JPH11206038A - PV system interconnection network system - Google Patents
PV system interconnection network systemInfo
- Publication number
- JPH11206038A JPH11206038A JP10008402A JP840298A JPH11206038A JP H11206038 A JPH11206038 A JP H11206038A JP 10008402 A JP10008402 A JP 10008402A JP 840298 A JP840298 A JP 840298A JP H11206038 A JPH11206038 A JP H11206038A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- control circuit
- inverter circuit
- inverter
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/20—Climate change mitigation technologies for sector-wide applications using renewable energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/50—Energy storage in industry with an added climate change mitigation effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/123—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/12—Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/248—UPS systems or standby or emergency generators
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Photovoltaic Devices (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Telephonic Communication Services (AREA)
Abstract
(57)【要約】
【課題】 連系インバータ装置と外部の所定の事業者と
を通信回線を介して結ぶことにより、より高いセキュリ
ティとサービスを確保できる太陽光発電系統連系ネット
ワークシステムを提供する。
【解決手段】 制御回路14は異常検出に基づいて自動
的に開閉器15を開いて太陽電池アレイ11とインバー
タ回路13との接続およびインバータ回路13と分電盤
24の接続を断つ。同時にNCU43から電話回線50
を介してサービス会社60にエラー情報を送信する。サ
ービス会社では早急にサービスマンをユーザー宅に派遣
し、メンテナンスや修理を行う。管理会社80はユーザ
ー宅に対して電話回線50を介してアクセスし連系イン
バータ装置16の運転情報を収集する。
(57) [Problem] To provide a photovoltaic power generation system interconnection network system capable of ensuring higher security and service by connecting an interconnection inverter device and a predetermined external business operator via a communication line. . A control circuit automatically opens a switch based on abnormality detection to disconnect a connection between a solar cell array and an inverter circuit and a connection between the inverter circuit and a distribution board. At the same time, telephone line 50 from NCU 43
The error information is transmitted to the service company 60 via. The service company immediately dispatches a serviceman to the user's home for maintenance and repair. The management company 80 accesses the user's home via the telephone line 50 and collects operation information of the interconnection inverter device 16.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、太陽電池アレイが
発電した直流電力をインバータ回路に導いて交流電力に
変換し、その交流電力を分電盤から負荷に供給したり、
商用系統に売電したりする連系インバータ装置と、この
連系インバータ装置を通信回線を介して所定の事業者の
もとで管理するようにした太陽光発電系統連系ネットワ
ークシステムに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power generated by a solar cell array, which is led to an inverter circuit to convert the AC power into AC power, and the AC power is supplied from a distribution board to a load.
The present invention relates to an interconnected inverter device that sells power to a commercial system, and a solar power generation system interconnected network system that manages the interconnected inverter device via a communication line under a predetermined business operator.
【0002】[0002]
【従来の技術】図8は従来の一般的な住宅用の太陽光発
電系統連系システムの概略の構成を示すブロック図であ
る。図8において、11は太陽電池アレイであり、光電
変換素子からなる太陽電池モジュールを直列接続してな
る太陽電池ストリングの複数を並列に接続して構成され
ている。12は太陽電池アレイ11の出力側に接続され
た直流接続箱であり、太陽電池アレイ11からの出力が
逆流しないようにダイオードなどで構成されている。1
3は直流接続箱12から入力されてくる直流電力を商用
電源と同期のとれた交流電力に変換するインバータ回
路、14は出力が最大になるようにインバータ回路13
を制御する制御回路、15はインバータ回路13の入出
力を継断する開閉器である。インバータ回路13と制御
回路14と開閉器15とが連系インバータ装置16を構
成しており、太陽電池アレイ11と直流接続箱12と連
系インバータ装置16とが太陽光発電システム17を構
成している。18は商用電源の電力系統である商用系
統、19は商用系統18中に介装された系統遮断器、2
0は柱上変圧器、21は引き込み線、22は遮断器、2
3は電力計、24は電力計23に接続されるとともに開
閉器15を介してインバータ回路13にも接続された分
電盤、25は屋内負荷である。電力計23には買電用と
売電用の2つが内蔵されている。2. Description of the Related Art FIG. 8 is a block diagram showing a schematic configuration of a conventional general residential photovoltaic power system interconnection system. In FIG. 8, reference numeral 11 denotes a solar cell array, which is configured by connecting a plurality of solar cell strings in which solar cell modules each including a photoelectric conversion element are connected in series. Reference numeral 12 denotes a DC connection box connected to the output side of the solar cell array 11, which is configured by a diode or the like so that the output from the solar cell array 11 does not flow backward. 1
Reference numeral 3 denotes an inverter circuit for converting DC power input from the DC junction box 12 into AC power synchronized with the commercial power supply, and 14 denotes an inverter circuit 13 for maximizing the output.
Is a control circuit for switching the input and output of the inverter circuit 13. The inverter circuit 13, the control circuit 14, and the switch 15 constitute an interconnection inverter device 16, and the solar cell array 11, the DC connection box 12, and the interconnection inverter device 16 constitute a solar power generation system 17. I have. Reference numeral 18 denotes a commercial system which is a power system of a commercial power supply, 19 denotes a system breaker interposed in the commercial system 18, 2.
0 is a pole transformer, 21 is a service line, 22 is a circuit breaker, 2
Reference numeral 3 denotes a power meter, 24 denotes a distribution board connected to the power meter 23 and also connected to the inverter circuit 13 via the switch 15, and 25 denotes an indoor load. The wattmeter 23 has two built-in ones for power purchase and for power sale.
【0003】以上のように構成された太陽光発電系統連
系システムにおいては、その太陽光発電システム17
は、日の出により太陽電池アレイ11が太陽光を受けて
発電を開始すると連系インバータ装置16の制御回路1
4が自動的にインバータ回路13の運転を開始し、日没
になって太陽電池アレイ11の出力が低下すると自動的
に運転を停止し、夜間は自動的に電源をカットする。太
陽電池アレイ11が太陽光を受けて発電した直流電力を
直流接続箱12を介して連系インバータ装置16の開閉
器15からインバータ回路13に供給する。インバータ
回路13は制御回路14による制御のもとで入力した直
流電力を商用系統18と同期のとれた交流電力に変換す
る。インバータ回路13が生成した交流電力は開閉器1
5から分電盤24に供給され、さらに分電盤24から屋
内負荷25へと供給される。In the photovoltaic power generation system interconnection system configured as described above, the photovoltaic power generation system
When the solar cell array 11 receives sunlight and starts generating electricity at sunrise, the control circuit 1
4 automatically starts the operation of the inverter circuit 13, and when the output of the solar cell array 11 decreases at sunset, the operation is automatically stopped, and the power is automatically cut off at night. The DC power generated by the solar cell array 11 in response to the sunlight is supplied from the switch 15 of the interconnection inverter device 16 to the inverter circuit 13 via the DC connection box 12. The inverter circuit 13 converts the DC power input under the control of the control circuit 14 into AC power synchronized with the commercial power system 18. The AC power generated by the inverter circuit 13 is supplied to the switch 1
5 to the distribution board 24, and further from the distribution board 24 to the indoor load 25.
