JPH11209837A - Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchanger - Google Patents
Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchangerInfo
- Publication number
- JPH11209837A JPH11209837A JP2645498A JP2645498A JPH11209837A JP H11209837 A JPH11209837 A JP H11209837A JP 2645498 A JP2645498 A JP 2645498A JP 2645498 A JP2645498 A JP 2645498A JP H11209837 A JPH11209837 A JP H11209837A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- corrosion
- heat exchanger
- sacrificial
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
(57)【要約】
【課題】 自動車用熱交換器のチューブ管内面側の耐食
性を高める。
【解決手段】 Zn:6.0wt%を越え15.0wt%以
下含有し、Cu:0.05wt%以下を含み、残部Alと
不可避的不純物からなるAl合金であって、表面の平均
結晶粒径が100〜700μmであることを特徴とする
熱交換器用犠牲防食アルミニウム合金。(57) [Summary] [PROBLEMS] To improve the corrosion resistance on the inner surface side of a tube of a heat exchanger for an automobile. SOLUTION: An Al alloy containing more than 6.0% by weight of Zn and not more than 15.0% by weight, containing Cu: not more than 0.05% by weight, the balance being Al and unavoidable impurities, and having an average crystal grain size on the surface. A sacrificial corrosion-resistant aluminum alloy for a heat exchanger, wherein
Description
【0001】[0001]
【発明の属する技術分野】本発明は自動車用熱交換器用
等に用いられる薄肉のAl合金複合材に関するものであ
り、さらに詳しくはろう付法により形成される熱交換器
の冷媒通路を形成するチューブ管の材料として用いられ
る3層構造のAl合金複合材に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin aluminum alloy composite used for a heat exchanger for automobiles and the like, and more particularly to a tube forming a refrigerant passage of a heat exchanger formed by a brazing method. The present invention relates to a three-layered Al alloy composite material used as a tube material.
【0002】[0002]
【従来の技術】従来Al製熱交換器、例えばラジエータ
ーは図1(イ)、(ロ)に示すように、冷媒を通すチュ
ーブ管(1)間にフィン(2)を配置し、チューブ管
(1)の両端にヘッダープレート(3)を取り付けて、
コア(4)を組み立て、ろう付後にヘッダープレート
(3)にパッキング(6)を介して樹脂タンク(5)、
(5′)を取り付けたものである。そしてフィン(2)
にはJIS3003合金(Al−0.15wt%Cu−
1.1wt%Mn)にZnを1.5wt%程度添加した厚さ
0.1mm前後の板を用い、チューブ管には冷媒側の孔食
発生を防止するために、JIS3003合金にSi,C
u等を添加した合金芯材の内側(冷媒側)にJIS70
72(Al−1wt%Zn)あるいはそれにMg等を添加
した合金を犠牲陽極材としてクラッドした厚さ0.2〜
0.3mmのブレージングシートを用い、ヘッダープレー
ト(3)には厚さ1.0〜1.3mmのチューブ管(1)
と同様の材質のブレージングシートが用いられている。2. Description of the Related Art As shown in FIGS. 1 (a) and 1 (b), a conventional aluminum heat exchanger, for example, a radiator has a fin (2) disposed between tube tubes (1) through which a refrigerant passes, and a tube tube (1). Attach header plate (3) to both ends of 1),
After assembling the core (4), after brazing, the resin plate (5) is inserted into the header plate (3) via the packing (6),
(5 ') is attached. And fins (2)
JIS3003 alloy (Al-0.15wt% Cu-
1.1 wt% Mn) and a plate with a thickness of about 0.1 mm in which Zn is added in an amount of about 1.5 wt%.
JIS 70 on the inside (refrigerant side) of the alloy core material to which
72 (Al-1 wt% Zn) or an alloy obtained by adding Mg or the like thereto and clad as a sacrificial anode material.
A tube tube (1) with a thickness of 1.0 to 1.3 mm is used for the header plate (3) using a brazing sheet of 0.3 mm.
A brazing sheet made of the same material as that described above is used.
【0003】これらブレージングシートはろう付加熱時
に580〜610℃程度の雰囲気にさらされ、これによ
り上記犠牲陽極材中のZnは図2及び図3に示すように
芯材中に拡散する。このZn拡散層の優先腐食により、
冷媒側から発生する孔食は深く成長せず、浅く広い孔食
形態をとり、長期の耐孔食性を示すようになる。Al−
Zn系(通常Zn量4wt%以下)、Al−Zn−Mg
系、又はAl−Mg−In系犠牲陽極合金自体は浅く広
い孔食形態(面食)をとる特徴があり、さらに芯材とこ
れら犠牲材との電位差により、芯材が暴露した後も犠牲
材が優先的に腐食され、芯材の腐食を防止するといわれ
ている。[0003] These brazing sheets are exposed to an atmosphere of about 580 to 610 ° C at the time of brazing application heat, whereby Zn in the sacrificial anode material diffuses into the core material as shown in FIGS. 2 and 3. Due to the preferential corrosion of the Zn diffusion layer,
The pits generated from the refrigerant side do not grow deeply, take a shallow and wide pitting form, and exhibit long-term pitting resistance. Al-
Zn-based (No more than 4 wt% Zn), Al-Zn-Mg
The Al-Mg-In-based sacrificial anode alloy itself has a feature of taking a shallow and wide pitting corrosion form (face corrosion), and furthermore, the sacrificial material is exposed even after the core material is exposed due to a potential difference between the core material and these sacrificial materials. It is said to be preferentially corroded and prevent corrosion of the core material.
【0004】[0004]
【発明が解決しようとする課題】最近では軽量化に伴う
板厚減少及び熱交換器の高機能化に伴い、チューブ管内
部の液流速が従来に比べて非常に速い環境となり、さら
には使用冷却水(クーラント)によっては、高アルカリ
液仕様となっている場合がある。また自動車を走行させ
ている環境によってはクーラントが何らかの原因で機能
劣化した場合、従来技術の犠牲材では十分な防食効果が
得られないばかりか、いわゆるエロージョンに伴うチュ
ーブ腐食増大という大きな問題がでるのである。Recently, with the reduction in the thickness of the plate due to the weight reduction and the sophistication of the heat exchanger, the environment in which the liquid flow rate inside the tube tube is much faster than in the past, and the cooling used Depending on the water (coolant), a high alkali liquid specification may be used. Also, depending on the environment in which the car is running, if the coolant deteriorates for some reason, the sacrificial material of the conventional technology will not only provide a sufficient anticorrosion effect, but also will cause a serious problem of increased tube corrosion accompanying so-called erosion. is there.
