insulating film. The irradiation beam of the detector S1 reaches the bottom surface of the uppermost insulating film and is reflected by the surface of the mark for measuring the remaining film thickness.

【0025】この状態で、上記照射ビームと上記最上層
の絶縁膜の間に相対的運動を行うと、光学的位置検知器
S1の出力から残膜厚測定用マークの表面の位置がわか
り、第2の距離検知器S2によって上記最上層の絶縁膜
の表面の位置が検出されるので、検知器S1と第2の検
知器S2からの信号の差から上記最上層の絶縁膜の残膜
の厚さが求められる。
In this state, when a relative movement is made between the irradiation beam and the uppermost insulating film, the position of the surface of the mark for measuring the remaining film thickness can be determined from the output of the optical position detector S1, The distance of the surface of the uppermost insulating film is detected by the second distance detector S2, and the thickness of the remaining uppermost insulating film is determined from the difference between the signals from the detector S1 and the second detector S2. Is required.

【0026】本発明において、上記距離検出器S1、S
2の代わりに、上記のように図7に示した流体マイクロ
メータや光波式光干渉膜厚測定器を検知器として使用す
ることができる。
In the present invention, the distance detectors S1, S
Instead of 2, the fluid micrometer or the light wave type optical interference film thickness measuring device shown in FIG. 7 as described above can be used as the detector.

【0027】流体マイクロメータはリアルタイムの測定
が可能であるという特長があるが、研磨定盤12の回転
軸から離れた位置に配置すると、研磨定盤12が回転し
て半導体基板1との間に相対的な速度差が生じ、流体マ
イクロメータの近傍に動圧が生じて距離の測定値に誤差
が生じてしまう。
The fluid micrometer has the feature of being capable of real-time measurement. A relative speed difference occurs, causing a dynamic pressure in the vicinity of the fluid micrometer, causing an error in the distance measurement.

【0028】上記光波式光干渉膜厚測定器は、被測定膜
の屈折率と照射光の波長によって反射光の強度が変化す
るという現象を利用した測定器である。この測定器は1
台で所要の測定を行うことができる、およびオングスト
ロームオーダーという高い分解能が得られるという特長
があるが、測定に長時間を要しリアルタイムの測定がで
きない、および上記流体マイクロメータと同様に、研磨
液の密度が半導体基板と検知器の間で動圧によって乱さ
れると、測定値に誤差が生じるという問題点がある。
The light wave type optical interference film thickness measuring device is a measuring device utilizing the phenomenon that the intensity of reflected light changes depending on the refractive index of the film to be measured and the wavelength of irradiation light. This measuring instrument is 1
It has the features that required measurements can be performed on a table and high resolution on the order of Angstroms can be obtained, but the measurement takes a long time and real-time measurement cannot be performed. If the density is disturbed by the dynamic pressure between the semiconductor substrate and the detector, an error occurs in the measured value.

【0029】しかし、上記流体マイクロメータおよび光
波式光干渉膜厚測定器を、図1に示したように、研磨定
盤12の回転軸の位置に配置すれば、このような研磨定
盤12の回転による周速度はほとんどゼロになるので、
上記測定値の誤差は防止される。
However, if the fluid micrometer and the light wave type optical interference film thickness measuring device are arranged at the position of the rotation axis of the polishing table 12 as shown in FIG. Since the peripheral speed due to rotation is almost zero,
Errors in the measured values are prevented.

【0030】本発明は、研磨パッドを用いた通常の研磨
加工法のみではなく、化学的なエッチング作用を有する
研磨液を併用したCMP法や、研磨パッドの代わりに砥
粒を樹脂等で固定した砥石や砥粒の埋め込まれたパッド
を用いた研磨法に適用しても、極めて好ましい結果が得
られる。
According to the present invention, not only a normal polishing method using a polishing pad, but also a CMP method using a polishing liquid having a chemical etching action, or abrasive grains fixed with a resin or the like instead of the polishing pad. Even when applied to a polishing method using a pad in which a grindstone or abrasive grains are embedded, extremely favorable results are obtained.