【0004】インバータ回路13が生成した交流電力が
屋内負荷25の消費電力をまかなえない状態では、不足
分を商用系統18から分電盤24を介して屋内負荷25
へと供給する。逆に、インバータ回路13が屋内負荷2
5での消費電力を上回る交流電力を生成するときには、
分電盤24から商用系統18に逆潮流し、電力会社26
に対して売電することができる。In a state where the AC power generated by the inverter circuit 13 cannot cover the power consumption of the indoor load 25, the shortage is transferred from the commercial system 18 via the distribution board 24 to the indoor load 25.
To supply. On the contrary, the inverter circuit 13
When generating AC power that exceeds the power consumption in 5,
Reverse power flows from the distribution board 24 to the commercial system 18, and the power company 26
Can be sold to
【0005】商用系統18で系統遮断器19が開いて電
源喪失が発生したときには、太陽光発電システム17を
商用系統18から切り離す必要がある。それは、商用系
統18のメンテナンスにおいて太陽光発電システム17
からの電力が商用系統18に流入するとメンテナンス作
業者が感電事故にあうおそれがあるためである。そこ
で、電力会社26は電源喪失を検出したときは、遮断器
22に制御信号を送って遮断器22を遮断する転送遮断
を行う。When the system breaker 19 opens in the commercial system 18 and a power loss occurs, it is necessary to disconnect the photovoltaic power generation system 17 from the commercial system 18. This is because the maintenance of the commercial grid 18
This is because if the electric power from the power supply flows into the commercial system 18, the maintenance worker may encounter an electric shock accident. Therefore, when detecting the loss of power, the power company 26 sends a control signal to the circuit breaker 22 to perform a transfer cutoff for cutting off the circuit breaker 22.
【0006】長期の使用においては、太陽光発電システ
ム17の方でも故障が生じて運転不能になることがあ
る。商用系統18の異常によっても太陽光発電システム
17が運転不能になることがある。In long-term use, the photovoltaic power generation system 17 may fail and become inoperable. The solar power generation system 17 may become inoperable due to an abnormality in the commercial system 18.
【0007】もし、住人がこのことに気がつかなけれ
ば、停止状態が長期間続くことになる。サービス会社が
定期的に点検するまで、そのことに気がつかないといっ
たことが起こりがちである。故障内容によっては、内部
回路電圧が異常に高くなり、火災等の危険を招くおそれ
もある。If the resident is not aware of this, the outage will last for a long time. It's easy for a service company to go unnoticed until they check it regularly. Depending on the nature of the failure, the internal circuit voltage becomes abnormally high, which may cause a danger such as a fire.
【0008】そこで、上記の図8の太陽光発電系統連系
システムにあっては、連系インバータ装置16の制御回
路14に故障検出の機能をもたせるとともに、警報器2
7を接続し、故障検出に基づいて警報器27を作動させ
るようにしている。警報器27は屋内に設置される。警
報を知った住人は電話でサービス会社に通報し、サービ
ス会社から派遣された作業員によって点検および修理が
なされ、危険発生を未然防止するとともに、太陽光発電
システム17の運転を再開することができるようにな
る。Therefore, in the solar power system interconnection system shown in FIG. 8, the control circuit 14 of the interconnection inverter device 16 has a function of detecting a failure, and the alarm 2
7 is connected to activate the alarm 27 based on the failure detection. The alarm 27 is installed indoors. The resident who has heard the alarm notifies the service company by telephone, and the worker dispatched from the service company performs inspection and repair, thereby preventing occurrence of danger and restarting the operation of the solar power generation system 17. Become like
【0009】太陽光発電システム17の異常を公衆電話
回線を介して電力会社等に自動的に通報するようにした
太陽光発電系統連系システムも提案されている。それを
図9に示す。図9において、図8におけるのと同じ符号
については同一要素を示すので、ここでは説明を省略す
る。制御回路14に回線制御回路28を接続し、回線制
御回路28を電話回線29を介して電力会社26内ある
いは保安会社内の中央管理システム30に接続してあ
る。制御回路14が太陽光発電システム17の異常を検
出すると、制御回路14は回線制御回路28を制御して
異常信号を電話回線29を介して中央管理システム30
に送信する。電力会社あるいは保安会社は作業員を派遣
してメンテナンスや修理を行う。A photovoltaic power generation system interconnection system has been proposed which automatically reports an abnormality of the photovoltaic power generation system 17 to a power company or the like via a public telephone line. It is shown in FIG. 9, the same reference numerals as those in FIG. 8 denote the same elements, and a description thereof will not be repeated. A line control circuit 28 is connected to the control circuit 14, and the line control circuit 28 is connected to a central management system 30 in a power company 26 or a security company via a telephone line 29. When the control circuit 14 detects an abnormality in the photovoltaic power generation system 17, the control circuit 14 controls a line control circuit 28 to send an abnormality signal to the central management system 30 via the telephone line 29.
Send to Electricity companies or security companies dispatch workers to perform maintenance and repairs.
【0010】[0010]
【発明が解決しようとする課題】図8に示す従来の方法
では単にユーザー宅において住人に対して警報が出され
るだけであり、住人が警報を切ったあとでサービス会社
に通報しなければ、太陽光発電システム17は異常状態
のまま運転を続けることになり、セキュリティが確保さ
れない。In the conventional method shown in FIG. 8, a warning is issued only to the resident at the user's house. The photovoltaic power generation system 17 continues to operate in an abnormal state, and security is not ensured.
【0011】図9に示す従来の方法では、連系インバー
タ装置16そのものをリモートコントロールすることが
できず、異常信号を受けたときに直ちに連系インバータ
装置16を停止させることができなかった。In the conventional method shown in FIG. 9, the interconnection inverter 16 itself cannot be remotely controlled, and the interconnection inverter 16 cannot be stopped immediately upon receiving an abnormal signal.
【0012】本発明はこのような事情に鑑みて創案され
たものであって、連系インバータ装置と外部の所定の事
業者とを通信回線を介して結ぶことにより、より高いセ
キュリティとサービスを確保できる太陽光発電系統連系
ネットワークシステムを提供することを目的としてい
る。The present invention has been made in view of such circumstances, and secures higher security and service by connecting an interconnection inverter device to a predetermined external business operator through a communication line. It aims to provide a photovoltaic power system interconnection network system that can be used.
【0013】[0013]
【課題を解決するための手段】本発明に係る請求項1の
太陽光発電系統連系ネットワークシステムは、太陽電池
アレイが発電した直流電力を交流電力に変換するインバ
ータ回路と、このインバータ回路を制御する制御回路
と、太陽電池アレイとインバータ回路との間およびイン
バータ回路と分電盤との間に介装される開閉器とを備え
た連系インバータ装置を基本的構成としている。そし
て、電話回線等の通信回線に接続されたNCU等の送受
信部を前記制御回路に接続してあり、制御回路は太陽電
池アレイまたは連系インバータ装置の異常を検出したと
きに開閉器を開くことにより太陽電池アレイを構成して
いるストリング全体をインバータ回路から遮断するとと
もにインバータ回路を分電盤から遮断するように構成さ
れている。さらに、前記送受信部よりエラー情報を通信
回線を介して所定の事業者に送信するように構成されて
いる。According to a first aspect of the present invention, there is provided a photovoltaic power system interconnection network system, comprising: an inverter circuit for converting DC power generated by a solar cell array into AC power; and controlling the inverter circuit. The basic configuration of the interconnected inverter device is provided with a control circuit for performing the operation and a switch interposed between the solar cell array and the inverter circuit and between the inverter circuit and the distribution board. A transmission / reception unit such as an NCU connected to a communication line such as a telephone line is connected to the control circuit, and the control circuit opens a switch when an abnormality of the solar cell array or the interconnection inverter device is detected. Thus, the entire string constituting the solar cell array is cut off from the inverter circuit and the inverter circuit is cut off from the distribution board. Further, the transmission / reception unit is configured to transmit error information to a predetermined business entity via a communication line.
