JPH11249014A5 - - Google Patents
Info
- Publication number
- JPH11249014A5 JPH11249014A5 JP1998050277A JP5027798A JPH11249014A5 JP H11249014 A5 JPH11249014 A5 JP H11249014A5 JP 1998050277 A JP1998050277 A JP 1998050277A JP 5027798 A JP5027798 A JP 5027798A JP H11249014 A5 JPH11249014 A5 JP H11249014A5
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- prism member
- plane
- reflecting surface
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Description
また、Y方向の光学系全体のパワーをPyとし、回転非対称な面の軸上主光線が当たる部分のY方向のパワーPynとするとき、
0<|Pyn/Py|<100 ・・・(11)
なる条件式を満足することが、収差補正上好ましい。上記条件式の下限0と上限100の意味は条件式(10)の場合と同様である。
Furthermore, when the power of the entire optical system in the Y direction is Py and the power in the Y direction of the portion of the rotationally asymmetric surface on which the axial chief ray strikes is Pyn, then:
0<|Pyn/Py|<100...(11)
It is preferable in terms of aberration correction to satisfy the following condition: The lower limit 0 and the upper limit 100 of the above condition have the same meanings as in the case of condition (10).
この実施例において、マスター光学系MLである偏心プリズム部材10としては、第1面11、第2面12、第3面13の3つの光学面からなり、その間が屈折率が1より大きい透明媒質で満たされてなり、同軸屈折系であるアタッチメントレンズAL1、AL2又はAL3、物体側のフィルター類F1を通過した物体からの光が、第1透過面である第1面11から屈折して入射し、第3面13からなる第1反射面で全反射され、第2面12からなる第2反射面で反射され、その後第3面13が構成する第2透過面から屈折して射出するものであり、第3面13は第1反射面と第2透過面を兼用している。また、その第1面11、第2面12、第3面13の3面共、偏心した自由曲面からなる。 In this embodiment, the decentered prism member 10, which is the master optical system ML, consists of three optical surfaces: a first surface 11, a second surface 12, and a third surface 13. A transparent medium with a refractive index greater than 1 fills the spaces between them. Light from an object passes through the attachment lens AL1, AL2, or AL3, which is a coaxial refractive system, and the object-side filters F1. The light is refracted and incident from the first transmitting surface (first surface 11), totally reflected by the first reflecting surface (third surface 13), reflected by the second reflecting surface (second surface 12), and then refracted and emerges from the second transmitting surface (third surface 13). The third surface 13 serves as both the first reflecting surface and the second transmitting surface. Furthermore, all three surfaces (first surface 11, second surface 12, and third surface 13) are decentered free-form surfaces.
この実施例において、マスター光学系MLである偏心プリズム部材10としては、第1面11、第2面12、第3面13の3つの光学面からなり、その間が屈折率が1より大きい透明媒質で満たされてなり、同軸屈折系であるアタッチメントレンズAL1、AL2又はカバーガラスF3、フィルター類F1を通過した物体からの光が、第1透過面である第1面11から屈折して入射し、第3面13からなる第1反射面で全反射され、第2面12からなる第2反射面で反射され、その後第3面13が構成する第2透過面から屈折して射出するものであり、第3面13は第1反射面と第2透過面を兼用している。また、その第1面11、第2面12、第3面13の3面共、偏心した自由曲面からなる。 In this embodiment, the decentered prism member 10, which is the master optical system ML, consists of three optical surfaces: a first surface 11, a second surface 12, and a third surface 13. A transparent medium with a refractive index greater than 1 fills the spaces between them. Light from an object passes through the attachment lenses AL1 and AL2, or the cover glass F3, or the filters F1, which are coaxial refractive systems. It is refracted and incident from the first transmitting surface (first surface 11), totally reflected by the first reflecting surface (third surface 13), reflected by the second reflecting surface (second surface 12), and then refracted and emerges from the second transmitting surface (third surface 13). The third surface 13 serves as both the first reflecting surface and the second transmitting surface. Furthermore, all three surfaces (first surface 11, second surface 12, and third surface 13) are decentered free-form surfaces.