【0031】[0031]

【実施例】〈実施例1〉図1に示したように、表面を平
坦化すべき半導体基板1を基板ホルダ14上に吸着用弾
性パッド13を介して固定し、研磨定盤12上に貼り付
けた研磨パッド11に押し付けて研磨加工を行った。
<Embodiment 1> As shown in FIG. 1, a semiconductor substrate 1 whose surface is to be flattened is fixed on a substrate holder 14 via an elastic pad 13 for suction, and attached on a polishing platen 12. Polishing was performed by pressing against the polishing pad 11.

【0032】被加工面である絶縁膜10の残膜厚を検知
するため、光学的距離検知器S1および第2の距離検知
器S2を設けた。光学的距離検知器S1は、いわゆる焦
点位置検知器であり、第2の位置検知器S2は、絶縁膜
10の被加工面の位置を検知する。研磨定盤12に形成
された終点検出器用穴16には、絶縁膜10の光学的屈
折率とほぼ同一の屈折率をもつ液体(本実施例では純
水)が満たしてあり、検知器S1の照射ビーム22が絶
縁膜10の底面まで到達し、残膜厚測定用マーク10の
表面で反射されるようにした。
An optical distance detector S1 and a second distance detector S2 are provided to detect the remaining film thickness of the insulating film 10, which is the surface to be processed. The optical distance detector S1 is a so-called focus position detector, and the second position detector S2 detects the position of the processed surface of the insulating film 10. The end point detector hole 16 formed in the polishing platen 12 is filled with a liquid (pure water in this embodiment) having a refractive index substantially the same as the optical refractive index of the insulating film 10. The irradiation beam 22 reaches the bottom surface of the insulating film 10 and is reflected on the surface of the mark 10 for measuring the remaining film thickness.

【0033】この状態で、上記照射ビーム22と絶縁膜
10との間に相対運動(本実施例では研摩定盤12およ
び基板ホルダ14を回転させた)を行い、光学的位置検
知器S1の出力から残膜厚測定用マーク10の表面の位
置を求めた。一方、第2の距離検知器S2によって絶縁
膜10の表面の位置を検出し、検知器S1と第2の検知
器S2からの信号の差から、絶縁膜10の残膜の厚さを
求めた。
In this state, relative movement (in this embodiment, the polishing platen 12 and the substrate holder 14 are rotated) is performed between the irradiation beam 22 and the insulating film 10, and the output of the optical position detector S1 is output. The position of the surface of the mark 10 for measuring the remaining film thickness was determined from the above. On the other hand, the position of the surface of the insulating film 10 was detected by the second distance detector S2, and the thickness of the remaining film of the insulating film 10 was determined from the difference between the signals from the detector S1 and the signal from the second detector S2. .

【0034】その結果、最上層である絶縁膜10の残膜
厚さを、0.1μmという実用上十分な精度で検知する
ことができ、研磨加工の終点の制御に極めて有用である
ことが確認された。
As a result, the remaining film thickness of the insulating film 10 as the uppermost layer can be detected with a practically sufficient accuracy of 0.1 μm, and it is confirmed that it is extremely useful for controlling the end point of the polishing process. Was done.

【0035】〈実施例2〉図3に示した方法によって研
磨加工を所定量だけ行った後、基板ホルダ14への加重
を減少させ、図4に示したように、基板ホルダー14を
矢印aだけ移動させて、終点検出器用孔16内に配置さ
れた距離検出器S1、S2の検出可能な位置へ半導体基
板1を移し、半導体基板1の上に形成された所定の膜の
残膜厚さを測定した。
<Embodiment 2> After a predetermined amount of polishing is performed by the method shown in FIG. 3, the load on the substrate holder 14 is reduced, and as shown in FIG. The semiconductor substrate 1 is moved to a position where the distance detectors S1 and S2 arranged in the end point detector hole 16 can be detected, and the remaining film thickness of the predetermined film formed on the semiconductor substrate 1 is reduced. It was measured.

【0036】このようにして測定された残膜の厚さから
残りの所要時間を計算し、その結果にもとづいて上記残
りの所要時間だけ再び研磨加工を行った。
The remaining required time was calculated from the thickness of the remaining film thus measured, and based on the result, polishing was performed again for the remaining required time.

