[go: up one dir, main page]

JPH11243361A - Wireless communication system multiple access method selection method - Google Patents

Wireless communication system multiple access method selection method

Info

Publication number
JPH11243361A
JPH11243361A JP5905698A JP5905698A JPH11243361A JP H11243361 A JPH11243361 A JP H11243361A JP 5905698 A JP5905698 A JP 5905698A JP 5905698 A JP5905698 A JP 5905698A JP H11243361 A JPH11243361 A JP H11243361A
Authority
JP
Japan
Prior art keywords
multiple access
radio wave
wave propagation
instantaneous
reception level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5905698A
Other languages
Japanese (ja)
Inventor
Akira Yamaguchi
彰 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5905698A priority Critical patent/JPH11243361A/en
Publication of JPH11243361A publication Critical patent/JPH11243361A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

(57)【要約】 【課題】 多元接続方式の選択を、誤り率や再送回数な
どの通信品質の評価を行わずに、簡単に行う選択法を提
供する。 【解決手段】 測定した電波伝搬特性から電波伝搬モデ
ルを作成し、選択候補の多元接続方式毎の所要伝送帯域
幅を計算する。選択肢の多元接続方式毎に電波伝搬モデ
ルを使い所要伝送帯域幅に対する瞬時受信レベル変動特
性において20%以上の任意の累積確率を示す受信信号
瞬時レベルと、10%以下の任意の累積確率を示す受信
信号瞬時レベルの差で定義される瞬時受信レベル変動幅
を計算する。瞬時受信レベル変動幅を選択基準として多
元接続方式を選択する。
(57) [Problem] To provide a selection method for easily selecting a multiple access method without evaluating communication quality such as an error rate and the number of retransmissions. SOLUTION: A radio wave propagation model is created from measured radio wave propagation characteristics, and a required transmission bandwidth for each of the multiple access schemes to be selected is calculated. Using a radio wave propagation model for each of the multiple access methods of choice, a received signal instantaneous level indicating an arbitrary cumulative probability of 20% or more and an arbitrary cumulative probability of 10% or less in instantaneous reception level fluctuation characteristics with respect to a required transmission bandwidth. Calculate the instantaneous reception level fluctuation width defined by the difference between the signal instantaneous levels. The multiple access method is selected based on the instantaneous reception level fluctuation width.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は無線通信システムの
システム検討における多元接続方式の選択に関するもの
である。無線通信システムの多元接続方式には主なもの
として占有帯域幅が狭い時分割多元接続方式(TDM
A)や占有帯域幅が広い符号分割多元接続方式(CDM
A)等があり、どの多元接続方式を選択するかはシステ
ム全体の設計に大きく関わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the selection of a multiple access system in studying a wireless communication system. As a main multiple access system of a wireless communication system, a time division multiple access system (TDM) with a narrow
A) and code division multiple access (CDM) with a wide occupied bandwidth
A), etc., and which of the multiple access systems to select greatly depends on the design of the entire system.

【0002】[0002]

【従来の技術】従来の通信品質からの無線通信システム
多元接続方式選択法は、以下の手順で多元接続方式を選
択する。
2. Description of the Related Art A conventional wireless communication system multiple access method selection method based on communication quality selects a multiple access method according to the following procedure.

【0003】(1)無線通信システムを展開しようとす
る場所で通信に使用する周波数帯の遅延プロファイル特
性を測定する。 (2)(1)で測定した電力遅延プロファイル特性を解
析し、電波伝搬モデルを作成する。 (3)(2)で作成した電波伝搬モデルを使って、選択
肢の多元接続方式毎にコンピューターシミュレーション
あるいは電波伝搬路模擬装置を用いた伝送実験を行い、
平均搬送波対雑音電力比に対する平均ビット誤り率等の
伝送特性から通信品質を評価する。 (4)(3)で評価した選択肢の多元接続方式毎の通信
品質を比較し、多元接続方式を選択する。
(1) A delay profile characteristic of a frequency band used for communication is measured at a place where a wireless communication system is to be developed. (2) Analyze the power delay profile characteristics measured in (1) and create a radio wave propagation model. (3) Using the radio wave propagation model created in (2), conducted a computer simulation or transmission experiment using a radio wave propagation path simulating device for each of the multiple access methods of choice,
The communication quality is evaluated from transmission characteristics such as an average bit error rate with respect to an average carrier to noise power ratio. (4) The communication quality of each option of the multiple access method evaluated in (3) is compared, and the multiple access method is selected.