【0014】上記構成においては、連系インバータ装置
が異常をきたしたときに制御回路が検出し、開閉器を自
動的に開くことで即時のセキュリティを確保する。ま
た、ユーザー宅から通信回線を介してサービス会社等の
所定の事業者にエラー情報を自動的かつリアルタイムに
通報するため、メンテナンスや修理を直ちに実施に移す
ことになる。In the above configuration, the control circuit detects when the interconnected inverter device becomes abnormal and automatically opens the switch to ensure immediate security. Further, since error information is automatically and in real time reported from a user's home to a predetermined company such as a service company via a communication line, maintenance and repairs are immediately carried out.
【0015】本発明に係る請求項2の太陽光発電系統連
系ネットワークシステムは、太陽電池アレイが発電した
直流電力を交流電力に変換するインバータ回路と、この
インバータ回路を制御する制御回路と、太陽電池アレイ
とインバータ回路との間およびインバータ回路と分電盤
との間に介装される開閉器とを備えた連系インバータ装
置を基本的構成としている。そして、電話回線等の通信
回線に接続されたNCU等の送受信部を前記制御回路に
接続してあり、所定の事業者から通信回線を介して連系
インバータ装置の制御回路にアクセスして連系インバー
タ装置の運転情報を所定の事業者に収集するように構成
してある。According to a second aspect of the present invention, there is provided a photovoltaic power generation system interconnection network system, comprising: an inverter circuit for converting DC power generated by a solar cell array into AC power; a control circuit for controlling the inverter circuit; The basic configuration of the interconnection inverter device includes a switch interposed between the battery array and the inverter circuit and between the inverter circuit and the distribution board. A transmission / reception unit such as an NCU connected to a communication line such as a telephone line is connected to the control circuit, and a predetermined business operator accesses the control circuit of the interconnection inverter device via the communication line to connect to the interconnection circuit. The configuration is such that the operation information of the inverter device is collected by a predetermined company.
【0016】上記構成によれば、定期的または不定期的
に管理会社等の所定の事業者が通信回線を介してユーザ
ー宅の連系インバータ装置の運転情報を収集し、発電量
の大小変動の確認や異常の兆候等をチェックするため、
よりレベルの高いセキュリティとサービスが提供され
る。According to the above configuration, a predetermined company such as a management company periodically or irregularly collects the operation information of the interconnection inverter device at the user's home via the communication line, and detects the fluctuation of the power generation amount. In order to confirm and check for signs of abnormalities,
Higher levels of security and services are provided.
【0017】本発明に係る請求項3の太陽光発電系統連
系ネットワークシステムは、太陽電池アレイが発電した
直流電力を交流電力に変換するインバータ回路と、この
インバータ回路を制御する制御回路と、太陽電池アレイ
とインバータ回路との間およびインバータ回路と分電盤
との間に介装される開閉器とを備えた連系インバータ装
置を基本的構成としている。そして、電話回線等の通信
回線に接続された送受信部を前記制御回路に接続してあ
り、商用系統に異常が発生したときに所定の事業者から
通信回線を介して連系インバータ装置の制御回路にアク
セスしてインバータ回路を停止を含めて制御するように
構成してある。According to a third aspect of the present invention, there is provided a photovoltaic power system interconnection network system, comprising: an inverter circuit for converting DC power generated by a solar cell array into AC power; a control circuit for controlling the inverter circuit; The basic configuration of the interconnection inverter device includes a switch interposed between the battery array and the inverter circuit and between the inverter circuit and the distribution board. A transmission / reception unit connected to a communication line such as a telephone line is connected to the control circuit, and when an abnormality occurs in the commercial system, a control circuit of the interconnection inverter device is transmitted from the predetermined company via the communication line. To access and control the inverter circuit including stoppage.
【0018】上記構成によれば、商用系統に発生した異
常が危険であるときには電力会社等の所定の事業者によ
る通信回線を介してのリモートコントロールによりイン
バータ回路を停止するので、高いセキュリティを確保す
る。According to the above configuration, when the abnormality occurring in the commercial system is dangerous, the inverter circuit is stopped by remote control via a communication line by a predetermined company such as a power company, so that high security is ensured. .
【0019】[0019]
【発明の実施の形態】以下、本発明に係る太陽光発電系
統連系ネットワークシステムの実施の形態を図面に基づ
いて詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a photovoltaic power generation system interconnection network system according to the present invention will be described in detail with reference to the drawings.
【0020】図1は実施の形態に係る太陽光発電系統連
系ネットワークシステムの構成を示すブロック図であ
る。複数の太陽電池ストリングを並列接続してなる太陽
電池アレイ11に逆流防止用の直流接続箱12および開
閉器15を介してインバータ回路13が接続されてい
る。インバータ回路13は制御回路14によって制御さ
れ、入力した直流電力を商用電源と同期のとれた交流電
力に変換するものである。インバータ回路13と制御回
路14と開閉器15とをもって連系インバータ装置16
が構成され、連系インバータ装置16と太陽電池アレイ
11と直流接続箱12との全体で太陽光発電システム1
7が構成されている。18は商用電源の電力系統である
商用系統、19は系統遮断器、20は柱上変圧器、21
は引き込み線、22は引き込み線21中に介装の遮断
器、23は電力計、24は分電盤、25は屋内負荷、2
6は電力会社である。FIG. 1 is a block diagram showing a configuration of a photovoltaic power generation system interconnection network system according to an embodiment. An inverter circuit 13 is connected to a solar cell array 11 in which a plurality of solar cell strings are connected in parallel via a DC connection box 12 for backflow prevention and a switch 15. The inverter circuit 13 is controlled by the control circuit 14 and converts the input DC power into AC power synchronized with the commercial power supply. The interconnection inverter device 16 includes an inverter circuit 13, a control circuit 14, and a switch 15.
And the entirety of the interconnection inverter device 16, the solar cell array 11, and the DC connection box 12
7 are configured. Reference numeral 18 denotes a commercial power system serving as a commercial power supply, 19 denotes a system breaker, 20 denotes a pole transformer, 21
Is a service line, 22 is a circuit breaker interposed in the service line 21, 23 is a power meter, 24 is a distribution board, 25 is an indoor load,
Reference numeral 6 denotes a power company.