【0037】本実施例によれば、研磨速度が中途で変動
しても、高い精度で平坦化加工を行うことができた。
According to this embodiment, even if the polishing rate fluctuates halfway, flattening processing could be performed with high accuracy.

【0038】〈実施例3〉残膜厚検出用マークのサイズ
および残膜厚検出用マークを形成すべき領域は、デバイ
スレイアウトの許す限界内で広い方が望ましいが、実際
には種々な制限があり、あまり広くするのは難しい。本
実施例では、図5に示したように、残膜厚検出用マーク
9を半導体基板1の外周部に形成した。その結果、半導
体基板1と終点位置検知器の相対的な位置決めを特に精
密に行なわなくても、残膜の厚さを正確に検知すること
が可能になった。ただし、残膜厚検出用マーク9の形成
位置はこれに限るものではなく、半導体基板1の面内に
残膜厚検出用マーク9を形成してもよい。そうすれば、
半導体基板1の面内における研磨むらが同時にモニタで
きるので、品質管理上望ましい。
<Embodiment 3> It is desirable that the size of the mark for detecting the remaining film thickness and the area where the mark for detecting the remaining film thickness be formed be as large as possible within the limits allowed by the device layout. Yes, it is difficult to make it too wide. In this embodiment, as shown in FIG. 5, the marks 9 for detecting the remaining film thickness are formed on the outer peripheral portion of the semiconductor substrate 1. As a result, it is possible to accurately detect the thickness of the remaining film without particularly precisely positioning the relative position between the semiconductor substrate 1 and the end position detector. However, the formation position of the remaining film thickness detection mark 9 is not limited to this, and the remaining film thickness detection mark 9 may be formed in the surface of the semiconductor substrate 1. that way,
This is desirable in quality control because polishing unevenness in the surface of the semiconductor substrate 1 can be monitored at the same time.

【0039】〈実施例4〉まず、図6(a)に示したよ
うに、半導体基板1の上に周知の方法を用いて厚さ50
0nmの酸化シリコン膜からなる第1層の絶縁膜2およ
び所定の形状を有する第1層の配線層3を形成した。
<Embodiment 4> First, as shown in FIG. 6A, a semiconductor substrate 1 having a thickness of 50
A first insulating film 2 made of a 0 nm silicon oxide film and a first wiring layer 3 having a predetermined shape were formed.

【0040】図6(b)に示したように、厚さ1500
nmの酸化シリコン膜からなる第2層の絶縁膜4を全面
に形成した後、レベル5まで研磨加工を行って図6
(c)に示したように表面を平坦化し、さらに周知のホ
トエッチングを用いて、図6(d)に示したように、コ
ンタクト孔6を形成した。
As shown in FIG. 6B, the thickness 1500
After forming a second-layer insulating film 4 made of a silicon oxide film having a thickness of 10 nm on the entire surface, polishing is performed to a level 5 to obtain a structure shown in FIG.
As shown in FIG. 6C, the surface was flattened, and a contact hole 6 was formed using well-known photo-etching as shown in FIG. 6D.

【0041】厚さ500nmのアルミニウム膜を全面に
形成した後、周知のホトエッチングを用いて所定の形状
にパターニングして、図6(e)に示したように、第2
層の配線層7と残膜厚測定用パターン9を同時に形成し
た。
After an aluminum film having a thickness of 500 nm is formed on the entire surface, the aluminum film is patterned into a predetermined shape by using a well-known photoetching, and as shown in FIG.
The wiring layer 7 and the pattern 9 for measuring the remaining film thickness were simultaneously formed.

【0042】図6(f)に示したように、厚さ1500
nmの酸化シリコン膜からなる第3層の絶縁膜10を全
面に形成した後、上記実施例1に示した方法を用いて絶
縁膜10の残膜厚を測定し、これを用いて研磨加工の終
点を制御して、レベル8まで研磨加工を行った。その結
果、レベル8において高い精度で研磨加工を終了させる
ことができた。
As shown in FIG. 6F, the thickness 1500
After forming a third insulating film 10 made of a silicon oxide film having a thickness of 10 nm on the entire surface, the remaining film thickness of the insulating film 10 is measured by using the method described in the first embodiment. Polishing was performed up to level 8 by controlling the end point. As a result, the polishing process could be completed with high accuracy at level 8.