【0004】図1にこの手順のフローチャート図を示
す。
FIG. 1 shows a flowchart of this procedure.

【0005】[0005]

【発明が解決しようとする課題】従来の無線通信システ
ム多元接続方式選択法では、選択肢の多元接続方式毎に
電波伝搬モデルを使ったコンピューターシミュレーショ
ンあるいは電波伝搬路模擬装置を用いた伝送実験から得
られた平均搬送波対雑音電力比に対する平均ビット誤り
率等の伝送特性から通信品質を評価していた。しかし、
このコンピューターシミュレーションは多大な時間を費
やすものであった。また、電波伝搬路模擬装置を用いた
伝送実験は多元接続方式の選択肢の数だけ多元接続装置
が必要であり、かつ有効な電波伝搬モデルを実現するた
めに電波伝搬路模擬装置の仕様に十分なものが要求され
た。このように伝送特性から選択基準である通信品質の
評価量を得るためには時間的あるいは設備的な問題が大
きかった。
The conventional wireless communication system multiple access method selection method can be obtained by computer simulation using a radio wave propagation model or transmission experiment using a radio wave propagation path simulating apparatus for each of the multiple access system options. The communication quality was evaluated from the transmission characteristics such as the average bit error rate to the average carrier to noise power ratio. But,
This computer simulation was time consuming. In addition, transmission experiments using a radio propagation path simulator require as many multiple access systems as there are options for the multiple access method, and sufficient specifications for the radio propagation path simulator are required to realize an effective radio propagation model. Things requested. As described above, in order to obtain the evaluation amount of the communication quality, which is the selection criterion, from the transmission characteristics, there is a great problem in terms of time or equipment.

【0006】本発明の目的は、時間的あるいは設備的な
問題が伴なう誤り率、再送回数などの通信品質の評価を
行わない無線通信システム多元接続方式選択法を提供す
ることにある。
An object of the present invention is to provide a radio communication system multiple access method selection method which does not evaluate the communication quality such as the error rate and the number of retransmissions accompanied by time or equipment problems.

【0007】[0007]

【課題を解決するための手段】従来の無線通信システム
多元接続方式選択法の課題を解決するために、本発明の
無線通信システム多元接続方式選択法は最も主要な特徴
として以下の手順を備える。
SUMMARY OF THE INVENTION In order to solve the problems of the conventional wireless communication system multiple access method selection method, the wireless communication system multiple access method selection method of the present invention has the following procedures as the most main features.

【0008】(1)無線通信システムを展開しようとす
る場所で通信に使用する周波数帯での電波伝搬特性を測
定する。 (2)電波伝搬特性から電波伝搬モデルを作成する。 (3)選択肢の多元接続方式毎の所要伝送帯域幅を計算
する。 (4)選択肢の多元接続方式毎に電波伝搬モデルを使い
所要伝送帯域幅に対する瞬時受信レベル変動特性におい
て第1の基準値以上の任意の累積確率を示す受信信号瞬
時レベルと、第2の基準値以下の任意の累積確率を示す
受信信号瞬時レベルの差で定義される瞬時受信レベル変
動幅を計算する。
(1) A radio wave propagation characteristic in a frequency band used for communication at a place where a wireless communication system is to be developed is measured. (2) Create a radio wave propagation model from the radio wave propagation characteristics. (3) Calculate the required transmission bandwidth for each of the alternative multiple access schemes. (4) A received signal instantaneous level indicating an arbitrary cumulative probability equal to or higher than a first reference value in an instantaneous reception level fluctuation characteristic with respect to a required transmission bandwidth using a radio wave propagation model for each of the multiple access methods of choice, and a second reference value An instantaneous reception level fluctuation range defined by a difference between received signal instantaneous levels indicating the following arbitrary cumulative probabilities is calculated.

【0009】第1の基準値は例えば20%、第2の基準
値は例えば10%である。
The first reference value is, for example, 20%, and the second reference value is, for example, 10%.