【0005】[0005]
【課題を解決するための手段】上記問題を解決するため
に鋭意検討を行った結果、我々は本発明を見出すに至っ
たのである。即ちチューブ内面の冷媒側が特にアルカリ
液環境下であっても、クーラント液機能が劣化し、さら
には液流速が大きい場合でもエロージョン現象を起こし
にくい画期的な熱交換器用アルミニウム合金複合材と該
複合材の犠牲材として用いる犠牲防食アルミニウム合金
を発明したのである。Means for Solving the Problems As a result of diligent studies to solve the above problems, we have found the present invention. That is, even when the refrigerant side of the inner surface of the tube is particularly in an alkaline liquid environment, the coolant liquid function is deteriorated, and even when the liquid flow rate is large, the epoch-making aluminum alloy composite material for the heat exchanger is hardly caused. They invented a sacrificial corrosion-resistant aluminum alloy used as a sacrificial material.
【0006】即ち本発明の熱交換器用犠牲防食アルミニ
ウム合金は、Zn:6.0wt%(以下wt%を単に%と記
す)を越え15.0%以下を含有し、Cu:0.05%
以下を含み、又はさらにMn:0.05〜2.0%を含
有し、残部Alと不可避的不純物からなることを特徴と
するものである。That is, the sacrificial corrosion-resistant aluminum alloy for a heat exchanger of the present invention contains Zn in an amount of more than 6.0 wt% (hereinafter, wt% is simply referred to as%) and not more than 15.0%, and Cu: 0.05%.
It contains the following or further contains Mn: 0.05 to 2.0%, and is characterized by being composed of the balance of Al and inevitable impurities.
【0007】また本発明のアルミニウム合金複合材は、
Al合金芯材の片面に上記犠牲防食Al合金が犠牲材と
してクラッドされ、他の片面に所定量のSiを含有する
Al−Si系合金ろう材がクラッドされてなるものであ
り、この際Al合金芯材としてはSi:0.05〜1.
2%、Cu:0.003〜1.2%、Mn:0.05〜
2.0%を含有し、残部Alと不可避的不純物からなる
もの、又はSi:0.05〜1.2%、Cu:0.00
3〜1.2%、Mn:0.05〜2.0%を含有し、さ
らにMg:0.03〜0.5%、Cr:0.03〜0.
3%、Zr:0.03〜0.3%、Ti:0.03〜
0.3%、Ni:0.05〜2.0%のうち1種又は2
種以上を含有するものが良好である。さらに犠牲材の表
面平均結晶粒径が100〜700μmであることを特徴
とする。Further, the aluminum alloy composite of the present invention
The sacrificial anti-corrosion Al alloy is clad on one surface of an Al alloy core material as a sacrificial material, and the other surface is clad with an Al-Si alloy brazing material containing a predetermined amount of Si. The core material is Si: 0.05-1.
2%, Cu: 0.003 to 1.2%, Mn: 0.05 to
2.0%, the balance consisting of Al and inevitable impurities, or Si: 0.05 to 1.2%, Cu: 0.00
3 to 1.2%, Mn: 0.05 to 2.0%, Mg: 0.03 to 0.5%, Cr: 0.03 to 0.
3%, Zr: 0.03 to 0.3%, Ti: 0.03 to
0.3%, Ni: one or two of 0.05 to 2.0%
Those containing more than one species are good. Further, the sacrifice material has a surface average crystal grain size of 100 to 700 μm.
【0008】本発明では犠牲材中の防食効果元素として
従来から知られているZnの通常の添加量に対し、従来
発想では予想が困難な程の量のZn添加量を添加し得る
ことを確認しただけでなく、Cuを所定の範囲で含むこ
と及び犠牲材表面の平均結晶粒径を規定(コントロー
ル)することで、犠牲材の腐食溶解を必要以上に増大さ
せない効果を見出したものである。そしてこれにより例
えクーラントが高アルカリを保持したまま使用環境下に
よっては液機能が劣化し、さらには液流速の大きい環境
下になった場合でも、エロージョン、コロージョンを起
こしにくく、長期間犠牲材の機能を維持し、耐食性を大
幅に向上させることができる。In the present invention, it has been confirmed that, compared to the usual amount of Zn which has been conventionally known as an anticorrosion effect element in a sacrificial material, the amount of Zn to be added is so large that it is difficult to predict with the conventional idea. In addition, the present inventors have found an effect that the corrosion dissolution of the sacrificial material is not increased more than necessary by including Cu in a predetermined range and defining (controlling) the average crystal grain size on the surface of the sacrificial material. In this way, even if the coolant retains high alkali and the liquid function deteriorates depending on the use environment, and even in an environment with a high liquid flow rate, erosion and corrosion hardly occur, and the function of the sacrificial material for a long time , And the corrosion resistance can be greatly improved.
【0009】また本発明は、あらゆる使用環境を想定し
て芯材組成も同時に規定している。即ち、本発明の合金
組成範囲であれば従来合金に比べて強度と自己耐食性の
バランスを向上させて、さらにエロージョン、コロージ
ョンを抑制することができるのである。Further, in the present invention, the composition of the core material is also specified at the same time assuming any use environment. That is, within the alloy composition range of the present invention, the balance between strength and self-corrosion resistance can be improved as compared with conventional alloys, and erosion and corrosion can be further suppressed.