【0043】また、従来の方法では、上記のように、下
層膜による影響のため上層膜の残膜の厚さを正確に測定
するのは困難であった。しかし、本実施例によれば、図
6(e)に示したように、上記残膜厚測定用マーク9が
研磨加工すべき絶縁膜10と下層の絶縁膜4の間に形成
されているため、下層の絶縁膜4からのノイズは残膜厚
測定用マーク9によってカットされ、上層の絶縁膜10
の膜厚を高い精度で測定することができる。したがっ
て、下層膜の影響を受けることなしに上層膜の形成と平
坦化を順次繰返して行うことができ、配線の層数が多い
多層配線の形成に特に有利である。
In the conventional method, as described above, it is difficult to accurately measure the thickness of the remaining upper layer film due to the influence of the lower layer film. However, according to the present embodiment, as shown in FIG. 6E, the mark 9 for measuring the remaining film thickness is formed between the insulating film 10 to be polished and the lower insulating film 4. The noise from the lower insulating film 4 is cut off by the remaining film thickness measuring mark 9 and the upper insulating film 10 is removed.
Can be measured with high accuracy. Therefore, the formation and planarization of the upper film can be sequentially repeated without being affected by the lower film, which is particularly advantageous for forming a multilayer wiring having a large number of wiring layers.

【0044】なお、図6(a)〜(d)に示した工程
は、上記図2(a)〜(d)に示した工程に対応する。
また、本実施例では、図6(b)に示した平坦化レベル
5の平坦化には残膜厚測定用マーク9を使用しなかった
が、図6(f)に示した平坦化レベル8の平坦化と同様
に、残膜厚測定用マーク9を絶縁膜2と絶縁膜4の間に
形成し、以下、上記と同様に処理してもよいことはいう
までもない。
The steps shown in FIGS. 6A to 6D correspond to the steps shown in FIGS. 2A to 2D.
In the present embodiment, the marks 9 for measuring the remaining film thickness were not used for the flattening at the flattening level 5 shown in FIG. 6B, but the flattening level 8 shown in FIG. Needless to say, a mark 9 for measuring the remaining film thickness may be formed between the insulating film 2 and the insulating film 4 in the same manner as in the case of flattening.

【0045】〈実施例5〉本発明で用いられる検知器の
一例を図7に示した。本実施例は、光学的距離検知器S
1と第2の距離検知器S2を一体化して構成した例であ
る。光学的距離検知器S1として用いた光ディスクのピ
ックアップは、検出分解能が0.01μm程度と高く、
極めて好適である。また、第2の距離検知器S2として
は流体マイクロメータを用いた。
Embodiment 5 FIG. 7 shows an example of a detector used in the present invention. In this embodiment, the optical distance detector S
This is an example in which the first and second distance detectors S2 are integrated. The optical disc pickup used as the optical distance detector S1 has a high detection resolution of about 0.01 μm,
Very suitable. A fluid micrometer was used as the second distance detector S2.

【0046】図7に示したように、ノズル31の先端開
口部を、半導体基板1上に形成された絶縁膜4に近接さ
せ、研磨液32を一定圧力P0でノズル31に供給し
た。一方、ノズル31内の背圧を圧力センサ33によっ
て検出した。図7に示した構造の検知器では、圧力セン
サ33の信号出力は、ノズル31の先端部と絶縁膜4の
研磨面との間隙に依存するので、ノズル33とウェハの
絶縁膜4の研磨面の間の距離dを、高い精度で知ること
ができる。
As shown in FIG. 7, the opening of the tip of the nozzle 31 was brought close to the insulating film 4 formed on the semiconductor substrate 1, and the polishing liquid 32 was supplied to the nozzle 31 at a constant pressure P0. On the other hand, the back pressure in the nozzle 31 was detected by the pressure sensor 33. In the detector having the structure shown in FIG. 7, the signal output of the pressure sensor 33 depends on the gap between the tip of the nozzle 31 and the polished surface of the insulating film 4. Can be known with high accuracy.