【0010】従来の技術とは、選択基準である通信品質
の評価量を時間的かつ設備的な問題が伝送特性よりも小
さい電波伝搬特性から得る点が異なる。
The difference from the prior art is that the evaluation quantity of the communication quality, which is the selection criterion, is obtained from radio wave propagation characteristics whose time and equipment problems are smaller than transmission characteristics.

【0011】上記の課題を解決するための手順において
各手順は以下のように作用している。手順(1)は、無
線通信システムを展開しようとする場所で通信に使用す
る周波数帯での電波伝搬特性を得ている。手順(2)
は、手順(1)で得られた電波伝搬特性から電波伝搬モ
デルを作成している。手順(3)は、選択肢の多元接続
方式毎の所要伝送帯域幅を得ている。手順(4)は、手
順(2)で作成した電波伝搬モデルを使い、手順(3)
で得た所要伝送帯域幅に対する瞬時受信レベル変動幅を
得ている。従って、時間的かつ設備的な問題が小さい電
波伝搬特性からの物理量である受信信号瞬時レベル変動
幅を多元接続方式の選択基準とすることが可能となり、
本発明の目的である時間的あるいは設備的な問題が伴な
う通信品質の評価を行わずに無線通信システム多元接続
方式を選択することができるようになる。
In the procedure for solving the above-mentioned problem, each procedure works as follows. In the procedure (1), a radio wave propagation characteristic in a frequency band used for communication in a place where a wireless communication system is to be developed is obtained. Procedure (2)
Creates a radio wave propagation model from the radio wave propagation characteristics obtained in step (1). The procedure (3) obtains a required transmission bandwidth for each of the multiple access methods of choice. The procedure (4) uses the radio wave propagation model created in the procedure (2), and the procedure (3)
And the instantaneous reception level fluctuation width with respect to the required transmission bandwidth obtained in (1). Therefore, it is possible to use the instantaneous level fluctuation width of the received signal, which is a physical quantity from the radio wave propagation characteristic having a small time and facility problem, as a selection criterion of the multiple access method,
It is possible to select a wireless communication system multiple access method without evaluating communication quality accompanied by a problem with time or equipment, which is the object of the present invention.

【0012】[0012]

【発明の実施の形態】(実施例1)以下、図面を用いて
本発明の実施の形態を説明する。
(Embodiment 1) Embodiments of the present invention will be described below with reference to the drawings.

【0013】図2は、本発明の多元接続方式選択方法の
フローチャート図である。図2において、10は通信に
使用する周波数帯での通信範囲での電波伝搬環境におけ
る電力遅延プロファイル特性を測定する電力遅延プロフ
ァイル特性測定手順、15は電力遅延プロファイル特性
から通信に使用する周波数帯での通信範囲での電波伝搬
環境に対する電波伝搬モデルを作成する電波伝搬モデル
作成手順A、20は選択肢の多元接続方式毎の所要伝送
帯域幅を計算する所要伝送帯域幅計算手順A、25は選
択肢の多元接続方式毎に電波伝搬モデルを使い所要伝送
帯域幅に対する瞬時受信レベル変動特性を計算する瞬時
受信レベル変動特性計算手順A、30は選択肢の多元接
続方式毎に前記瞬時受信レベル変動特性において20%
以上の任意の累積確率を示す受信信号瞬時レベルと、1
0%以下の任意の累積確率を示す受信信号瞬時レベルの
差で定義される瞬時受信レベル変動幅を計算する瞬時受
信レベル変動幅計算手順A、35は選択肢の多元接続方
式毎に求められた瞬時受信レベル変動幅を選択基準とし
て多元接続方式を選択する多元接続方式選択手順Aであ
る。
FIG. 2 is a flowchart of a multiple access method selection method according to the present invention. In FIG. 2, reference numeral 10 denotes a power delay profile characteristic measuring procedure for measuring a power delay profile characteristic in a radio wave propagation environment in a communication range in a frequency band used for communication, and 15 denotes a frequency band used for communication based on the power delay profile characteristic. The radio wave propagation model generation procedures A and 20 for generating a radio wave propagation model for the radio wave propagation environment in the communication range are required transmission bandwidth calculation procedures A and 25 for calculating the required transmission bandwidth for each of the multiple access methods. The instantaneous reception level fluctuation characteristic calculation procedures A and 30 for calculating an instantaneous reception level fluctuation characteristic with respect to a required transmission bandwidth using a radio wave propagation model for each of the multiple access systems are 20% in the instantaneous reception level fluctuation characteristics for each of the alternative multiple access systems.
The instantaneous level of the received signal indicating the arbitrary cumulative probability as described above, and 1
The instantaneous reception level variation width calculation procedures A and 35 for calculating the instantaneous reception level variation width defined by the difference between the received signal instantaneous levels indicating an arbitrary cumulative probability of 0% or less are the instantaneous values determined for each of the multiple access methods of choice. This is a multiple access method selection procedure A in which a multiple access method is selected based on the reception level variation width.