【0021】太陽電池アレイ11の各太陽電池ストリン
グに温度・断線・漏電その他の必要なセンサー41を設
けるとともに、インバータ回路13の各部にも温度・断
線・過電流・安全回路その他の必要なセンサー42を設
け、各センサー41,42を制御回路14に接続してあ
る。連系インバータ装置16は送受信部としてのNCU
(ネットワーク・コントロール・ユニット)43を有
し、制御回路14をNCU43を介して電話回線50に
接続してある。44は電話機である。Each solar cell string of the solar cell array 11 is provided with a sensor 41 for temperature, disconnection, leakage, and other necessary sensors, and each part of the inverter circuit 13 is provided with a sensor 42 for temperature, disconnection, overcurrent, safety circuit, etc. And the sensors 41 and 42 are connected to the control circuit 14. The interconnection inverter device 16 is an NCU as a transmission / reception unit.
(Network control unit) 43, and the control circuit 14 is connected to the telephone line 50 via the NCU 43. 44 is a telephone.
【0022】太陽光発電システム17の制御回路14は
電話回線50を介してメインサービス会社60、管理会
社80、電力会社26に接続されている。メインサービ
ス会社60は広い地域を管轄するもので、その管轄区域
内は複数の区域に分けられ、各区域ごとにサービス会社
70が設立されている。メインサービス会社60は、N
CU61、コンピュータ62、データベースサーバ6
3、ファクシミリ装置64などを備えている。各拠点の
サービス会社70にはファクシミリ装置71やコンピュ
ータ72が備えられている。管理会社80にはネットワ
ークサーバ81が備えられている。電力会社26におい
ては電話回線50に対してNCU91を介してコンピュ
ータ92が接続されている。The control circuit 14 of the photovoltaic power generation system 17 is connected to a main service company 60, a management company 80, and a power company 26 via a telephone line 50. The main service company 60 has jurisdiction over a wide area, and the jurisdiction is divided into a plurality of areas, and a service company 70 is established for each area. The main service company 60 is N
CU 61, computer 62, database server 6
3, a facsimile machine 64 and the like. The service company 70 at each base is provided with a facsimile machine 71 and a computer 72. The management company 80 is provided with a network server 81. In the power company 26, a computer 92 is connected to the telephone line 50 via an NCU 91.
【0023】連系インバータ装置16における制御回路
14はセンサー41,42からの信号に基づいて太陽光
発電システム17の各部の状態を監視している。制御回
路14は異常を検出したときは、開閉器15に制御信号
を送出して開閉器15を開き、太陽電池アレイ11とイ
ンバータ回路13との接続を断つとともに、インバータ
回路13と分電盤24との接続を断つ。すなわち、太陽
電池アレイ11を構成してるストリング全体をOFFに
するとともにインバータ回路13と商用系統18との連
系をOFFにする。さらに制御回路14はNCU43を
起動して、ID情報とともにエラー情報を電話回線50
を介してメインサービス会社60に通報する。メインサ
ービス会社60のコンピュータ62は受信した情報に基
づいてデータベースサーバ63を検索し、ユーザー情報
(氏名・住所・電話番号など)を抽出し、ファクシミリ
装置64を起動してユーザー情報とエラーコードを最寄
りのサービス会社70のファクシミリ装置71に対して
オンラインで自動的にファクシミリ送信する。あるい
は、最寄りのサービス会社70のコンピュータ72に対
してオンラインで自動的に通信する。そのサービス会社
70はユーザー宅へサービスマンを派遣して、メンテナ
ンスや修理を行う。The control circuit 14 in the interconnection inverter device 16 monitors the state of each part of the photovoltaic power generation system 17 based on signals from the sensors 41 and 42. When the control circuit 14 detects an abnormality, the control circuit 14 sends a control signal to the switch 15 to open the switch 15, disconnects the connection between the solar cell array 11 and the inverter circuit 13, and switches the inverter circuit 13 and the distribution board 24. Disconnect from the connection. That is, the entire string forming the solar cell array 11 is turned off, and the interconnection between the inverter circuit 13 and the commercial system 18 is turned off. Further, the control circuit 14 activates the NCU 43 and transmits error information together with ID information to the telephone line 50.
To the main service company 60 via. The computer 62 of the main service company 60 searches the database server 63 based on the received information, extracts user information (name, address, telephone number, etc.), activates the facsimile machine 64, and retrieves the user information and error code. Facsimile transmission is automatically performed on-line to the facsimile machine 71 of the service company 70. Alternatively, it automatically communicates online with the computer 72 of the nearest service company 70. The service company 70 dispatches a serviceman to the user's home to perform maintenance and repair.
【0024】管理会社80は定期的にあるいは必要に応
じて、ネットワークサーバ81より電話回線50を介し
てユーザー宅の連系インバータ装置16にアクセスし、
連系インバータ装置16の運転モード・発電量・エラー
コードなどの運転情報を収集する。このアクセスはノー
リンギングで行われる。収集した情報は管理会社80の
運営上の基礎の蓄積データとする。発電量が極端に少な
いといった場合には、管理会社80から直接にユーザー
宅に出向いてメンテナンスを行ったり、メインサービス
会社60に通報したりする。The management company 80 accesses the interconnection inverter device 16 at the user's home from the network server 81 via the telephone line 50 periodically or as needed.
Operation information such as the operation mode, power generation amount, and error code of the interconnection inverter device 16 is collected. This access is performed with no ringing. The collected information is used as accumulated data on the basis of operation of the management company 80. When the amount of power generation is extremely small, the management company 80 goes directly to the user's house to perform maintenance or notifies the main service company 60.
【0025】電力会社26は商用系統18に事故等が発
生した場合には、そのコンピュータ92をNCU91に
接続し、電話回線50およびNCU43を介して連系イ
ンバータ装置16の制御回路14をリモートコントロー
ルし、連系インバータ装置16を緊急に停止させたり、
あるいは状況に応じて待機状態としたり、運転したりす
ることができる。When an accident or the like occurs in the commercial power system 18, the power company 26 connects the computer 92 to the NCU 91, and remotely controls the control circuit 14 of the interconnection inverter 16 via the telephone line 50 and the NCU 43. Emergency stop of the interconnection inverter device 16,
Alternatively, the vehicle can be put on standby or driven according to the situation.
【0026】図2は連系インバータ装置16における制
御回路14の概略の動作を示すフローチャートである。
制御回路14によるインバータ回路13の制御のメイン
ルーチンにおいて、発電量のデータを入力して累積値を
更新するとともに発電量の履歴データを生成する(S1
1)。また、センサー41,42の状態を入力し、履歴
的に記憶する(S12)。異常が発生したかどうかを判
断し(S13)、異常がないときはメインルーチンの所
定のステップ(図示せず)へリターンする(S19)。
異常があったときは開閉器15に対して制御信号を出力
し開閉器15をOFFにし(S14)、インバータ回路
13を停止する(S15)。そして、NCU43を起動
し(S16)、メインサービス会社60に対してダイヤ
ルし(S17)、NCU43から電話回線50を介して
メインサービス会社60にID情報とエラー情報を送信
する(S18)。FIG. 2 is a flowchart showing a schematic operation of the control circuit 14 in the interconnection inverter device 16.