【0010】次に従来技術と本発明の違いについて説明
する。従来技術の一つとして強度と高温耐食性に優れた
熱交換器用ブレージングシートに関する特開平9−87
788号公報があるが、これに開示のAl合金の犠牲材
はZn含有量が本発明の防食アルミニウム合金と重複す
るも他の必須元素が全く異なっているものである。また
耐食性に優れた熱交換器の冷媒通路用ブレージングシー
トに関する特開平3−124392号公報及び同平3−
124393号公報には、本発明と同様の犠牲材の結晶
粒径が開示されているが、本発明のAl合金とは組成が
全く異なっている。Next, the difference between the prior art and the present invention will be described. Japanese Patent Application Laid-Open No. 9-87 relates to a brazing sheet for a heat exchanger having excellent strength and high-temperature corrosion resistance as one of the prior arts.
No. 788 discloses a sacrificial material of the Al alloy disclosed therein, in which the Zn content is the same as that of the anticorrosion aluminum alloy of the present invention, but other essential elements are completely different. JP-A-3-124392 and JP-A-3-124392 concerning a brazing sheet for a refrigerant passage of a heat exchanger having excellent corrosion resistance.
Japanese Patent No. 124393 discloses a crystal grain size of a sacrificial material similar to that of the present invention, but the composition is completely different from that of the Al alloy of the present invention.
【0011】また上記先行例には高アルカリ液、高流速
環境下での耐食性向上法についてはいずれも記載がな
い。即ち従来技術は、本発明がエロージョン、コロージ
ョンの問題を解決するために規定した犠牲材のZn量、
Cu量及び平均結晶粒径をすべて同時に制御している内
容ではない。In the above-mentioned prior art, there is no description about a method for improving corrosion resistance in a high alkali solution and a high flow rate environment. That is, in the prior art, the present invention defines the amount of Zn in a sacrificial material defined in order to solve the problems of erosion and corrosion,
It is not the content that the Cu amount and the average crystal grain size are all controlled simultaneously.
【0012】本発明で犠牲材として用いるAl合金の添
加元素と結晶粒径を規定した理由を以下に説明するが、
その大きな特徴は以下の〜である。The reason why the additive element and the crystal grain size of the Al alloy used as the sacrificial material in the present invention are specified will be described below.
The major features are the following.
【0013】Zn量:6%を越え、15%以下含有に
規定した理由 冷却液(クーラント)が高アルカリ(pH8〜11レベ
ル)環境下では、電気化学上、芯材よりも犠牲材の自然
電位が上昇する傾向にあり、防食上必要な犠牲材と芯材
との電位差が縮まる方向に向かう。このため、Zn量6
%以下では工業上利用されている芯材合金あるいは本発
明の芯材合金との組み合わせでは、犠牲材電位の方が芯
材より貴になってしまい、耐食性が急激に劣化する。ま
た、Zn量が15%を越える場合、犠牲材自身の融点が
低下しだし、通常のろう付加熱温度では溶融するおそれ
がでてくる。上記腐食環境で犠牲防食効果を最低限持た
せるには、Zn量を本発明の範囲内で含むことが必要で
ある。望ましくはZn量7〜12%がよい。[0013] Zn content: more than 6%, not more than 15%
When the coolant (coolant) is in a highly alkaline (pH 8 to 11) environment, the natural potential of the sacrificial material tends to be higher than that of the core material due to the electrochemical reaction. In the direction in which the potential difference between the two decreases. Therefore, the amount of Zn is 6
% Or less, the potential of the sacrificial material becomes more noble than the core material in combination with the core material alloy used industrially or the core material alloy of the present invention, and the corrosion resistance is rapidly deteriorated. On the other hand, if the Zn content exceeds 15%, the melting point of the sacrificial material itself starts to decrease, and there is a possibility that the sacrificial material will be melted at a normal brazing heat temperature. In order to minimize the sacrificial corrosion protection effect in the above corrosive environment, it is necessary that the amount of Zn be included within the scope of the present invention. Desirably, the Zn content is 7 to 12%.
【0014】犠牲材表面の平均結晶粒径:100〜7
00μmに規定した理由 冷却液(クーラント)が高アルカリ(pH8〜11レベ
ル)下で、さらに液流速が高い環境下では犠牲材の自然
電位は上昇するため、その結晶粒界近傍での腐食(粒界
腐食)発生頻度は急激に上昇する。腐食溶解で芯材が露
出した場合においても、犠牲材自身の粒界腐食の方が活
発となり、防食能は一気に低下する。このため、結晶粒
径が100μm未満では粒界腐食が顕著となる。また7
00μmを越えた場合、最終工程でAl合金複合材を電
縫加工、又は折り曲げ加工した際に、材料の変形能が低
下し、場合によっては亀裂破壊するおそれがでてくる。
したがって上記腐食環境で犠牲防食効果を最低限持たせ
るには、犠牲材表面の平均結晶粒径を本発明内で規定す
ることが必要である。望ましくは、120〜500μm
がよい。さらには150〜370μmがよい。なお、結
晶粒径のコントロール法としては、クラッド圧延前工程
である犠牲材単独の熱間圧延開始温度あるいは犠牲材中
のMn添加量で制御できる。なお、最終板厚の複合材素
板の状態で犠牲材の結晶粒径が本発明の規定内であれ
ば、実際の熱交換器として実用環境下でも、さらに腐食
環境下でも該結晶粒径は本発明を満足する。 Average crystal grain size on the surface of the sacrificial material: 100 to 7
The reason why the thickness is set to 00 μm is that the self-potential of the sacrificial material rises in an environment where the coolant (coolant) is highly alkaline (pH 8 to 11) and the liquid flow rate is further high, so that the corrosion (grain) near the crystal grain boundary (grain) occurs. The frequency of occurrence of interfacial corrosion) increases rapidly. Even when the core material is exposed by corrosion dissolution, the intergranular corrosion of the sacrificial material itself becomes more active, and the anticorrosion ability is reduced at a stretch. Therefore, if the crystal grain size is less than 100 μm, intergranular corrosion becomes significant. 7
When the thickness exceeds 00 μm, the deformability of the material is reduced when the Al alloy composite material is subjected to the electric sewing process or the bending process in the final step, and in some cases, there is a risk of crack fracture.