【0014】図3は、電力遅延プロファイル特性測定手
順10を実現する測定系図である。図3において、10
1は電力遅延プロファイル特性を測定する為に必要な安
定度の高い基準周波数信号を送信側機器に出力する基準
周波数発生器、102は疑似ランダム雑音信号(以下PN
信号)を出力するPN信号発生器、103は通信に使用す
る周波数帯の信号を出力する局部発振器、104はPN信
号発生器102からのPN信号によりBPSK変調を行い、広
帯域信号を送信するBPSK変調器、105は送信信号を電
波伝搬路に発射する送信アンテナ、106は受信信号を
受け取る受信アンテナ、107は受信信号の周波数を変
換する周波数変換器、108は周波数変換器107の動
作に使われる通信周波数帯の信号を出力する局部発振
器、109はPN信号発生器102と同じPN信号を出力す
るPN信号発生器、110はPN信号発生器109からのPN
信号と受信信号のスライディング相関を取ることにより
電力遅延プロファイル特性を測定するスライディング相
関器、111は基準周波数発生器101と全く同一の安
定度の高い基準周波数信号を受信側機器に出力する基準
周波数発生器である。PN信号発生器102、109で発
生させられるPN信号の伝送速度は電力遅延プロファイル
特性測定における遅延時間分解能を決める。遅延時間分
解能は伝送速度の逆数である。従って、伝送速度が大き
い程、遅延時間分解能は大きくなり、高い精度の電力遅
延プロファイル特性測定ができる。また、PN信号の系列
長は伝送速度との関係で電力遅延プロファイル特性測定
における最大遅延時間を決める。最大遅延時間は系列長
を伝送速度で除算した値である。この2つの諸元は電波
伝搬環境によって決められ、測定場所を一般市街地とす
るならば、遅延時間分解能は40nsec未満程度、最大遅延
時間は10μsec 以上程度必要となる。送信アンテナ10
1と受信アンテナ102は、実際の通信で使用するもの
と指向性が同じものを使う。
FIG. 3 is a measurement system diagram for implementing the power delay profile characteristic measurement procedure 10. In FIG. 3, 10
Reference numeral 1 denotes a reference frequency generator that outputs a reference frequency signal having high stability necessary for measuring the power delay profile characteristic to a transmission side device, and 102 denotes a pseudo random noise signal (hereinafter, PN).
PN signal generator 103 for outputting a signal in a frequency band used for communication, 104 for performing BPSK modulation using the PN signal from the PN signal generator 102, and BPSK modulation for transmitting a wideband signal 105, a transmission antenna for emitting a transmission signal to a radio wave propagation path, 106, a reception antenna for receiving a reception signal, 107, a frequency converter for converting the frequency of the reception signal, 108, a communication used for the operation of the frequency converter 107. A local oscillator for outputting a signal in a frequency band; 109, a PN signal generator for outputting the same PN signal as the PN signal generator 102; 110, a PN signal from the PN signal generator 109;
A sliding correlator for measuring a power delay profile characteristic by taking a sliding correlation between a signal and a received signal. Reference frequency generator 111 outputs a reference frequency signal having the same high stability as reference frequency generator 101 to a receiving device. It is a vessel. The transmission speed of the PN signal generated by the PN signal generators 102 and 109 determines the delay time resolution in the power delay profile characteristic measurement. The delay time resolution is the reciprocal of the transmission speed. Therefore, the higher the transmission rate, the greater the delay time resolution, and the power delay profile characteristics can be measured with high accuracy. Further, the sequence length of the PN signal determines the maximum delay time in the power delay profile characteristic measurement in relation to the transmission speed. The maximum delay time is a value obtained by dividing the sequence length by the transmission speed. These two specifications are determined by the radio wave propagation environment. If the measurement location is a general urban area, the delay time resolution is required to be less than about 40 nsec, and the maximum delay time is required to be about 10 μsec or more. Transmitting antenna 10
1 and the receiving antenna 102 have the same directivity as those used in actual communication.