In the main routine of the control of the inverter circuit 13 by the control circuit 14, the data of the power generation amount is input, the accumulated value is updated, and the history data of the power generation amount is generated (S1).
1). Further, the state of the sensors 41 and 42 is input and stored as a history (S12). It is determined whether an abnormality has occurred (S13). If there is no abnormality, the process returns to a predetermined step (not shown) of the main routine (S19).
When there is an abnormality, a control signal is output to the switch 15 to turn off the switch 15 (S14), and the inverter circuit 13 is stopped (S15). Then, the NCU 43 is activated (S16), dials the main service company 60 (S17), and transmits ID information and error information from the NCU 43 to the main service company 60 via the telephone line 50 (S18).
【0027】図3はメインサービス会社60におけるコ
ンピュータ62の概略の動作を示すフローチャートであ
る。着信信号の検出を待って(S21)、電話回線50
を介して送信されてくるID情報とエラー情報を取得す
る(S22)。終話信号の検出を待って(S23)、デ
ータベースサーバ63を取得したID情報に基づいて検
索し、氏名・住所・電話番号などのユーザー情報を抽出
する(S24)。抽出したユーザー情報に基づいて最寄
りのサービス会社70の電話番号を割り出す(S2
5)。ファクシミリ装置64を起動し(S26)、割り
出した電話番号でダイヤルし(S27)、最寄りのサー
ビス会社70のファクシミリ装置71に対してユーザー
情報とエラーコードをファクシミリ送信する(S2
8)。送信終了信号の検出を待って(S29)、動作を
終了する。FIG. 3 is a flowchart showing a schematic operation of the computer 62 in the main service company 60. Waiting for the detection of the incoming signal (S21), the telephone line 50
Then, the ID information and error information transmitted via the server are acquired (S22). After detecting the end signal (S23), the database server 63 is searched based on the acquired ID information to extract user information such as name, address, and telephone number (S24). The telephone number of the nearest service company 70 is determined based on the extracted user information (S2).
5). The facsimile apparatus 64 is activated (S26), dials with the determined telephone number (S27), and facsimile transmits user information and an error code to the facsimile apparatus 71 of the nearest service company 70 (S2).
8). After detecting the transmission end signal (S29), the operation ends.
【0028】図4は管理会社80のネットワークサーバ
81の概略の動作を示すフローチャート、図5はネット
ワークサーバ81からのアクセスに対する連系インバー
タ装置16の制御回路14の概略の動作を示すフローチ
ャートである。FIG. 4 is a flowchart showing a schematic operation of the network server 81 of the management company 80, and FIG. 5 is a flowchart showing a schematic operation of the control circuit 14 of the interconnection inverter device 16 for access from the network server 81.
【0029】図4に示すように、ネットワークサーバ8
1は定期的なデータベース検索によりユーザー宅電話番
号を取得し(S31)、その電話番号でノーリンギング
でダイヤルし(S32)、転送要求信号を電話回線50
を介してユーザー宅の制御回路14に送信し(S3
3)、応答信号の受信を待つ(S34)。As shown in FIG. 4, the network server 8
1 obtains the user's home telephone number by periodic database search (S31), dials the telephone number without ringing (S32), and transmits a transfer request signal to the telephone line 50.
Is transmitted to the control circuit 14 of the user's home via
3) Wait for a response signal (S34).
【0030】図5に示すように、制御回路14は制御の
メインルーチンにおいて着信割り込みの要求があったと
きには(S41)、送信されてくる信号の受信を行い
(S42)、受信した信号を判別し(S43)、応答信
号をNCU43を介して電話回線50からネットワーク
サーバ81に送信する(S44)。そして、制御回路1
4は蓄積している連系インバータ装置16の運転状況や
発電量・エラーに関する履歴データを送信する(S4
5)。その送信が終了すると(S46)、割り込み前の
もとのステップへリターンする(S47)。As shown in FIG. 5, when there is an incoming interrupt request in the control main routine (S41), the control circuit 14 receives the transmitted signal (S42), and determines the received signal. (S43), a response signal is transmitted from the telephone line 50 to the network server 81 via the NCU 43 (S44). And the control circuit 1
4 transmits the accumulated history data relating to the operation status of the interconnected inverter device 16 and the amount of power generation and errors (S4).
5). When the transmission is completed (S46), the process returns to the original step before the interruption (S47).
【0031】図4に示すように、ネットワークサーバ8
1はユーザー宅の制御回路14から応答信号を受けた後
に(S34)、制御回路14から送信されてくる運転状
況や発電量・エラーに関する履歴データを受信し(S3
5)、記憶する(S36)。受信および記憶の終了を待
って(S37)、動作を終了する。As shown in FIG. 4, the network server 8
After receiving a response signal from the control circuit 14 in the user's home (S34), the control unit 1 receives the history data on the operating status, the amount of power generation, and the error transmitted from the control circuit 14 (S3)
5) and store it (S36). After the completion of the reception and the storage (S37), the operation ends.
【0032】図6は電力会社26のコンピュータ92の
概略の動作を示すフローチャート、図7は電力会社26
からのアクセスに対する連系インバータ装置16の制御
回路14の概略の動作を示すフローチャートである。FIG. 6 is a flowchart showing the general operation of the computer 92 of the power company 26, and FIG.
5 is a flowchart showing a schematic operation of the control circuit 14 of the interconnection inverter device 16 in response to an access from the user.
【0033】図6に示すように、電力会社26のコンピ
ュータ92はメインルーチンにおいて事故発生の割り込
みがあったときには(S51)、引き込み線21中の遮
断器22をOFFにする(S52)。次いで、この電力
会社26の管轄区域内のユーザー宅の電話番号をデータ
ベース検索により取得し(S53)、その電話番号でノ
ーリンギングでダイヤルし(S54)、転送要求信号を
電話回線50を介してユーザー宅の制御回路14に送信
し(S55)、応答信号の受信を待つ(S56)。As shown in FIG. 6, the computer 92 of the electric power company 26 turns off the circuit breaker 22 in the service line 21 when an interruption of an accident occurs in the main routine (S51) (S52). Next, the telephone number of the user's home in the jurisdiction of the electric power company 26 is obtained by searching the database (S53), the telephone number is dialed without ringing (S54), and a transfer request signal is transmitted via the telephone line 50 to the user's home. (S55), and waits for reception of a response signal (S56).
【0034】図7に示すように、制御回路14は制御の
メインルーチンにおいて着信割り込みがあったときには
(S71)、送信されてくる信号の受信を行い(S7
2)、受信した信号を判別し(S73)、応答信号をN
CU43を介して電話回線50から電力会社26のコン
ピュータ92に送信する(S74)。そして、制御回路
14は蓄積している連系インバータ装置16の運転状況
データを送信する(S75)。その送信が終了すると
(S76)、受信待ちの状態に移る(S77)。As shown in FIG. 7, when there is an incoming call interruption in the control main routine (S71), the control circuit 14 receives the transmitted signal (S7).
2) The received signal is determined (S73), and the response signal is set to N
The data is transmitted from the telephone line 50 to the computer 92 of the power company 26 via the CU 43 (S74). Then, the control circuit 14 transmits the accumulated operation status data of the interconnection inverter device 16 (S75). When the transmission is completed (S76), the state shifts to a reception waiting state (S77).