Therefore, in order to have the sacrificial anticorrosion effect at least in the above corrosive environment, it is necessary to define the average crystal grain size on the surface of the sacrificial material in the present invention. Desirably, 120 to 500 μm
Is good. Further, the thickness is preferably 150 to 370 μm. In addition, as a method of controlling the crystal grain size, it can be controlled by the hot rolling start temperature of the sacrificial material alone, which is the pre-clad rolling step, or the amount of Mn added in the sacrificial material. Incidentally, if the crystal grain size of the sacrificial material in the state of the composite plate having the final thickness is within the range of the present invention, even in a practical environment as an actual heat exchanger, and even under a corrosive environment, the crystal grain size is The present invention is satisfied.
【0015】Cu量:0.05%以下に規制した理由 上記腐食環境下で犠牲材の防食能を長期間維持するため
には、犠牲材でZn量と結晶粒径を本発明内で規定した
だけでは不十分なのである。犠牲材のCu量が0.05
%を越えた場合、その結晶粒界に偏析したCuが原因で
粒界腐食が助長されてしまう。この犠牲材の粒界腐食が
起点となって、芯材は腐食露出した際に溶解スピードが
増大するおそれがでてくる。望ましくはCu量は0.0
05〜0.028%に規制するのがよい。 Reason for restricting Cu content to 0.05% or less In order to maintain the sacrificial material's anticorrosive ability for a long time under the above corrosive environment, the Zn content and the crystal grain size of the sacrificial material are defined in the present invention. Is not enough. Cu content of sacrificial material is 0.05
%, Cu segregated at the crystal grain boundaries promotes intergranular corrosion. Starting from the intergranular corrosion of the sacrificial material, the dissolution speed of the core material may increase when corrosion is exposed. Desirably, the Cu content is 0.0
It is good to regulate to 0.05 to 0.028%.
【0016】したがって、犠牲材のZn量、Cu量を規
定の範囲内で含むこと、表面結晶粒径のすべてを本発明
内で規定して初めて上記腐食環境下でも問題なく使用で
きるのである。Therefore, it is possible to use the sacrificial material under the above-mentioned corrosive environment without any problem if the Zn content and the Cu content of the sacrificial material are all within the specified ranges and the surface crystal grain size is all specified in the present invention.
【0017】また犠牲材のMn量を本発明内で規定をす
れば、さらに耐エロージョン性が向上するのである。M
n0.05〜2.0%と限定したのは、0.05%未満
では上記効果が十分に発揮されず、2.0%を越える場
合には電縫加工あるいは折り曲げろう付加工によりチュ
ーブ管を製造した際に、溶接欠陥(ミクロ割れ)あるい
は折り曲げ加工寸法不良の問題を引き起こすおそれがあ
るからである。If the Mn content of the sacrificial material is specified in the present invention, the erosion resistance is further improved. M
The reason why n is limited to 0.05 to 2.0% is that when the content is less than 0.05%, the above effect is not sufficiently exhibited, and when the content exceeds 2.0%, the tube tube is subjected to an electric sewing process or a brazing process. This is because, at the time of manufacture, there is a possibility that a problem of a weld defect (micro crack) or a defective bending process may be caused.
【0018】その他元素(Ti≦0.2%,Mg≦0.
03%,GeあるいはGa≦0.2%,Zr≦0.2%
等)は微量であれば諸特性を低下させない限り、添加し
ても構わない。Other elements (Ti ≦ 0.2%, Mg ≦ 0.
03%, Ge or Ga ≦ 0.2%, Zr ≦ 0.2%
) May be added as long as the various properties are not reduced as long as the amount is small.
【0019】次に本発明複合材の芯材の各元素の規定理
由とその添加範囲の限定理由について述べる。Si,C
u及びMnはろう付後にマトリックス中に固溶し、強度
向上に効果がある。さらに本発明の犠牲材との組み合わ
せで使用する場合には、Cu量を本発明で規定すること
は上記腐食対策上、非常に有効である。Next, the reasons for defining each element of the core material of the composite material of the present invention and the reasons for limiting the range of addition will be described. Si, C
u and Mn form a solid solution in the matrix after brazing, and are effective in improving the strength. Further, when used in combination with the sacrificial material of the present invention, defining the amount of Cu in the present invention is very effective in preventing the corrosion.
【0020】Si添加量が0.05%未満では強度向上
効果がなく、1.2%を越えると単体Siによる深い孔
食を引き起こすおそれがある。なお、望ましくは0.3
〜0.9%とするのがよい。If the amount of Si added is less than 0.05%, there is no effect of improving the strength, and if it exceeds 1.2%, there is a possibility that deep pitting corrosion may be caused by Si alone. Preferably, 0.3
It is better to be 0.9%.
【0021】Cu添加量を0.003〜1.2%とした
のは、0.003%未満では上記効果がなく、1.2%
を越えると芯材の自己耐食性が低下し、粒界腐食が助長
される問題が発生する。また電縫加工時に溶接割れを引
き起こすおそれがある。なお、使用環境に応じて望まし
くは0.005〜0.05%、あるいは0.4〜0.8
%とするのがよい。The reason why the addition amount of Cu is set to 0.003 to 1.2% is that if the amount is less than 0.003%, the above effect is not obtained.
If the ratio exceeds the limit, the self-corrosion resistance of the core material is reduced, and a problem occurs that intergranular corrosion is promoted. Further, there is a possibility that welding cracks may be caused during the electric resistance welding. In addition, desirably, 0.005 to 0.05% or 0.4 to 0.8% according to the use environment.
%.
【0022】Mn添加量を0.05〜2.0%としたの
は、0.05%未満では強度向上効果がなく、2.0%
を越えると加工性が低下する問題が発生する。望ましく
は0.3〜1.5%とするのがよい。さらに望ましくは
0.7〜1.2%とするのがよい。The reason that the amount of Mn added is 0.05 to 2.0% is that if less than 0.05%, there is no strength improvement effect,
If the ratio exceeds the above range, a problem that workability is deteriorated occurs. Desirably, it is set to 0.3 to 1.5%. More preferably, the content is set to 0.7 to 1.2%.