【0015】図4は、電波伝搬モデル作成手順A15で
求められた平均電力遅延プロファイルおよび電波伝搬モ
デルの一例である。平均電力遅延プロファイルは、電力
遅延プロファイル特性測定手順10で測定された電力遅
延プロファイル特性から各遅延時間毎に受信電力の平均
値を計算することにより得られる。本例では、図4に示
すようにこの平均電力遅延プロファイルで受信レベルが
-70dBm以上の極大値を取る到来波を抜き出し、電波伝搬
モデルを作成した。瞬時受信レベル変動特性計算手順A
25での瞬時受信レベル変動特性の計算においては到来
波が仲上ライス変動を行う条件で計算する。
FIG. 4 shows an example of the average power delay profile and the radio wave propagation model obtained in the radio wave propagation model creation procedure A15. The average power delay profile is obtained by calculating the average value of the received power for each delay time from the power delay profile characteristics measured in the power delay profile characteristic measurement procedure 10. In this example, as shown in FIG.
An incoming wave with a maximum value of -70 dBm or more was extracted and a radio wave propagation model was created. Instantaneous reception level fluctuation characteristic calculation procedure A
In the calculation of the instantaneous reception level fluctuation characteristic at 25, the calculation is performed under the condition that the incoming wave undergoes Nakagami Rice fluctuation.

【0016】図5は、多元接続方式選択の一例を受信信
号瞬時レベル累積確率分布上で示したものである。本例
では多元接続方式の選択肢として時分割多元接続方式
(TDMA方式)と符号分割多元接続方式(CDMA方
式)を選んだ。TDMA方式の所要伝送帯域幅は、1チ
ャンネル当りの伝送速度と変調方式と時分割における多
重数によって決まる。一方、CDMA方式の所要伝送帯
域幅は、拡散符号伝送速度と拡散変調方式によって決ま
る。本例では、TDMA方式の所要伝送帯域幅を300kH
z、CDMA方式の所要伝送帯域幅を30MHz とした。こ
れらの所要伝送帯域幅を所要伝送帯域幅計算手順A20
で求め、瞬時受信レベル変動特性計算手順A25におい
てパラメーターとして設定する。この計算結果例が図5
の受信信号瞬時レベル累積確率分布である。この受信信
号瞬時レベル累積確率分布から瞬時受信レベル変動幅計
算手順A30で十分に差が大きい累積確率を示す2つの
受信信号瞬時レベルの差で定義される受信信号瞬時レベ
ル変動幅を求める。本例では、累積確率50%値と1%
値の受信信号瞬時レベルの差を受信信号瞬時レベル変動
幅とする。本例ではTDMA方式における受信信号瞬時
レベル変動幅は15.5dB、CDMA方式における受信信号
瞬時レベル変動幅は3.4dB である。最後に多元接続方式
選択手順A35により、多元接続方式毎に受信信号瞬時
レベル変動幅から伝送特性評価量を求め、この評価量を
比較することにより多元接続方式を選択する。本例で
は、多元接続方式毎の伝送特性評価量を以下のように求
めた。
FIG. 5 shows an example of the multiple access system selection on the received signal instantaneous level cumulative probability distribution. In this example, a time division multiple access method (TDMA method) and a code division multiple access method (CDMA method) are selected as options of the multiple access method. The required transmission bandwidth of the TDMA system is determined by the transmission speed per channel, the modulation system, and the number of multiplexes in time division. On the other hand, the required transmission bandwidth of the CDMA system is determined by the spread code transmission rate and the spread modulation system. In this example, the required transmission bandwidth of the TDMA system is 300 kHz.
z, the required transmission bandwidth of the CDMA system is set to 30 MHz. The required transmission bandwidth is calculated by the required transmission bandwidth calculation procedure A20.
And set it as a parameter in the instantaneous reception level fluctuation characteristic calculation procedure A25. An example of this calculation result is shown in FIG.
Is the received signal instantaneous level cumulative probability distribution. From the received signal instantaneous level cumulative probability distribution, a received signal instantaneous level change width defined by a difference between two received signal instantaneous levels indicating a sufficiently large cumulative probability is obtained in an instantaneous received level change width calculation procedure A30. In this example, the cumulative probability 50% value and 1%
The difference between the received signal instantaneous levels of the values is defined as the received signal instantaneous level fluctuation width. In this example, the received signal instantaneous level fluctuation width in the TDMA system is 15.5 dB, and the received signal instantaneous level fluctuation width in the CDMA system is 3.4 dB. Finally, in the multiple access method selection procedure A35, the transmission characteristic evaluation amount is obtained from the received signal instantaneous level fluctuation width for each multiple access method, and the multiple access method is selected by comparing the evaluation amounts. In this example, the transmission characteristic evaluation amount for each multiple access system was obtained as follows.