この実施例において、マスター光学系MLである偏心プリズム部材10としては、第1面11、第2面12、第3面13の3つの光学面からなり、その間が屈折率が1より大きい透明媒質で満たされてなり、同軸屈折系であるアタッチメントレンズAL1、AL2又はAL3、物体側のフィルター類F1を通過した物体からの光が、第1透過面である第1面11から屈折して入射し、第3面13からなる第1反射面で全反射され、第2面12からなる第2反射面で反射され、その後第3面13が構成する第2透過面から屈折して射出するものであり、第3面13は第1反射面と第2透過面を兼用している。また、その第1面11、第2面12、第3面13の3面共、偏心した自由曲面からなる。 In this embodiment, the decentered prism member 10, which is the master optical system ML, consists of three optical surfaces: a first surface 11, a second surface 12, and a third surface 13. A transparent medium with a refractive index greater than 1 fills the spaces between them. Light from an object passes through the attachment lens AL1, AL2, or AL3, which is a coaxial refractive system, and the object-side filters F1. The light is refracted and incident from the first transmitting surface (first surface 11), totally reflected by the first reflecting surface (third surface 13), reflected by the second reflecting surface (second surface 12), and then refracted and emerges from the second transmitting surface (third surface 13). The third surface 13 serves as both the first reflecting surface and the second transmitting surface. Furthermore, all three surfaces (first surface 11, second surface 12, and third surface 13) are decentered free-form surfaces.
Claims (9)
前記マスター光学系が、少なくとも3面の光学面を備えその間が屈折率が1より大きい透明媒質で満たさてなるプリズム部材を含み、そのプリズム部材は少なくとも1面の反射面を有し、少なくともその反射面が、偏心収差を補正する回転非対称な曲面形状に形成されていることを特徴とする撮像光学系。 An imaging optical system having a master optical system provided with a removable or replaceable attachment optical system on the object side, and an imaging element disposed on an image plane,
an imaging optical system characterized in that the master optical system includes a prism member having at least three optical surfaces, the spaces between which are filled with a transparent medium having a refractive index greater than 1, the prism member having at least one reflecting surface, and at least the reflecting surface being formed into a rotationally asymmetric curved shape that corrects decentration aberrations.
前記マスター光学系が、少なくとも3面の光学面を備えその間が屈折率が1より大きい透明媒質で満たさてなるプリズム部材を含み、そのプリズム部材は少なくとも1面の反射面を有し、少なくともその反射面が、偏心収差を補正する回転非対称な曲面形状に形成されていることを特徴とする撮像光学系。 An imaging optical system having, in order from the object side, a detachable or replaceable attachment optical system, a master optical system, and an imaging element disposed on an image plane,
an imaging optical system characterized in that the master optical system includes a prism member having at least three optical surfaces, the spaces between which are filled with a transparent medium having a refractive index greater than 1, the prism member having at least one reflecting surface, and at least the reflecting surface being formed into a rotationally asymmetric curved shape that corrects decentration aberrations.
前記マスターレンズ部がプリズム部材を有し、前記プリズム部材が少なくとも入射面と反射面と射出面とを有し、少なくともその反射面が、偏心収差を補正する回転非対称な曲面形状に形成されていることを特徴とする撮像装置。 An imaging device including a joint section for mounting an attachment section that is provided with optical members such as an optical system for converting an angle of view, an optical system for converting a direction of view, and a filter, a master lens section, and an imaging element that receives an object image,
An imaging device characterized in that the master lens section has a prism member, the prism member has at least an entrance surface, a reflecting surface, and an exit surface, and at least the reflecting surface is formed into a rotationally asymmetric curved shape that corrects decentration aberrations.
前記マスターレンズ部がプリズム部材を有し、前記プリズム部材が少なくとも入射面と反射面と射出面とを有し、少なくともその反射面が、偏心収差を補正する回転非対称な曲面形状に形成されていることを特徴とする撮像装置。 An imaging device including an attachment unit having optical members such as an optical system for converting an angle of view, an optical system for converting a direction of view, and a filter, a master lens unit disposed on the image side of the attachment unit, a joint unit for attaching the attachment unit to the master lens unit, and an imaging element for receiving an object image,
An imaging device characterized in that the master lens section has a prism member, the prism member has at least an entrance surface, a reflecting surface, and an exit surface, and at least the reflecting surface is formed into a rotationally asymmetric curved shape that corrects decentration aberrations.