【0023】Mgは芯材のSiとともにMg2 Siの化
合物を時効析出することで強度向上効果がある。0.0
3%未満では強度向上の効果がなく、0.5%を越える
とろう付加熱時に芯材の片面にクラッドしたろう材側表
面にMgが拡散し、フラックスを使用した場合にはこれ
と反応してろう付不良を発生させるおそれがでてくる。
望ましくは0.08〜0.25%とする。Mg has an effect of improving strength by precipitating the compound of Mg 2 Si together with Si as the core material. 0.0
If it is less than 3%, there is no effect of improving the strength, and if it exceeds 0.5%, Mg diffuses into the brazing material side surface clad on one side of the core material when the brazing heat is applied, and reacts with the flux when flux is used. This may cause brazing failure.
Desirably, it is set to 0.08 to 0.25%.
【0024】Cr,Zr,Tiを各々0.03〜0.3
%の範囲で含むことで、さらに芯材の自己耐食性を向上
させることができる。0.03%未満ではその効果がな
く、0.3%を越えると鋳造時の凝固割れを誘発するお
それがある。望ましくは各々0.08〜0.2%がよ
い。Cr, Zr and Ti are each in the range of 0.03-0.3.
%, The self-corrosion resistance of the core material can be further improved. If it is less than 0.03%, the effect is not obtained, and if it exceeds 0.3%, solidification cracking during casting may be induced. Desirably, each is 0.08 to 0.2%.
【0025】Niを0.05〜2.0%添加することで
強度を向上することができる。0.05%未満ではその
効果が少なく、2%を越えると圧延性が劣化するのでよ
くない。望ましくは0.2〜1.0%がよい。その他元
素は諸特性を低下させない限り、添加しても構わない。The strength can be improved by adding 0.05 to 2.0% of Ni. If it is less than 0.05%, the effect is small, and if it exceeds 2%, the rollability deteriorates, which is not good. Desirably, the content is 0.2 to 1.0%. Other elements may be added as long as various properties are not deteriorated.
【0026】芯材及び犠牲材の製造方法については、鋳
造はDC法、連続鋳造(キャスター)等、限定されな
い。均質化処理条件、熱間圧延、冷間圧延、中間焼鈍条
件等も特に限定されるものでない。The method for producing the core material and the sacrificial material is not limited to a DC method, such as a DC method and continuous casting (caster). Homogenization processing conditions, hot rolling, cold rolling, intermediate annealing conditions, and the like are not particularly limited.
【0027】次に本発明におけるろう材としては、例え
ばAl−Si系のJIS4343合金(Al−7.5%
Si)、JIS4045合金(Al−10%Si)及び
JIS4004合金(Al−9.7%Si−1.5%M
g)等が使用できる。またこのAl−Si系合金ろう材
にはCu,Znその他の元素をろう付性を低下させない
限り添加しても構わない。さらにろう材の接合方法も本
発明規定のクラッド圧延法以外に、粉末+バインダー塗
布法によっても同様の効果が十分に発揮されるのであ
る。Next, as a brazing material in the present invention, for example, an Al-Si based JIS 4343 alloy (Al-7.5%
Si), JIS 4045 alloy (Al-10% Si) and JIS 4004 alloy (Al-9.7% Si-1.5% M
g) can be used. Further, Cu, Zn and other elements may be added to the Al-Si alloy brazing material as long as the brazing property is not reduced. Further, the same effect can be sufficiently exerted by the method of joining the brazing material by the powder + binder coating method in addition to the clad rolling method specified in the present invention.
【0028】本発明のAl合金複合材は、ラジエータ
ー、ヒーターチューブ管の他に、ラジエーター、ヒータ
ーのへッダープレートにも使用でき、その他本発明の目
的と同様であればいかなる部材としても充分に使用でき
る。The Al alloy composite material of the present invention can be used not only for radiators and heater tube pipes but also for radiators and heater header plates, and can be used satisfactorily as any other member as long as the object of the present invention is the same. .
【0029】[0029]
【実施例】次に本発明の実施例について説明する。表1
に示す組成の芯材合金と表2に示す組成の犠牲材合金の
それぞれ No.1〜No.28のものを金型鋳造により鋳造
して、各々両面面削後、 No.2,3,9,12,16,
18,26の犠牲材合金は450℃で熱間圧延を開始
し、 No.21の犠牲材合金は560℃で熱間圧延を開始
し、その他の犠牲材合金は500℃で熱間圧延を開始
し、それぞれ板厚5mmに圧延した。そして芯材合金はい
ずれも560℃×3hrの均質化処理を行い、面削で板厚
40mmに仕上げた。また、ろう材はJIS4343合金
を用い犠牲材同様金型鋳造し、面削後熱間圧延を行い板
厚5mmとした。即ち犠牲材及びろう材の複合材全体に対
するクラッド率をそれぞれ10%となるようにした。Next, an embodiment of the present invention will be described. Table 1
No. 1 to No. 28 of the core material alloy having the composition shown in Table 2 and the sacrificial material alloy having the composition shown in Table 2 were cast by die casting. , 12,16,
Hot rolling starts at 450 ° C for the sacrificial alloys 18 and 26, hot rolling starts at 560 ° C for the No. 21 sacrificial alloy, and hot rolling starts at 500 ° C for the other sacrificial alloys. Then, each was rolled to a plate thickness of 5 mm. Each of the core alloys was homogenized at 560 ° C. for 3 hours, and finished to a thickness of 40 mm by facing. The brazing material was JIS4343 alloy, and was subjected to die casting in the same manner as the sacrificial material. That is, the cladding ratio of the sacrificial material and the brazing material to the entire composite material was set to 10%.
【0030】上記ろう材、芯材、犠牲材の3枚をこの順
に重ねて490℃で熱間圧延を開始し、厚さ3.5mmの
3層クラッド材とした。その後冷間圧延により板厚0.
357mmとし、340℃×2hrの中間焼鈍を施して最終
的には板厚0.25mmまで冷間圧延し、H14材の複合
材試料とした。The brazing material, the core material, and the sacrificial material were stacked in this order, and hot rolling was started at 490 ° C. to obtain a three-layer clad material having a thickness of 3.5 mm. Thereafter, the sheet thickness was reduced to 0.