【0047】図7に示したように、流体マイクロメータ
を距離検出器S2として用いた場合、配置した位置が不
適当であると、上記のように測定値に誤差が生じるが、
本実施例では図1の場合と同様に、研磨常盤12の回転
軸の位置に流体マイクロメータからなる距離検出器S2
を配置したので、このような誤差を生じることなしに高
い精度で測定を行うことができた。
As shown in FIG. 7, when the fluid micrometer is used as the distance detector S2, if the arrangement position is inappropriate, an error occurs in the measured value as described above.
In this embodiment, as in the case of FIG. 1, a distance detector S2 composed of a fluid micrometer is provided at the position of the rotation axis of the polishing plate 12.
The measurement was performed with high accuracy without causing such an error.

【0048】[0048]

【発明の効果】以上、詳細に説明したように、本発明に
よれば下層膜からのノイズや回転定盤の回転による影響
なしに、残膜の厚さをモニタしながら研磨加工の終点を
高い精度で制御することができ、平坦化加工の信頼性や
スループットが著しく向上するので、半導体装置の製造
における平坦化工程に特に有用である。
As described above in detail, according to the present invention, the end point of the polishing process can be increased while monitoring the thickness of the remaining film without being affected by noise from the lower film or rotation of the rotary platen. Since the precision can be controlled and the reliability and throughput of the flattening process are remarkably improved, it is particularly useful for the flattening step in the manufacture of a semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を説明するための図。FIG. 1 is a diagram for explaining a first embodiment of the present invention.

【図2】ウェハ表面の平坦化工程を説明するための工程
図。
FIG. 2 is a process chart for explaining a wafer surface flattening process.

【図3】化学機械研磨法を説明するための図。FIG. 3 is a diagram illustrating a chemical mechanical polishing method.

【図4】本発明の第2の実施例を説明するための図。FIG. 4 is a diagram for explaining a second embodiment of the present invention.

【図5】本発明の第3の実施例を説明するための図。FIG. 5 is a diagram for explaining a third embodiment of the present invention.

【図6】本発明の第4の実施例を説明するための工程
図。
FIG. 6 is a process chart for explaining a fourth embodiment of the present invention.

【図7】本発明の第5の実施例を説明するための図。FIG. 7 is a diagram for explaining a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…半導体基板、3…配線層、4…絶縁膜、9…残膜厚
検出用マーク、11…研磨パッド、12…研磨定盤、1
4…基板ホルダ、16…終点位置検出器用穴、S1、S
2…終点位置検出器
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 3 ... Wiring layer, 4 ... Insulating film, 9 ... Mark for detecting remaining film thickness, 11 ... Polishing pad, 12 ... Polishing surface plate, 1
4: board holder, 16: hole for end point position detector, S1, S
2 ... End point position detector