【0035】図6に示すように、電力会社26のコンピ
ュータ92はユーザー宅の制御回路14から応答信号を
受けた後に(S56)、制御回路14から送信されてく
る運転状況データを受信し(S57)、記憶する(S5
8)。運転状況データを診断し(S59)、レベル判定
を行う(S60)。レベル1のときは停止信号をユーザ
ー宅の制御回路14に送信し(S61)、レベル2のと
きは待機信号を送信し(S62)、レベル3のときは継
続信号を送信する(S63)。そして、次のユーザー宅
があるかどうかを判断し(S64)、まだあるときはス
テップS53にリターンし、以下同様の動作を繰り返
す。次のユーザー宅がなくなれば、割り込み前のもとの
ステップへリターンする(S65)。As shown in FIG. 6, after the computer 92 of the power company 26 receives the response signal from the control circuit 14 in the user's house (S56), it receives the driving situation data transmitted from the control circuit 14 (S57). ) And memorize (S5)
8). The driving situation data is diagnosed (S59), and the level is determined (S60). When the level is 1, a stop signal is transmitted to the control circuit 14 in the user's house (S61), when the level is 2, a standby signal is transmitted (S62), and when the level is 3, a continuation signal is transmitted (S63). Then, it is determined whether or not there is a next user's house (S64). If there is, the process returns to step S53, and the same operation is repeated. If there is no next user's house, the process returns to the original step before the interruption (S65).
【0036】図7に示すように、ユーザー宅の制御回路
14では受信待ちの状態(S77)で停止信号を受信し
たときは(S78)、インバータ回路13を停止し(S
81)、開閉器15をOFFする(S82)。また、待
機信号を受信したときは(S79)、開閉器15をOF
Fする(S82)。継続信号を受信したときは特に何も
しない。そして、割り込み前のもとのステップへリター
ンする(S83)。As shown in FIG. 7, when the stop signal is received (S78) in the reception waiting state (S77), the inverter circuit 13 is stopped (S78).
81), the switch 15 is turned off (S82). When the standby signal is received (S79), the switch 15 is turned off.
F (S82). When a continuation signal is received, nothing is performed. Then, the process returns to the original step before the interruption (S83).
【0037】上記の実施の形態の変形として、メインサ
ービス会社60の機能を各拠点のサービス会社70がも
つように構成してもよい。また、管理会社80のネット
ワークサーバ81とメインサービス会社60のコンピュ
ータ62とをオンラインで接続してもよいし、電力会社
26のコンピュータ92とメインサービス会社60のコ
ンピュータ62とをオンラインで接続してもよいし、さ
らには管理会社80のネットワークサーバ81と電力会
社26のコンピュータ92とをオンラインで接続しても
よい。また、管理会社80の機能をメインサービス会社
60に統括してもよい。電話回線50としては有線でも
無線でもよいし、公衆電話回線網に代えて専用の通信回
線を用いるようにしてもよい。As a modification of the above embodiment, the function of the main service company 60 may be provided by the service company 70 at each base. Alternatively, the network server 81 of the management company 80 and the computer 62 of the main service company 60 may be connected online, or the computer 92 of the power company 26 and the computer 62 of the main service company 60 may be connected online. Alternatively, the network server 81 of the management company 80 and the computer 92 of the power company 26 may be connected online. Further, the functions of the management company 80 may be controlled by the main service company 60. The telephone line 50 may be wired or wireless, or a dedicated communication line may be used instead of the public telephone line network.
【0038】[0038]
【発明の効果】本発明に係る請求項1の太陽光発電系統
連系ネットワークシステムによれば、太陽電池アレイま
たは連系インバータ装置の異常を検出したときに開閉器
を開くことにより太陽電池アレイを構成しているストリ
ング全体をインバータ回路から遮断するとともにインバ
ータ回路を分電盤から遮断するので、即時のセキュリテ
ィを確保することができる。さらに、ユーザー宅から通
信回線を介してサービス会社等の所定の事業者にエラー
情報を自動的かつリアルタイムに通報することができ、
メンテナンスや修理を直ちに実施に移すことができる。According to the photovoltaic power generation system interconnection network system according to the first aspect of the present invention, the switch is opened when an abnormality of the photovoltaic array or the interconnection inverter device is detected, whereby the photovoltaic array is connected. Since the entire constituent string is cut off from the inverter circuit and the inverter circuit is cut off from the distribution board, immediate security can be ensured. Further, error information can be automatically and in real time reported from a user's home to a predetermined company such as a service company via a communication line,
Maintenance and repairs can be implemented immediately.
【0039】本発明に係る請求項2の太陽光発電系統連
系ネットワークシステムによれば、定期的または不定期
的に管理会社等の所定の事業者が通信回線を介してユー
ザー宅の連系インバータ装置の運転情報を収集し、発電
量の大小変動の確認や異常の兆候等をチェックすること
ができ、よりレベルの高いセキュリティとサービスを提
供できる。According to the photovoltaic power generation system interconnection network system according to the second aspect of the present invention, a predetermined company such as a management company periodically or irregularly operates the interconnection inverter at a user's home via a communication line. By collecting the operation information of the device, it is possible to check the fluctuations in the amount of power generation and to check for signs of abnormality, etc., thereby providing a higher level of security and service.
【0040】本発明に係る請求項3の太陽光発電系統連
系ネットワークシステムによれば、商用系統に発生した
異常が危険であるときには電力会社等の所定の事業者か
ら通信回線を介してのリモートコントロールによりイン
バータ回路を停止するので、高いセキュリティを確保す
ることができる。According to the photovoltaic power generation system interconnection network system of the third aspect of the present invention, when an abnormality occurring in the commercial power system is dangerous, a predetermined company such as an electric power company can remotely control the system via a communication line. Since the inverter circuit is stopped by the control, high security can be ensured.
【図1】本発明の実施の形態に係る太陽光発電系統連系
ネットワークシステムの構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a photovoltaic power generation system interconnection network system according to an embodiment of the present invention.
【図2】実施の形態において連系インバータ装置の制御
回路の概略の動作を示すフローチャートである。FIG. 2 is a flowchart showing a schematic operation of a control circuit of the interconnection inverter device in the embodiment.
【図3】実施の形態においてメインサービス会社のコン
ピュータの概略の動作を示すフローチャートである。FIG. 3 is a flowchart showing a schematic operation of a computer of a main service company in the embodiment.
【図4】実施の形態において管理会社のネットワークサ
ーバの概略の動作を示すフローチャートである。FIG. 4 is a flowchart showing a schematic operation of a network server of a management company in the embodiment.
【図5】実施の形態においてネットワークサーバからの
アクセスに対する連系インバータ装置の制御回路の概略
の動作を示すフローチャートである。FIG. 5 is a flowchart illustrating a schematic operation of a control circuit of the interconnection inverter device in response to access from the network server in the embodiment.
【図6】実施の形態において電力会社のコンピュータの
概略の動作を示すフローチャートである。FIG. 6 is a flowchart illustrating a schematic operation of a computer of a power company in the embodiment.
