[go: up one dir, main page]

JPH11212942A5 - - Google Patents

Info

Publication number
JPH11212942A5
JPH11212942A5 JP1998298003A JP29800398A JPH11212942A5 JP H11212942 A5 JPH11212942 A5 JP H11212942A5 JP 1998298003 A JP1998298003 A JP 1998298003A JP 29800398 A JP29800398 A JP 29800398A JP H11212942 A5 JPH11212942 A5 JP H11212942A5
Authority
JP
Japan
Prior art keywords
interconnection network
nodes
ary
network
supernode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1998298003A
Other languages
Japanese (ja)
Other versions
JPH11212942A (en
Filing date
Publication date
Priority claimed from CN 97116994 external-priority patent/CN1085361C/en
Application filed filed Critical
Publication of JPH11212942A publication Critical patent/JPH11212942A/en
Publication of JPH11212942A5 publication Critical patent/JPH11212942A5/ja
Pending legal-status Critical Current

Links

Description

【0010】
【課題を解決するための手段】
本発明はインバースグラフトポロジカル相互連接ネットワーク(inverted-graph topological interconnection network)とクロスバースイッチ(crossbar switch)又は高速バス(high-speed bus)のメリットを綜合した上で、大規模並行処理(massive parallel processing)計算機システムに適した新型相互連接ネットワークを提出する。このような新型相互連接ネットワークは通信バンド幅(communication bandwidth)が広く、遅延時間が短く、拡張性が良いものである。
インバースグラフトポロジカル相互連接ネットワークの最初の目的はルーターとネットワークチャンネルの数を減らすことであるが、ノードの数から見ると、同数のkとnに対して、k元n次元インバースグラフトポロジカル相互連接ネットワークはk元n次元立方体相互連接ネットワーク(k-ary n-cube interconnection network)より数の多いノードを連接できる。図6に示すような4元2次元インバースグラフトポロジカル相互連接ネットワークにおいて、連接されたノードの数は32個で、図3の16個ノードより倍多くなる。図6の直線、丸と黒点で表すものは図5と同じものである。インバースグラフトポロジカル相互連接ネットワークにおいての連接できるノードの数をNIGとすると、2次元に対して、NIG=2Nで、3次元に対して、NIG=3Nで、n次元に対して、NIG=nNである。
[0010]
[Means for solving the problem]
This invention combines the advantages of an inverted-graph topological interconnection network with a crossbar switch or a high-speed bus to propose a new interconnection network suitable for massively parallel processing computer systems, which has a wide communication bandwidth, short latency, and good scalability.
The primary goal of inverse graph topological interconnection networks is to reduce the number of routers and network channels. However, in terms of the number of nodes, a k-ary n-dimensional inverse graph topological interconnection network can connect more nodes than a k-ary n-cube interconnection network for the same k and n. In a 4-ary 2-dimensional inverse graph topological interconnection network as shown in Figure 6, the number of connected nodes is 32, double the 16 nodes in Figure 3. The lines, circles, and black dots in Figure 6 are the same as those in Figure 5. If NIG is the number of nodes that can be connected in an inverse graph topological interconnection network, then for two dimensions, NIG = 2N, for three dimensions, NIG = 3N, and for n dimensions, NIG = nN.