前記プリズム部材が前記反射面と、前記反射面と対向配置された第2の反射面を有し、
物体中心を射出して瞳中心を通り像中心に到達する光線を軸上主光線とし、前記軸上主光線が前記プリズム部材の第1面に到るまでの方向をZ軸方向、面の偏心面内をY軸方向、Y軸、Z軸と直交座標系を構成する軸をX軸とし、前記プリズム部材の入射面側から前記軸上主光線とY方向に微少量d離れた平行光束を入射させ、前記プリズム部材から射出する側でその2つの光線のY−Z面内でなす角のsinをNA’yi、前記NA’yiを前記平行光束の幅dで割った値NA’yi/dを前記プリズム部材のY方向のパワーPyとし、前記軸上主光線が、前記プリズム部材の最も物体側に配置された面から入射し、前記プリズム部材の最も像側に配置された面を射出するまでの光路長をpとするとき、
0.1<p×Py<8 ・・・(1)
を満たすことを特徴とする撮像光学系。 10. The imaging optical system according to claim 1, 2, or 5,
the prism member has the reflecting surface and a second reflecting surface disposed opposite the reflecting surface,
A light ray that emerges from the object center, passes through the pupil center, and reaches the image center is defined as an axial chief ray; the direction of the axial chief ray until it reaches the first surface of the prism member is defined as the Z-axis direction; the interior of the decentered surface of the surface is defined as the Y-axis direction; and the axis that constitutes a Cartesian coordinate system together with the Y and Z axes is defined as the X-axis; a parallel beam that is separated by a small amount d in the Y direction from the axial chief ray is incident on the entrance surface side of the prism member; NA'yi is the sine of the angle that the two beams make in the Y-Z plane on the exit side of the prism member; NA'yi/d, which is the value obtained by dividing NA'yi by the width d of the parallel beam, is defined as the power Py in the Y direction of the prism member; and p is the optical path length of the axial chief ray from the surface of the prism member that is located closest to the object until it emerges from the surface of the prism member that is located closest to the image side.
0.1<p×Py<8 (1)
An imaging optical system characterized by satisfying the following:
前記回転非対称曲面の唯一の対称面がY−Z面であり、
前記軸上主光線の前記第1の反射面、前記第2の反射面との交点近傍のX方向のパワーをそれぞれPx1、Px2とするとき、
|Px1|<|Px2| ・・・(5)
であることを特徴とする撮像光学系。 7. The imaging optical system according to claim 6,
the only symmetry plane of the rotationally asymmetric curved surface is the Y-Z plane;
When the powers in the X direction near the intersections of the axial chief ray with the first reflecting surface and the second reflecting surface are Px1 and Px2, respectively,
|Px1|<|Px2| ...(5)
An imaging optical system characterized by:
1<|Px2/Px1|<20 ・・・(6)
であることを特徴とする撮像光学系。 8. The imaging optical system according to claim 7,
1<|Px2/Px1|<20...(6)
An imaging optical system characterized by:
さらに、対称面を1つ有する面対称曲面からなる第2の透過面を有し、
前記第2の透過面の対称面、及び、前記回転非対称曲面の唯一の対称面がY−Z面であり、
前記軸上主光線の前記第2の反射面との交点近傍のX方向のパワーをPx2とし、前記軸上主光線の前記第2の透過面との交点近傍のX方向のパワーをPx3とするとき、
|Px3/Px2|<0.5 ・・・(7)
であることを特徴とする撮像光学系。ただし、前記第2の透過面の対称面が複数若しくは無数にある場合は、前記第2の反射面の唯一の対称面とのなす角が最も小さくなる面を前記第2の透過面の対称面とする。 7. The imaging optical system according to claim 6,
a second transmitting surface formed of a plane-symmetric curved surface having one plane of symmetry;
a plane of symmetry of the second transmitting surface and the only plane of symmetry of the rotationally asymmetric curved surface are the Y-Z plane,
When the power in the X direction near the intersection point of the axial chief ray with the second reflecting surface is Px2 and the power in the X direction near the intersection point of the axial chief ray with the second transmitting surface is Px3,
|Px3/Px2|<0.5...(7)
However, when there are a plurality of or an infinite number of planes of symmetry for the second transmitting surface, the plane that forms the smallest angle with the only plane of symmetry for the second reflecting surface is set as the plane of symmetry for the second transmitting surface.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10050277A JPH11249014A (en) | 1998-03-03 | 1998-03-03 | Image pickup optical system and image pickup device using it |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10050277A JPH11249014A (en) | 1998-03-03 | 1998-03-03 | Image pickup optical system and image pickup device using it |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH11249014A JPH11249014A (en) | 1999-09-17 |