【図7】実施の形態において電力会社からのアクセスに
対する連系インバータ装置の制御回路の概略の動作を示
すフローチャートである。FIG. 7 is a flowchart illustrating a schematic operation of a control circuit of the interconnection inverter device in response to access from a power company in the embodiment.
【図8】従来の一般的な太陽光発電系統連系システムの
概略の構成を示すブロック図である。FIG. 8 is a block diagram showing a schematic configuration of a conventional general photovoltaic power generation system interconnection system.
【図9】太陽光発電システムの異常を電話回線を介して
電力会社に通報するように改善した従来の太陽光発電系
統連系システムの概略の構成を示すブロック図である。FIG. 9 is a block diagram showing a schematic configuration of a conventional photovoltaic power generation system interconnection system improved to notify a power company of an abnormality of the photovoltaic power generation system via a telephone line.
11……太陽電池アレイ 13……インバータ回路 14……制御回路 15……開閉器 16……連系インバータ装置 17……太陽光発電システム 18……商用系統 21……引き込み線 22……遮断器 23……電力計 24……分電盤 26……電力会社(所定の事業者) 41……太陽電池アレイのセンサー 42……インバータ回路のセンサー 43……NCU(送受信部) 50……電話回線(通信回線) 60……メインサービス会社(所定の事業者) 70……サービス会社(所定の事業者) 80……管理会社(所定の事業者) 11 solar cell array 13 inverter circuit 14 control circuit 15 switch 16 interconnected inverter device 17 photovoltaic power generation system 18 commercial system 21 service line 22 circuit breaker 23 power meter 24 power distribution board 26 power company (predetermined business operator) 41 solar cell array sensor 42 inverter circuit sensor 43 NCU (transmitter / receiver) 50 telephone line (Communication line) 60: Main service company (predetermined company) 70: Service company (predetermined company) 80: Management company (predetermined company)
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H02N 6/00 H04M 11/00 301 H04M 11/00 301 H01L 31/04 K ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H02N 6/00 H04M 11/00 301 H04M 11/00 301 H01L 31/04 K
Claims (3)
流電力に変換するインバータ回路と、このインバータ回
路を制御する制御回路と、前記太陽電池アレイとインバ
ータ回路との間およびインバータ回路と分電盤との間に
介装される開閉器とを備えた連系インバータ装置におい
て、通信回線に接続された送受信部を前記制御回路に接
続してあり、前記制御回路は太陽電池アレイまたは連系
インバータ装置の異常を検出したときに前記開閉器を開
くように構成されているとともに、前記送受信部よりエ
ラー情報を通信回線を介して所定の事業者に送信するよ
うに構成されている太陽光発電系統連系ネットワークシ
ステム。1. An inverter circuit for converting DC power generated by a solar cell array into AC power, a control circuit for controlling the inverter circuit, a circuit between the solar cell array and the inverter circuit, and an inverter circuit and a distribution board. A transmission / reception unit connected to a communication line is connected to the control circuit, and the control circuit includes a solar cell array or a connection inverter device. The photovoltaic power generation system is configured to open the switch when an abnormality is detected, and to transmit error information from the transmission / reception unit to a predetermined business operator via a communication line. System network system.
流電力に変換するインバータ回路と、このインバータ回
路を制御する制御回路と、前記太陽電池アレイとインバ
ータ回路との間およびインバータ回路と分電盤との間に
介装される開閉器とを備えた連系インバータ装置におい
て、通信回線に接続された送受信部を前記制御回路に接
続してあり、所定の事業者から通信回線を介して連系イ
ンバータ装置の制御回路にアクセスして連系インバータ
装置の運転情報を所定の事業者に収集するように構成し
てある太陽光発電系統連系ネットワークシステム。2. An inverter circuit for converting DC power generated by a solar cell array into AC power, a control circuit for controlling the inverter circuit, a circuit between the solar cell array and the inverter circuit, and an inverter circuit and a distribution board. A transmission / reception unit connected to a communication line is connected to the control circuit, and is connected to the control circuit via a communication line from a predetermined company. A photovoltaic power system interconnection network system configured to access a control circuit of the inverter device and collect operation information of the interconnection inverter device at a predetermined company.
流電力に変換するインバータ回路と、このインバータ回
路を制御する制御回路と、前記太陽電池アレイとインバ
ータ回路との間およびインバータ回路と分電盤との間に
介装される開閉器とを備えた連系インバータ装置におい
て、通信回線に接続された送受信部を前記制御回路に接
続してあり、商用系統に異常が発生したときに所定の事
業者から通信回線を介して連系インバータ装置の制御回
路にアクセスしてインバータ回路を停止を含めて制御す
るように構成してある太陽光発電系統連系ネットワーク
システム。3. An inverter circuit for converting DC power generated by a solar cell array into AC power, a control circuit for controlling the inverter circuit, a circuit between the solar cell array and the inverter circuit, and between the inverter circuit and the distribution board. A transmission / reception unit connected to a communication line is connected to the control circuit, and a predetermined business is performed when an abnormality occurs in a commercial system. A photovoltaic power generation system interconnection network system configured to access a control circuit of an interconnection inverter device from a user via a communication line and control the inverter circuit including stoppage.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10008402A JPH11206038A (en) | 1998-01-20 | 1998-01-20 | PV system interconnection network system |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10008402A JPH11206038A (en) | 1998-01-20 | 1998-01-20 | PV system interconnection network system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11206038A true JPH11206038A (en) | 1999-07-30 |
Family
ID=11692193
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10008402A Pending JPH11206038A (en) | 1998-01-20 | 1998-01-20 | PV system interconnection network system |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11206038A (en) |
Cited By (66)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002125316A (en) * | 2000-10-13 | 2002-04-26 | Kurita Water Ind Ltd | Power generation equipment operation system |
| US6425248B1 (en) | 2000-09-21 | 2002-07-30 | Sharp Kabushiki Kaisha | Solar power generation administration system, and solar power generation administration method to provide useful information to user |
| KR20030023851A (en) * | 2001-09-14 | 2003-03-20 | 미쓰비시덴키 가부시키가이샤 | Power System Management Method and Power System Management System |
| JP2005168297A (en) * | 2000-09-11 | 2005-06-23 | Sharp Corp | Wide area power supply system |
| JP2006184982A (en) * | 2004-12-27 | 2006-07-13 | Casio Comput Co Ltd | Dispensing pharmacy business processing system and program |
| JP2010512139A (en) * | 2006-12-06 | 2010-04-15 | ソーラーエッジ エルティーディ | Monitoring system and method for distributed power harvesting system using DC power supply |
| CN101860273A (en) * | 2008-06-11 | 2010-10-13 | 萨维奥股份有限公司 | Anti-theft and surveillance system for photovoltaic panels |
| JP2010245532A (en) * | 2009-04-06 | 2010-10-28 | Savio Spa | Antitheft and monitoring system for photovoltaic panel |
| US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US8957645B2 (en) | 2008-03-24 | 2015-02-17 | Solaredge Technologies Ltd. | Zero voltage switching |
| US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US8988838B2 (en) | 2012-01-30 | 2015-03-24 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9000617B2 (en) | 2008-05-05 | 2015-04-07 | Solaredge Technologies, Ltd. | Direct current power combiner |
| US9041339B2 (en) | 2006-12-06 | 2015-05-26 | Solaredge Technologies Ltd. | Battery power delivery module |
| US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9231570B2 (en) | 2010-01-27 | 2016-01-05 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
| US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9276410B2 (en) | 2009-12-01 | 2016-03-01 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
| US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| JP2016123241A (en) * | 2014-12-25 | 2016-07-07 | 株式会社村田製作所 | Power conditioner |
| US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9438035B2 (en) | 2003-05-28 | 2016-09-06 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
| US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
-
1998
- 1998-01-20 JP JP10008402A patent/JPH11206038A/en active Pending
Cited By (196)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010207085A (en) * | 2000-09-11 | 2010-09-16 | Sharp Corp | Wide-area power supply system |