【0016】
同じように、k元立方体新型相互連接ネットワークを超ノードとし、このような複数の超ノードから更に大規模の立方体新型相互連接ネットワークになると、ノードの数は更に多く増やすことができ、且つネットワーク遅延は三つのバス及び関連する連接回路の遅延だけが増えることになる。図10は64個ノードからなる新型相互連接ネットワークを示している。図中の一つの小立方体は一つの超ノード(例えばSN030)を表し、各超ノードは8元立方体新型相互連接ネットワークからなる。各超ノードの一つのノードは二つのプロセサーを含むと、この相互連接ネットワークは3×83×2×64=196608個のプロセサーを連接できる。各プロセサーの演算速度は秒毎に5億回であれば、このような大規模並行処理計算機システムの演算速度は秒毎に100兆回になる。
[0016]
Similarly, using a k-ary cubic new interconnection network as a supernode, multiple such supernodes can be combined into a larger cubic new interconnection network. The number of nodes can be further increased, and network latency only increases with the latency of three buses and associated interconnection circuits. Figure 10 shows a 64-node new interconnection network. Each small cube in the figure represents a supernode (e.g., SN030), and each supernode consists of an 8-ary cubic new interconnection network. If each supernode contains two processors, this interconnection network can connect 3 x 83 x 2 x 64 = 196,608 processors. If each processor can perform 500 million operations per second, the speed of such a massively parallel processing computer system would be 100 trillion operations per second.

JP10298003A 1998-01-21 1998-10-20 An interconnected network method for large-scale parallel processing computer systems. Pending JPH11212942A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 97116994 CN1085361C (en) 1998-01-21 1998-01-21 Interconnection network technology for large scale parallel processing computer system
CN97116994-2 1998-01-21

Publications (2)

Publication Number Publication Date
JPH11212942A JPH11212942A (en) 1999-08-06
JPH11212942A5 true JPH11212942A5 (en) 2004-12-02

Family

ID=5174267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298003A Pending JPH11212942A (en) 1998-01-21 1998-10-20 An interconnected network method for large-scale parallel processing computer systems.

Country Status (2)

Country Link
JP (1) JPH11212942A (en)
CN (1) CN1085361C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921437B (en) * 2006-08-04 2010-05-12 上海红神信息技术有限公司 Inside and outside connecting network topology framework and parallel computing system for self-consistent expanding the same
CN1921428B (en) * 2006-08-25 2010-04-07 上海红神信息技术有限公司 Self-consistent multiple factorial tensor expanding method and multiple MPU parallel computing system
JP5368687B2 (en) * 2007-09-26 2013-12-18 キヤノン株式会社 Arithmetic processing apparatus and method
CN117807017B (en) * 2024-03-01 2024-05-14 中国人民解放军国防科技大学 High-performance computer with cube supernode multi-plane interconnection and communication method thereof

Similar Documents

Publication Publication Date Title
US9514092B2 (en) Network topology for a scalable multiprocessor system
US5689661A (en) Reconfigurable torus network having switches between all adjacent processor elements for statically or dynamically splitting the network into a plurality of subsystems
JP4676463B2 (en) Parallel computer system
WO1999026429A3 (en) Hybrid hypercube/torus architecture
KR100259276B1 (en) Interconnection network having extendable bandwidth
Datta et al. Anonymous publish/subscribe in p2p networks
JP5132689B2 (en) Redundant network shared switch
US7239606B2 (en) Scalable configurable network of sparsely interconnected hyper-rings
JP2010508584A (en) System and method for networking computer clusters
US7987313B2 (en) Circuit of on-chip network having four-node ring switch structure
JPH11212942A5 (en)
US6175566B1 (en) Broadcast transfer method for a hierarchical interconnection network with multiple tags
Loucif et al. Hypermeshes: implementation and performance
CN1095570C (en) Extending method for interconnect network of large-scale parallel processing computer systems
CN1085361C (en) Interconnection network technology for large scale parallel processing computer system
CN119767175B (en) A peer-to-peer optical interconnection circuit switching networking method and system based on DPU
Oruç A self-routing on-chip network
Kim et al. Efficient topologies for large-scale cluster networks
Stunkel Commercially viable MPP networks
Yang The performance of multicast banyan networks
Loucif et al. On the merits of hypermeshes and tori with adaptive routing
Sun et al. Fault tolerant all-to-all broadcast in general interconnection networks
Guan et al. Efficient approaches for constructing a massively parallel processing system
Varvarigos Efficient routing algorithms for folded-cube networks
Sun et al. Fault tolerant all-to-all broadcast in general