【0017】(1)TDMA方式では電波伝搬遅延によ
る受信信号の波形歪を受信信号瞬時レベル変動幅の減少
分が定量的に示している。つまり、受信信号瞬時レベル
変動幅が大きい程伝送特性が良い。従って、伝送特性評
価量は所要伝送帯域幅と伝送帯域幅100kHzとでの受信信
号瞬時レベル変動幅の差とする。 (2)CDMA方式では電波伝搬遅延が大きく各到来波
が独立に変動する場合、RAKE受信機によるパスダイ
バーシチの効果が上がる。受信信号瞬時レベル変動幅は
このパスダイバーシチの効果を定量的に示している。つ
まり、受信信号瞬時レベル変動幅が小さい程伝送特性が
良い。従って、所要伝送帯域幅における受信信号瞬時レ
ベル変動幅そのものを伝送特性評価量とする。
(1) In the TDMA system, the waveform distortion of the received signal due to the propagation delay of the radio wave is quantitatively indicated by the decrease in the instantaneous level fluctuation width of the received signal. That is, the transmission characteristics are better as the received signal instantaneous level fluctuation width is larger. Therefore, the transmission characteristic evaluation amount is the difference between the received signal instantaneous level fluctuation width between the required transmission bandwidth and the transmission bandwidth of 100 kHz. (2) In the CDMA system, when the radio wave propagation delay is large and each arriving wave fluctuates independently, the effect of the path diversity by the RAKE receiver increases. The received signal instantaneous level fluctuation width quantitatively indicates the effect of the path diversity. In other words, the smaller the instantaneous level fluctuation of the received signal, the better the transmission characteristics. Therefore, the received signal instantaneous level fluctuation width itself in the required transmission bandwidth is used as the transmission characteristic evaluation amount.

【0018】この伝送特性評価量の求め方より、TDM
A方式の伝送特性評価量は2.0dB (伝送帯域幅100kHzに
おける受信信号瞬時レベル変動幅は17.5dB)、CDMA
方式の伝送特性評価量は3.4dB となる。これらの伝送特
性評価量の性質から小さい方が伝送特性は良いので本例
ではTDMA方式を選択することになる。
From the method of obtaining the transmission characteristic evaluation amount, the TDM
The transmission characteristic evaluation amount of the A method is 2.0 dB (the received signal instantaneous level fluctuation width at a transmission bandwidth of 100 kHz is 17.5 dB), CDMA
The transmission characteristic evaluation amount of the method is 3.4 dB. In this example, the TDMA method is selected because the smaller the transmission characteristic evaluation amount is, the better the transmission characteristic is.

【0019】(実施例2)以下、図面を用いて本発明の
実施の形態を説明する。
(Embodiment 2) An embodiment of the present invention will be described below with reference to the drawings.