It was set to 357 mm, subjected to intermediate annealing at 340 ° C. for 2 hours, and finally cold-rolled to a sheet thickness of 0.25 mm to obtain an H14 composite sample.
【0031】犠牲材表面の平均結晶粒径の測定及び材料
の耐食性を以下の方法で評価した。先ず各複合材試料を
犠牲材面を内側にしてそれぞれ電縫加工によりチューブ
管とし、これらチューブ管を板厚0.07mmのAl−
0.5%Si−0.2%Cu−1.0%Mn−2.0%
Zn合金からなるコルゲート加工したフィンと板厚1.
2mmのヘッダープレート、及びサイドプレート(JIS
4343合金ろう材とAl−1.5%Zn犠牲材を各々
全板厚の10%ずつクラッドした芯材JIS3003合
金+0.15%MgからなるAl合金複合材)を用いて
図1のように組み付けた後ろう付を実施し熱交換器コア
を作製した。そしてこれら熱交換器コアについて以下の
測定を実施した。The measurement of the average crystal grain size on the surface of the sacrificial material and the corrosion resistance of the material were evaluated by the following methods. First, each composite material sample was turned into a tube tube by an electric resistance welding process with the sacrificial material side inside, and the tube tube was formed into a 0.07 mm-thick Al-tube.
0.5% Si-0.2% Cu-1.0% Mn-2.0%
Corrugated fins made of Zn alloy and plate thickness
2mm header plate and side plate (JIS
As shown in FIG. 1, using a 4343 alloy brazing material and an Al-1.5% Zn sacrificial material, each of which is clad by 10% of the total thickness and a core material (an JIS 3003 alloy + 0.15% Mg Al alloy composite material). After that, brazing was performed to produce a heat exchanger core. And the following measurement was implemented about these heat exchanger cores.
【0032】〈犠牲材結晶粒径測定〉上記H14の複合
材試料を切出し、電解研磨(バーカー法)で犠牲材側表
面の結晶粒組織を観察し、ASTM法に基づき平均結晶
粒径を測定して犠牲材表面の平均結晶粒径として表3に
示した。<Measurement of Grain Size of Sacrificial Material> A sample of the composite material of H14 was cut out, the grain structure on the sacrificial material side surface was observed by electrolytic polishing (Barker method), and the average crystal grain size was measured based on the ASTM method. Table 3 shows the average grain size of the surface of the sacrificial material.
【0033】〈腐食試験〉下記2タイプの液条件で腐食
試験を実施し、犠牲材側から発生した最大孔食深さを測
定した。これら結果を表3に示す。<Corrosion Test> A corrosion test was performed under the following two types of liquid conditions, and the maximum pit depth generated from the sacrificial material side was measured. Table 3 shows the results.
【0034】酸性側循環試験上記熱交換器コアを使用
してチューブ内に下記液を循環させた。 (流速2m/sec) 液種: 水道水+10ppm Cuイオン+150ppm Cl
イオン 試験条件: 85℃×10hrと室温×14hrのサイクル
試験を5ケ月行う。Acidic Circulation Test The following liquid was circulated in the tube using the above heat exchanger core. (Flow rate 2 m / sec) Liquid type: tap water +10 ppm Cu ion +150 ppm Cl
Ion test conditions: A cycle test of 85 ° C. × 10 hours and room temperature × 14 hours is performed for 5 months.
【0035】アルカリ性側エロージョン試験 液種: 1ppm Cuイオン、30ppm Feイオン、40
ppm 硫酸イオン、150ppm Clイオンを含む溶液にN
aOHを添加してpH11に調整した腐食液を使用。 試験条件: 試験液が出るノズル径;2mmφ、ノズルか
ら試料までの垂直距離;10mm、流速8m/secで40℃
×1ケ月の連続試験を行った。Alkaline erosion test Liquid type: 1 ppm Cu ion, 30 ppm Fe ion, 40 ppm
ppm sulfate and 150ppm Cl
A corrosion liquid adjusted to pH 11 by adding aOH is used. Test conditions: Nozzle diameter from which test liquid is discharged; 2 mmφ, vertical distance from nozzle to sample; 10 mm, flow rate 8 m / sec, 40 ° C.
A continuous test of × 1 month was performed.
【0036】[0036]
【表1】 [Table 1]
【0037】[0037]
【表2】 [Table 2]
【0038】[0038]
【表3】 [Table 3]
【0039】表3から明らかなように、本発明例 No.1
〜20は酸性環境腐食試験においては孔食深さが60μ
m以下であり、優れた耐食性を確保する。さらに、高ア
ルカリ下で液流速が大きいエロージョン試験でも最大孔
食深さは80μm以下と耐食性が良好である。一方、合
金組成が本発明の範囲を外れる比較例合金 No.21〜2
7は、アルカリ側腐食が顕著に進行し、貫通孔を発生す
るに至っている。なお比較例 No.21,23,24,2
7は犠牲材Zn量が本発明の規定外であり、比較例 No.
22,25,26は犠牲材Zn量が本発明の規定内であ
るが、犠牲材のCu量あるいは結晶粒径が本発明の規定
外である。As is clear from Table 3, the present invention No. 1
No. 20 has a pit depth of 60μ in the acidic environment corrosion test.
m or less, ensuring excellent corrosion resistance. Furthermore, even in an erosion test in which the liquid flow rate is large under a high alkali, the maximum pitting depth is 80 μm or less, and the corrosion resistance is good. On the other hand, Comparative Example alloys No. 21 to No. 2 having alloy compositions outside the scope of the present invention
In No. 7, alkali side corrosion remarkably progresses, and a through hole is generated. Comparative Examples No. 21, 23, 24, 2
In Comparative Example No. 7, the amount of the sacrificial material Zn was out of the range of the present invention, and Comparative Example No.
22, 25 and 26, the Zn content of the sacrificial material is within the range of the present invention, but the Cu content or the crystal grain size of the sacrificial material is outside the range of the present invention.