| JP2005168297A (en) * | 2000-09-11 | 2005-06-23 | Sharp Corp | Wide area power supply system |
| JP2011147340A (en) * | 2000-09-11 | 2011-07-28 | Sharp Corp | System and method for management of solar power generator |
| US6425248B1 (en) | 2000-09-21 | 2002-07-30 | Sharp Kabushiki Kaisha | Solar power generation administration system, and solar power generation administration method to provide useful information to user |
| JP2002125316A (en) * | 2000-10-13 | 2002-04-26 | Kurita Water Ind Ltd | Power generation equipment operation system |
| KR20030023851A (en) * | 2001-09-14 | 2003-03-20 | 미쓰비시덴키 가부시키가이샤 | Power System Management Method and Power System Management System |
| US11817699B2 (en) | 2003-05-28 | 2023-11-14 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US10910834B2 (en) | 2003-05-28 | 2021-02-02 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US11476663B2 (en) | 2003-05-28 | 2022-10-18 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US11075518B2 (en) | 2003-05-28 | 2021-07-27 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US11658508B2 (en) | 2003-05-28 | 2023-05-23 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US10135241B2 (en) | 2003-05-28 | 2018-11-20 | Solaredge Technologies, Ltd. | Power converter for a solar panel |
| US9438035B2 (en) | 2003-05-28 | 2016-09-06 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| US11824398B2 (en) | 2003-05-28 | 2023-11-21 | Solaredge Technologies Ltd. | Power converter for a solar panel |
| JP2006184982A (en) * | 2004-12-27 | 2006-07-13 | Casio Comput Co Ltd | Dispensing pharmacy business processing system and program |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| JP2010512139A (en) * | 2006-12-06 | 2010-04-15 | ソーラーエッジ エルティーディ | Monitoring system and method for distributed power harvesting system using DC power supply |
| US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
| US9041339B2 (en) | 2006-12-06 | 2015-05-26 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
| US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12388492B2 (en) | 2006-12-06 | 2025-08-12 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
| US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| US8957645B2 (en) | 2008-03-24 | 2015-02-17 | Solaredge Technologies Ltd. | Zero voltage switching |
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
| US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
| US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9000617B2 (en) | 2008-05-05 | 2015-04-07 | Solaredge Technologies, Ltd. | Direct current power combiner |
| CN101860273A (en) * | 2008-06-11 | 2010-10-13 | 萨维奥股份有限公司 | Anti-theft and surveillance system for photovoltaic panels |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| JP2010245532A (en) * | 2009-04-06 | 2010-10-28 | Savio Spa | Antitheft and monitoring system for photovoltaic panel |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11056889B2 (en) | 2009-12-01 | 2021-07-06 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
| US9276410B2 (en) | 2009-12-01 | 2016-03-01 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
| US11735951B2 (en) | 2009-12-01 | 2023-08-22 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
| US12316158B2 (en) | 2009-12-01 | 2025-05-27 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
| US10270255B2 (en) | 2009-12-01 | 2019-04-23 | Solaredge Technologies Ltd | Dual use photovoltaic system |
| US9231570B2 (en) | 2010-01-27 | 2016-01-05 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
| US9564882B2 (en) | 2010-01-27 | 2017-02-07 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
| US9917587B2 (en) | 2010-01-27 | 2018-03-13 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
| US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
| US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12407158B2 (en) | 2010-11-09 | 2025-09-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12295184B2 (en) | 2010-12-09 | 2025-05-06 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
| US8988838B2 (en) | 2012-01-30 | 2015-03-24 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
| US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
| US11334104B2 (en) | 2012-05-25 | 2022-05-17 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US12306653B2 (en) | 2012-05-25 | 2025-05-20 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US10705551B2 (en) | 2012-05-25 | 2020-07-07 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US11740647B2 (en) | 2012-05-25 | 2023-08-29 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US12218628B2 (en) | 2012-06-04 | 2025-02-04 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
| US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
| US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
| US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
| US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| JP2016123241A (en) * | 2014-12-25 | 2016-07-07 | 株式会社村田製作所 | Power conditioner |
| US10540530B2 (en) | 2016-03-03 | 2020-01-21 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
| US12224365B2 (en) | 2016-03-03 | 2025-02-11 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US11824131B2 (en) | 2016-03-03 | 2023-11-21 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
| US11538951B2 (en) | 2016-03-03 | 2022-12-27 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPH11206038A (en) | PV system interconnection network system | |
| US8126752B2 (en) | System and method to provide maintenance for an electrical power generation, transmission and distribution system | |
| KR200402282Y1 (en) | Monitering apparatus of solar photo condensing array | |
| CN101523230B (en) | Solar inverter and plant for converting solar energy into electrical energy | |
| KR101803919B1 (en) | Appratus and method for monitoring energy | |
| US20160069707A1 (en) | Remote access energy meter system and method | |
| US7274305B1 (en) | Electrical utility communications and control system | |
| CN103199559B (en) | Intelligent center control type solar energy family roof grid-connected power generation system and operating method thereof | |
| CN109687590B (en) | Grading outage and restoration reporting method and system | |
| KR20090002295A (en) | Integrated operation and post management system and method of solar power plant | |
| US6671636B2 (en) | Apparatus, method and article of manufacture for utility monitoring | |
| JP3394958B1 (en) | Home automation system | |
| KR102540813B1 (en) | Remote monitoring apparatus and method for photovoltaic system | |
| KR101212742B1 (en) | Management system and Method for monitoring apparatus for solar energy | |
| KR102320391B1 (en) | connection board apparatus for solar energy generation | |
| JP2001282945A (en) | System for maintaining various plants and restoring abnormality | |
| CN112710891A (en) | Branch switch stop and recovery monitoring sensor, system and method | |
| JPH0993820A (en) | Solar photovoltaic power generation system | |
| KR20230099296A (en) | The system for managing photovoltaic power generation using LoRa and beacon communication | |
| KR20010037283A (en) | Power Failing Detecting System | |
| KR102747860B1 (en) | An operating system that collects and services real-time power generation data and facility status information from distributed renewable energy power generation facilities | |
| CN2441269Y (en) | Intellectual alarm for general wire distributor | |
| JP6434097B2 (en) | Control device, control system, distribution board and control method | |
| CN111308187A (en) | Meter box protection device and remote monitoring platform | |
| CN116546347A (en) | Hydropower station base station equipment based on data remote communication transmission |