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基板の表面上に形成された単層膜若しくは
積層して形成された複数の膜の最上層の膜の表面を、研
磨パッドを用いて研磨加工する方法において、上記単層
膜と上記基板の間若しくは上記最上層の膜と当該最上層
の膜の一層下の膜の間の所望部分に残膜厚測定用マーク
を設け、当該残膜厚測定用マークの表面および上記単層
膜若しくは上記最上層の膜の表面からの距離を測定して
上記残膜厚測定用マーク上における上記単層膜もしくは
最上層の膜の膜厚を検知し、当該膜厚によって上記研磨
加工の終点を制御することを特徴とする研磨加工方法。
1. A method of polishing a surface of a single-layer film formed on a surface of a substrate or an uppermost film of a plurality of films formed by lamination using a polishing pad. A mark for measuring the remaining film thickness is provided in a desired portion between the substrate and the substrate or between the film of the uppermost layer and a film immediately below the film of the uppermost layer, and the surface of the mark for measuring the remaining film thickness and the single layer Measuring the distance from the surface of the film or the uppermost film to detect the film thickness of the single layer film or the uppermost film on the mark for measuring the remaining film thickness, and determining the end point of the polishing by the film thickness. A polishing method characterized by controlling the following.
【請求項2】上記残膜厚測定用マークはアルミニウム、
銅およびタングステンからなる群から選択された材料か
らなることを特徴とする請求項1に記載の研磨加工方
法。
2. The mark for measuring a remaining film thickness is made of aluminum,
The polishing method according to claim 1, wherein the polishing method is made of a material selected from the group consisting of copper and tungsten.
【請求項3】上記一層下の膜は絶縁膜であり、当該絶縁
膜と上記最上層の膜の間には、上記残膜厚測定用マーク
および所定の形状を有する配線層がそれぞれ形成される
ことを特徴とする請求項1若しくは2に記載の研磨加工
方法。
3. The insulating film according to claim 1, wherein the mark for measuring the remaining film thickness and a wiring layer having a predetermined shape are formed between the insulating film and the uppermost film. The polishing method according to claim 1 or 2, wherein:
【請求項4】上記残膜厚測定用マークと配線層は同時に
形成されることを特徴とする請求項3に記載の研磨加工
方法。
4. The polishing method according to claim 3, wherein the mark for measuring the remaining film thickness and the wiring layer are formed simultaneously.
【請求項5】上記研磨加工は研磨パッドと研磨すべき膜
の間に研磨液を供給しながら行われることを特徴とする
請求項1から4のいずれか一に記載の研磨加工方法。
5. The polishing method according to claim 1, wherein the polishing is performed while supplying a polishing liquid between the polishing pad and a film to be polished.
【請求項6】研磨加工すべき膜が表面に形成された基板
を保持する基板ホルダと、研磨パッドが保持された研磨
定盤と、上記膜と上記研磨パッドを所定の圧力で接触さ
せて相対運動させることによって上記膜を研磨する手段
と、当該研磨によって減少した上記膜の厚さを検知する
終点位置検出器を具備し、当該終点位置検出器は、上記
膜の表面の高さと上記膜の下面に接して形成された残膜
厚測定用マークの表面の高さの差から上記膜の厚さを検
知するものであって、上記研磨定磐の回転中心位置若し
くはその近傍に配置されていることを特徴とする研磨加
工装置。
6. A substrate holder for holding a substrate having a film to be polished formed on the surface thereof, a polishing platen holding a polishing pad, and a film and said polishing pad being brought into contact with each other at a predetermined pressure to make a relative contact. Means for polishing the film by moving, and an end position detector for detecting the thickness of the film reduced by the polishing, wherein the end position detector comprises the height of the surface of the film and the height of the film. The thickness of the film is detected from the difference in height of the surface of the remaining film thickness measurement mark formed in contact with the lower surface, and is disposed at or near the rotation center position of the polishing plate. A polishing apparatus characterized by the above-mentioned.
【請求項7】上記終点位置検出器は流体マイクロメータ
であることを特徴とする請求項6に記載の研磨加工装
置。
7. The polishing apparatus according to claim 6, wherein said end point position detector is a fluid micrometer.
【請求項8】上記終点位置検出器は、結像した光スポッ
トを上記残膜厚測定用マークの表面に照射し、その反射
光から上記上記残膜厚測定用マークの高さを求める第1
の距離検出器と、上記膜の表面の高さを求める第2の検
出器を有していることを特徴とする請求項6に記載の研
磨加工装置。
8. The end point position detector irradiates an imaged light spot onto the surface of the mark for measuring the remaining film thickness, and obtains the height of the mark for measuring the remaining film thickness from the reflected light.
7. The polishing apparatus according to claim 6, further comprising: a distance detector for determining the height of the surface of the film.
【請求項9】上記研磨定盤には上記終点位置検出器を配
置するための終点位置検出器用孔が設けられ、当該終点
位置検出器用孔には、上記基板上に形成された絶縁膜と
ほぼ等しい光学的屈折率を有する液体が満たされている
ことを特徴とする請求項8に記載の研磨加工装置。
9. The polishing platen is provided with an end point position detector hole for arranging the end point position detector, and the end point position detector hole is provided substantially with an insulating film formed on the substrate. 9. The polishing apparatus according to claim 8, wherein a liquid having an equal optical refractive index is filled.
【請求項10】上記終点位置検出器は、光波式干渉膜厚
測定器であることを特徴とする請求項6に記載の研磨加
工装置。
10. The polishing apparatus according to claim 6, wherein said end point position detector is a light wave type interference film thickness measuring device.
JP714898A 1998-01-19 1998-01-19 Polishing method and polishing apparatus Pending JPH11204473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP714898A JPH11204473A (en) 1998-01-19 1998-01-19 Polishing method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP714898A JPH11204473A (en) 1998-01-19 1998-01-19 Polishing method and polishing apparatus