| JPH11249014A5 true JPH11249014A5 (en) | 2005-08-25 |
Family
ID=12854454
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10050277A Pending JPH11249014A (en) | 1998-03-03 | 1998-03-03 | Image pickup optical system and image pickup device using it |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11249014A (en) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002107631A (en) | 2000-09-29 | 2002-04-10 | Minolta Co Ltd | Reading optical system |
| JP3603877B2 (en) | 2002-05-10 | 2004-12-22 | セイコーエプソン株式会社 | Imaging lens and camera module |
| US7553278B2 (en) * | 2005-06-01 | 2009-06-30 | Cannuflow, Inc. | Protective cap for arthroscopic instruments |
| JP4762882B2 (en) * | 2006-12-27 | 2011-08-31 | 株式会社エルモ社 | Head separation type camera |
| JP5231688B1 (en) * | 2011-06-29 | 2013-07-10 | オリンパスメディカルシステムズ株式会社 | Endoscope objective optical system |
| WO2014119373A1 (en) * | 2013-02-01 | 2014-08-07 | オリンパスメディカルシステムズ株式会社 | Endoscope system |
| JP5841700B2 (en) | 2013-10-30 | 2016-01-13 | オリンパス株式会社 | Imaging device |
| JP2016133570A (en) * | 2015-01-16 | 2016-07-25 | 株式会社タムロン | Optical system for observation and imaging apparatus including the same |
| JP2017156711A (en) * | 2016-03-04 | 2017-09-07 | キヤノン株式会社 | Optical system, imaging apparatus and projection apparatus including the same |
| JP7178298B2 (en) * | 2019-03-13 | 2022-11-25 | 株式会社エビデント | Endoscope system and optical adapter for endoscope |
| JP7647241B2 (en) * | 2021-03-31 | 2025-03-18 | セイコーエプソン株式会社 | Attachment optical system and projection display system |
| JP7647242B2 (en) * | 2021-03-31 | 2025-03-18 | セイコーエプソン株式会社 | Attachment optical system and projection display system |
-
1998
- 1998-03-03 JP JP10050277A patent/JPH11249014A/en active Pending
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6201648B1 (en) | Optical system | |
| US5917656A (en) | Decentered optical system | |
| US5973858A (en) | Reflecting optical system and optical apparatus | |
| US6278553B1 (en) | Optical system having refractive index distribution | |
| CN111699429A (en) | Projection optical system and image display device | |
| EP0845692A2 (en) | Optical system with a rotationally asymmetric curved surface | |
| US6078411A (en) | Real-image finder optical system and apparatus using the same | |
| US20020101666A1 (en) | Variable focal length optical element and optical system using the same | |
| EP0921427A2 (en) | Optical element | |
| US6128137A (en) | Image-forming optical system having a decentered optical element in a first lens group | |
| JP2004348041A (en) | Eccentric optical system and optical device using the same | |
| JPH11249014A5 (en) | ||
| JPH05100160A (en) | Distributed refractive index plane, spherical, and hemispherical compound lens | |
| US20150378104A1 (en) | Coupling optical system | |
| CN113504654A (en) | Near-to-eye display optical system | |
| US5963376A (en) | Variable-magnification image-forming optical system | |
| JPH11249014A (en) | Image pickup optical system and image pickup device using it | |
| US5953162A (en) | Segmented GRIN anamorphic lens | |
| JP6766872B2 (en) | Wideband Reflective Refraction Microscope Objective Lens with Small Central Shield | |
| US6282008B1 (en) | Scanning optical system | |
| JPH10333040A5 (en) | ||
| CN216285973U (en) | Near-to-eye display optical system | |
| JP2860221B2 (en) | Stereoscopic projection lens | |
| JPH10282421A5 (en) | ||
| JPH1123971A5 (en) |