【0040】[0040]
【発明の効果】以上から明らかなように、本発明の犠牲
防食アルミニウム合金を用いた本発明のAl合金複合材
は、酸性だけでなくアルカリ性の腐食環境においても優
れた犠牲防食能を確保して長期間にわたり腐食孔食が進
行しない優れた耐食性を有する。さらにエロージョンが
進行し易い環境でも、犠牲材の耐エロージョン性が大幅
に改善されるなど、本発明によれば従来の問題を解決で
き、工業上顕著な効果を奏するのである。As is apparent from the above description, the Al alloy composite of the present invention using the sacrificial corrosion-resistant aluminum alloy of the present invention ensures excellent sacrificial corrosion protection not only in acidic but also alkaline corrosion environments. Has excellent corrosion resistance in which corrosion pitting does not progress for a long time. Further, according to the present invention, the conventional problem can be solved, such as the erosion resistance of the sacrificial material is greatly improved, even in an environment where erosion easily progresses, and the industrially remarkable effect is achieved.
【図面の簡単な説明】[Brief description of the drawings]
【図1】ラジエーターの一例を示すもので、(イ)は正
面図、(ロ)は(イ)のAA線の拡大断面図である。FIGS. 1A and 1B show an example of a radiator, wherein FIG. 1A is a front view, and FIG. 1B is an enlarged sectional view taken along line AA of FIG.
【図2】チューブ材のろう付加熱前のZn拡散状況の一
例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a Zn diffusion state before heat of brazing of a tube material.
【図3】チューブ材のろう付加熱後のZn拡散状況の一
例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a Zn diffusion state after heat of brazing of a tube material.
1 チューブ管 2 フィン 3 ヘッダープレート 4 コア 5,5′ 樹脂タンク DESCRIPTION OF SYMBOLS 1 Tube tube 2 Fin 3 Header plate 4 Core 5, 5 'Resin tank
Claims (6)
下を含有し、Cu:0.05wt%以下を含み、残部Al
と不可避的不純物からなる熱交換器用犠牲防食アルミニ
ウム合金。1. A composition containing Zn: more than 6.0 wt% and not more than 15.0 wt%, Cu: not more than 0.05 wt%, the balance being Al
Sacrificial anti-corrosion aluminum alloy for heat exchangers, consisting of aluminum and unavoidable impurities.
下、Mn:0.05〜2.0wt%を含有し、Cu:0.
05wt%以下を含み、残部Alと不可避的不純物からな
る熱交換器用犠牲防食アルミニウム合金。2. The composition contains Zn: more than 6.0% by weight and 15.0% by weight or less, Mn: 0.05 to 2.0% by weight, and Cu: 0.1% by weight.
A sacrificial anti-corrosion aluminum alloy for heat exchangers containing up to 05 wt%, with the balance being Al and unavoidable impurities.
載のAl合金が犠牲材としてクラッドされ、芯材の他の
片面に所定量のSiを含有するAl−Si系合金ろう材
がクラッドされてなる熱交換器用アルミニウム合金複合
材。3. An Al-Si alloy brazing material containing a predetermined amount of Si on one surface of an Al alloy core material, wherein the Al alloy according to claim 1 or 2 is clad as a sacrificial material. Aluminum alloy composites for heat exchangers that are clad.
wt%、Cu:0.003〜1.2wt%、Mn:0.05
〜2.0wt%を含有し、残部Alと不可避的不純物から
なるものである請求項3記載の熱交換器用アルミニウム
合金複合材。4. The Al alloy core material is Si: 0.05 to 1.2.
wt%, Cu: 0.003 to 1.2 wt%, Mn: 0.05
The aluminum alloy composite material for a heat exchanger according to claim 3, wherein the aluminum alloy composite material contains about 2.0 wt% and the balance consists of Al and inevitable impurities.
wt%、Cu:0.003〜1.2wt%、Mn:0.05
〜2.0wt%を含有し、さらにMg:0.03〜0.5
wt%、Cr:0.03〜0.3wt%、Zr:0.03〜
0.3wt%、Ti:0.03〜0.3wt%、Ni:0.
05〜2.0wt%のうち1種又は2種以上を含有するも
のである請求項3記載の熱交換器用アルミニウム合金複
合材。5. The Al alloy core material is Si: 0.05 to 1.2.
wt%, Cu: 0.003 to 1.2 wt%, Mn: 0.05
-2.0 wt%, and further Mg: 0.03-0.5.
wt%, Cr: 0.03-0.3 wt%, Zr: 0.03-
0.3 wt%, Ti: 0.03 to 0.3 wt%, Ni: 0.
The aluminum alloy composite material for a heat exchanger according to claim 3, wherein the aluminum alloy composite material contains one or more of 0.05 to 2.0 wt%.