Publications (2)

Publication Number Publication Date
JPH11204473A true JPH11204473A (en) 1999-07-30
JPH11204473A5 JPH11204473A5 (en) 2004-12-16

Family

ID=11657994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP714898A Pending JPH11204473A (en) 1998-01-19 1998-01-19 Polishing method and polishing apparatus

Country Status (1)

Country Link
JP (1) JPH11204473A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
KR101327492B1 (en) * 2007-06-21 2013-11-08 세메스 주식회사 Apparatus for grinding wafer backside
JP2014216550A (en) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 Semiconductor device and polishing method of semiconductor device
JP2017052027A (en) * 2015-09-08 2017-03-16 株式会社東京精密 Wafer polishing equipment
CN114434314A (en) * 2017-07-24 2022-05-06 株式会社荏原制作所 Grinding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
US6743395B2 (en) 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
US6871773B2 (en) 2000-03-22 2005-03-29 Ebara Corp. Composite metallic ultrafine particles and process for producing the same
KR101327492B1 (en) * 2007-06-21 2013-11-08 세메스 주식회사 Apparatus for grinding wafer backside
JP2014216550A (en) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 Semiconductor device and polishing method of semiconductor device
JP2017052027A (en) * 2015-09-08 2017-03-16 株式会社東京精密 Wafer polishing equipment
CN114434314A (en) * 2017-07-24 2022-05-06 株式会社荏原制作所 Grinding method

Similar Documents

Publication Publication Date Title
KR100305537B1 (en) Polishing method and polishing device using it
KR100465929B1 (en) Method and apparatus for monitoring polishing state, polishing device, process wafer, semiconductor device, and method of manufacturing semiconductor device
US6489624B1 (en) Apparatus and methods for detecting thickness of a patterned layer
US6307628B1 (en) Method and apparatus for CMP end point detection using confocal optics
JP4858798B2 (en) Polishing apparatus, polishing method, and semiconductor device manufacturing method using the polishing apparatus
US5865666A (en) Apparatus and method for polish removing a precise amount of material from a wafer
JP4560163B2 (en) Endpoint detection using light beams of different wavelengths
JP3154930B2 (en) Method and apparatus for detecting polishing rate of semiconductor wafer surface and method and apparatus for polishing semiconductor wafer surface
US5413941A (en) Optical end point detection methods in semiconductor planarizing polishing processes
US5609511A (en) Polishing method
US6102775A (en) Film inspection method
TW562718B (en) Method and apparatus for detecting polishing endpoint with optical monitoring
JP2009542451A (en) Polishing pad with window having multiple parts
CN101954621B (en) Method for judging polishing end point of chemical mechanical polishing process
US6876454B1 (en) Apparatus and method for in-situ endpoint detection for chemical mechanical polishing operations
KR19980019169A (en) Polishing Method and Polishing Device (POLISHING METHOD APPARATUS)
JPH0722143B2 (en) Method and apparatus for polishing flat wafer
JPH1133901A (en) Wafer polishing equipment
JP2005311246A (en) Chemical mechanical polishing apparatus and method
US7153185B1 (en) Substrate edge detection
JP3360610B2 (en) Detection method, detection device, and polishing device
JPH11204473A (en) Polishing method and polishing apparatus
US6913513B2 (en) Polishing apparatus
JPH09298176A (en) Polishing method and polishing apparatus using the same
JP7177207B2 (en) Method for polishing substrate with functional chips

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801