JPH11212942A5 - - Google Patents
Info
- Publication number
- JPH11212942A5 JPH11212942A5 JP1998298003A JP29800398A JPH11212942A5 JP H11212942 A5 JPH11212942 A5 JP H11212942A5 JP 1998298003 A JP1998298003 A JP 1998298003A JP 29800398 A JP29800398 A JP 29800398A JP H11212942 A5 JPH11212942 A5 JP H11212942A5
- Authority
- JP
- Japan
- Prior art keywords
- interconnection network
- nodes
- ary
- network
- supernode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Description
【0010】
【課題を解決するための手段】
本発明はインバースグラフトポロジカル相互連接ネットワーク(inverted-graph topological interconnection network)とクロスバースイッチ(crossbar switch)又は高速バス(high-speed bus)のメリットを綜合した上で、大規模並行処理(massive parallel processing)計算機システムに適した新型相互連接ネットワークを提出する。このような新型相互連接ネットワークは通信バンド幅(communication bandwidth)が広く、遅延時間が短く、拡張性が良いものである。
インバースグラフトポロジカル相互連接ネットワークの最初の目的はルーターとネットワークチャンネルの数を減らすことであるが、ノードの数から見ると、同数のkとnに対して、k元n次元インバースグラフトポロジカル相互連接ネットワークはk元n次元立方体相互連接ネットワーク(k-ary n-cube interconnection network)より数の多いノードを連接できる。図6に示すような4元2次元インバースグラフトポロジカル相互連接ネットワークにおいて、連接されたノードの数は32個で、図3の16個ノードより倍多くなる。図6の直線、丸と黒点で表すものは図5と同じものである。インバースグラフトポロジカル相互連接ネットワークにおいての連接できるノードの数をNIGとすると、2次元に対して、NIG=2Nで、3次元に対して、NIG=3Nで、n次元に対して、NIG=nNである。[0010]
[Means for solving the problem]
This invention combines the advantages of an inverted-graph topological interconnection network with a crossbar switch or a high-speed bus to propose a new interconnection network suitable for massively parallel processing computer systems, which has a wide communication bandwidth, short latency, and good scalability.
The primary goal of inverse graph topological interconnection networks is to reduce the number of routers and network channels. However, in terms of the number of nodes, a k-ary n-dimensional inverse graph topological interconnection network can connect more nodes than a k-ary n-cube interconnection network for the same k and n. In a 4-ary 2-dimensional inverse graph topological interconnection network as shown in Figure 6, the number of connected nodes is 32, double the 16 nodes in Figure 3. The lines, circles, and black dots in Figure 6 are the same as those in Figure 5. If NIG is the number of nodes that can be connected in an inverse graph topological interconnection network, then for two dimensions, NIG = 2N, for three dimensions, NIG = 3N, and for n dimensions, NIG = nN.
【0016】
同じように、k元立方体新型相互連接ネットワークを超ノードとし、このような複数の超ノードから更に大規模の立方体新型相互連接ネットワークになると、ノードの数は更に多く増やすことができ、且つネットワーク遅延は三つのバス及び関連する連接回路の遅延だけが増えることになる。図10は64個ノードからなる新型相互連接ネットワークを示している。図中の一つの小立方体は一つの超ノード(例えばSN030)を表し、各超ノードは8元立方体新型相互連接ネットワークからなる。各超ノードの一つのノードは二つのプロセサーを含むと、この相互連接ネットワークは3×83×2×64=196608個のプロセサーを連接できる。各プロセサーの演算速度は秒毎に5億回であれば、このような大規模並行処理計算機システムの演算速度は秒毎に100兆回になる。[0016]
Similarly, using a k-ary cubic new interconnection network as a supernode, multiple such supernodes can be combined into a larger cubic new interconnection network. The number of nodes can be further increased, and network latency only increases with the latency of three buses and associated interconnection circuits. Figure 10 shows a 64-node new interconnection network. Each small cube in the figure represents a supernode (e.g., SN030), and each supernode consists of an 8-ary cubic new interconnection network. If each supernode contains two processors, this interconnection network can connect 3 x 83 x 2 x 64 = 196,608 processors. If each processor can perform 500 million operations per second, the speed of such a massively parallel processing computer system would be 100 trillion operations per second.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 97116994 CN1085361C (en) | 1998-01-21 | 1998-01-21 | Interconnection network technology for large scale parallel processing computer system |
| CN97116994-2 | 1998-01-21 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH11212942A JPH11212942A (en) | 1999-08-06 |
| JPH11212942A5 true JPH11212942A5 (en) | 2004-12-02 |
Family
ID=5174267
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10298003A Pending JPH11212942A (en) | 1998-01-21 | 1998-10-20 | An interconnected network method for large-scale parallel processing computer systems. |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JPH11212942A (en) |
| CN (1) | CN1085361C (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1921437B (en) * | 2006-08-04 | 2010-05-12 | 上海红神信息技术有限公司 | Inside and outside connecting network topology framework and parallel computing system for self-consistent expanding the same |
| CN1921428B (en) * | 2006-08-25 | 2010-04-07 | 上海红神信息技术有限公司 | Self-consistent multiple factorial tensor expanding method and multiple MPU parallel computing system |
| JP5368687B2 (en) * | 2007-09-26 | 2013-12-18 | キヤノン株式会社 | Arithmetic processing apparatus and method |
| CN117807017B (en) * | 2024-03-01 | 2024-05-14 | 中国人民解放军国防科技大学 | High-performance computer with cube supernode multi-plane interconnection and communication method thereof |
-
1998
- 1998-01-21 CN CN 97116994 patent/CN1085361C/en not_active Expired - Lifetime
- 1998-10-20 JP JP10298003A patent/JPH11212942A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9514092B2 (en) | Network topology for a scalable multiprocessor system | |
| US5689661A (en) | Reconfigurable torus network having switches between all adjacent processor elements for statically or dynamically splitting the network into a plurality of subsystems | |
| JP4676463B2 (en) | Parallel computer system | |
| WO1999026429A3 (en) | Hybrid hypercube/torus architecture | |
| KR100259276B1 (en) | Interconnection network having extendable bandwidth | |
| Datta et al. | Anonymous publish/subscribe in p2p networks | |
| JP5132689B2 (en) | Redundant network shared switch | |
| US7239606B2 (en) | Scalable configurable network of sparsely interconnected hyper-rings | |
| JP2010508584A (en) | System and method for networking computer clusters | |
| US7987313B2 (en) | Circuit of on-chip network having four-node ring switch structure | |
| JPH11212942A5 (en) | ||
| US6175566B1 (en) | Broadcast transfer method for a hierarchical interconnection network with multiple tags | |
| Loucif et al. | Hypermeshes: implementation and performance | |
| CN1095570C (en) | Extending method for interconnect network of large-scale parallel processing computer systems | |
| CN1085361C (en) | Interconnection network technology for large scale parallel processing computer system | |
| CN119767175B (en) | A peer-to-peer optical interconnection circuit switching networking method and system based on DPU | |
| Oruç | A self-routing on-chip network | |
| Kim et al. | Efficient topologies for large-scale cluster networks | |
| Stunkel | Commercially viable MPP networks | |
| Yang | The performance of multicast banyan networks | |
| Loucif et al. | On the merits of hypermeshes and tori with adaptive routing | |
| Sun et al. | Fault tolerant all-to-all broadcast in general interconnection networks | |
| Guan et al. | Efficient approaches for constructing a massively parallel processing system | |
| Varvarigos | Efficient routing algorithms for folded-cube networks | |
| Sun et al. | Fault tolerant all-to-all broadcast in general |