面平均結晶粒径が100〜700μmであることを特徴
とする熱交換器用アルミニウム合金複合材。6. An aluminum alloy composite for a heat exchanger, wherein the sacrificial material according to claim 3, 4 or 5 has a surface average crystal grain size of 100 to 700 μm.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2645498A JPH11209837A (en) | 1998-01-23 | 1998-01-23 | Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchanger |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2645498A JPH11209837A (en) | 1998-01-23 | 1998-01-23 | Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchanger |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11209837A true JPH11209837A (en) | 1999-08-03 |
Family
ID=12193962
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2645498A Pending JPH11209837A (en) | 1998-01-23 | 1998-01-23 | Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchanger |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11209837A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008078598A1 (en) * | 2006-12-27 | 2008-07-03 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy brazing sheet for heat exchanger |
| WO2015015767A1 (en) | 2013-07-29 | 2015-02-05 | 株式会社Uacj | Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member |
| WO2015104761A1 (en) | 2014-01-10 | 2015-07-16 | 株式会社Uacj | Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor |
| US20160101488A1 (en) * | 2014-10-13 | 2016-04-14 | Alcoa Inc. | Brazing sheet |
| JPWO2015104760A1 (en) * | 2014-01-07 | 2017-03-23 | 株式会社Uacj | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same |
| US10293428B2 (en) | 2013-06-26 | 2019-05-21 | Arconic Inc. | Resistance welding fastener, apparatus and methods |
| US10507514B2 (en) | 2015-09-16 | 2019-12-17 | Arconic Inc. | Rivet feeding apparatus |
| EP3508595B1 (en) | 2016-08-30 | 2022-05-18 | UACJ Corporation | Aluminum alloy brazing sheet |
-
1998
- 1998-01-23 JP JP2645498A patent/JPH11209837A/en active Pending
Cited By (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008078598A1 (en) * | 2006-12-27 | 2008-07-03 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy brazing sheet for heat exchanger |
| US8227091B2 (en) | 2006-12-27 | 2012-07-24 | Kobe Steel, Ltd. | Aluminum alloy brazing sheet for heat exchanger |
| US10293428B2 (en) | 2013-06-26 | 2019-05-21 | Arconic Inc. | Resistance welding fastener, apparatus and methods |
| WO2015015767A1 (en) | 2013-07-29 | 2015-02-05 | 株式会社Uacj | Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member |
| US11408690B2 (en) | 2013-07-29 | 2022-08-09 | Uacj Corporation | Method for producing aluminum alloy clad material |
| CN105378126A (en) * | 2013-07-29 | 2016-03-02 | 株式会社Uacj | Aluminum alloy cladding material, manufacturing method thereof, and heat exchanger using the aluminum alloy cladding material |
| US20160161199A1 (en) * | 2013-07-29 | 2016-06-09 | Uacj Corporation | Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member |
| EP3029169B1 (en) | 2013-07-29 | 2019-02-27 | UACJ Corporation | Aluminum-alloy clad member and method for producing the same |
| JP6006421B2 (en) * | 2013-07-29 | 2016-10-12 | 株式会社Uacj | Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material |
| JPWO2015104760A1 (en) * | 2014-01-07 | 2017-03-23 | 株式会社Uacj | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same |
| US9976201B2 (en) | 2014-01-07 | 2018-05-22 | Uacj Corporation | Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor |
| WO2015104761A1 (en) | 2014-01-10 | 2015-07-16 | 株式会社Uacj | Cladded aluminium-alloy material and production method therefor, and heat exchanger using said cladded aluminium-alloy material and production method therefor |
| JPWO2015104761A1 (en) * | 2014-01-10 | 2017-03-23 | 株式会社Uacj | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same |
| US9976200B2 (en) | 2014-01-10 | 2018-05-22 | Uacj Corporation | Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor |
| KR20190045426A (en) * | 2014-10-13 | 2019-05-02 | 아르코닉 인코포레이티드 | Brazing sheet |
| WO2016061074A3 (en) * | 2014-10-13 | 2016-06-09 | Alcoa Inc. | Brazing sheet |
| JP2017538869A (en) * | 2014-10-13 | 2017-12-28 | アーコニック インコーポレイテッドArconic Inc. | Brazing sheet |
| US20160101488A1 (en) * | 2014-10-13 | 2016-04-14 | Alcoa Inc. | Brazing sheet |
| US10532434B2 (en) * | 2014-10-13 | 2020-01-14 | Arconic Inc. | Brazing sheet |
| CN107000128A (en) * | 2014-10-13 | 2017-08-01 | 奥科宁克公司 | Soldering sheet material |
| US10507514B2 (en) | 2015-09-16 | 2019-12-17 | Arconic Inc. | Rivet feeding apparatus |
| EP3508595B1 (en) | 2016-08-30 | 2022-05-18 | UACJ Corporation | Aluminum alloy brazing sheet |
| EP3508595B2 (en) † | 2016-08-30 | 2025-02-26 | UACJ Corporation | Aluminum alloy brazing sheet |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3197251B2 (en) | Sacrificial corrosion-resistant aluminum alloys for heat exchangers and high corrosion-resistant aluminum alloy composites for heat exchangers | |
| US6921584B2 (en) | Brazing sheet | |
| JP6452627B2 (en) | Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same | |
| JP5873343B2 (en) | High corrosion resistance aluminum alloy brazing sheet and flow path forming part of automobile heat exchanger using the same | |
| JP2017145463A (en) | Aluminum alloy brazing sheet, method for producing the same, and automotive heat exchanger using the brazing sheet | |
| JP2002066786A (en) | Manufacturing method of high corrosion resistant aluminum alloy composite | |
| JPH11209837A (en) | Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchanger | |
| JP2004017116A (en) | Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method | |
| JPH11241136A (en) | High corrosion-resistant aluminum alloy, composite material thereof, and manufacturing method | |
| JPH0741919A (en) | Manufacturing method of heat exchanger tube material for non-corrosive flux brazing | |
| JP3858255B2 (en) | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance | |
| JP4485671B2 (en) | Anti-corrosion aluminum alloy brazing material for heat exchanger and high corrosion resistance aluminum alloy composite for heat exchanger | |
| JP5184112B2 (en) | Aluminum alloy clad material | |
| JP4566729B2 (en) | High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance | |
| JPH11264042A (en) | Aluminum alloy brazing sheet for fluid passage construction | |
| JP4596618B2 (en) | High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger | |
| JP3811932B2 (en) | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance | |
| JP2933382B2 (en) | High strength and high corrosion resistance aluminum alloy clad material for heat exchanger | |
| JP2002012935A (en) | Aluminum alloy sheet with protective corrosion prevention and its composite material | |
| JPH11209838A (en) | Sacrificial anti-corrosion aluminum alloy for heat exchanger and aluminum alloy composite material using it for heat exchanger | |
| JP3830066B2 (en) | Sacrificial corrosion-resistant aluminum alloy composite | |
| JPH11241133A (en) | High corrosion resistant aluminum alloy composite and method for producing the same | |
| JP2000087166A (en) | Aluminum alloy clad material for heat exchanger excellent in corrosion resistance | |
| JP4432748B2 (en) | Method for producing aluminum alloy brazing sheet for heat exchanger | |
| JPH10212538A (en) | High corrosion resistant aluminum alloy composite for heat exchanger |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040121 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040202 |
|
| A131 | Notification of reasons for refusal |
Effective date: 20051213 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
| A02 | Decision of refusal |
Effective date: 20060516 Free format text: JAPANESE INTERMEDIATE CODE: A02 |