【0020】図6は、本発明の多元接続方式選択方法の
フローチャート図である。図6において、40は通信に
使用する周波数帯での通信範囲での電波伝搬環境におけ
る電力遅延プロファイル特性と周波数相関特性を測定す
る電波伝搬特性測定手順、45は電力遅延プロファイル
特性から通信に使用する周波数帯での通信範囲での電波
伝搬環境に対する到来波数と到来波の遅延時間が異なる
複数個の電波伝搬モデルを作成する電波伝搬モデル作成
手順B、50は複数個の電波伝搬モデル毎に周波数相関
特性を計算する周波数相関特性計算手順、55は選択肢
の多元接続方式毎の所要伝送帯域幅を計算する所要伝送
帯域幅計算手順B、60は選択肢の多元接続方式毎に複
数個の電波伝搬モデルの中から所要伝送帯域幅内の計算
された周波数相関特性が測定された周波数相関特性の近
似と評価できる電波伝搬モデルを選択する電波伝搬モデ
ル選択手順、65は選択肢の多元接続方式毎に電波伝搬
モデルを使い所要伝送帯域幅に対する瞬時受信レベル変
動特性を計算する瞬時受信レベル変動特性計算手順B、
70は選択肢の多元接続方式毎に前記瞬時受信レベル変
動特性において十分に差が大きい累積確率を示す2つの
瞬時受信レベルの差で定義される瞬時受信レベル変動幅
を計算する瞬時受信レベル変動幅計算手順B、75は選
択肢の多元接続方式毎に求められた瞬時受信レベル変動
幅を選択基準として多元接続方式を選択する多元接続方
式選択手順Bである。
FIG. 6 is a flowchart of a multiple access method selection method according to the present invention. In FIG. 6, reference numeral 40 denotes a radio wave propagation characteristic measuring procedure for measuring a power delay profile characteristic and a frequency correlation characteristic in a radio wave propagation environment in a communication range in a frequency band used for communication, and 45 denotes a power delay profile characteristic used for communication. A radio wave propagation model creation procedure B, 50 for creating a plurality of radio wave propagation models having different numbers of arriving waves and delay times of arriving waves in a radio wave propagation environment in a communication range in a frequency band includes a frequency correlation for each of the plurality of radio wave propagation models. A frequency correlation characteristic calculation procedure for calculating characteristics, 55 is a required transmission bandwidth calculation procedure B for calculating a required transmission bandwidth for each of the alternative multiple access schemes, and 60 is a plurality of radio wave propagation models for each of the alternative multiple access schemes. Select a radio propagation model from which the calculated frequency correlation characteristics within the required transmission bandwidth can be approximated and evaluated from the measured frequency correlation characteristics. Propagation model selection procedure, 65 the instantaneous receive level variation characteristics calculation procedure B for calculating the instantaneous receive level variation characteristics relative to the required transmission bandwidth use propagation model for each multiple access scheme options,
Reference numeral 70 denotes an instantaneous reception level fluctuation width calculation for calculating an instantaneous reception level fluctuation width defined by a difference between two instantaneous reception levels indicating a cumulative probability that has a sufficiently large difference in the instantaneous reception level fluctuation characteristics for each of the multiple access system choices. Procedures B and 75 are multiple access method selection procedures B for selecting a multiple access method based on the instantaneous reception level fluctuation width obtained for each of the multiple access method options.

【0021】図7は、電波伝搬特性測定手順40を実現
する測定系図である。図7において、201は電力遅延
プロファイル特性を測定する為に必要な安定度の高い基
準周波数信号を送信側機器に出力する基準周波数発生
器、202は疑似ランダム雑音信号(以下PN信号)を出
力するPN信号発生器、203は通信に使用する周波数帯
の信号を出力する局部発振器、204はPN信号発生器2
02からのPN信号によりBPSK変調を行い、広帯域信号を
送信するBPSK変調器、205は送信信号を電波伝搬路に
発射する送信アンテナ、206は受信信号を受け取る受
信アンテナ、207は受信信号を電力分配する電力分配
器、208は周波数相関特性を測定するFFT アナライ
ザ、209は受信信号の周波数を変換する周波数変換
器、210は周波数変換器209の動作に使われる通信
周波数帯の信号を出力する局部発振器、211はPN信号
発生器202と同じPN信号を出力するPN信号発生器、2
12はPN信号発生器211からのPN信号と受信信号のス
ライディング相関を取ることにより電力遅延プロファイ
ル特性を測定するスライディング相関器、213は基準
周波数発生器201と全く同一の安定度の高い基準周波
数信号を受信側機器に出力する基準周波数発生器であ
る。周波数相関特性の測定に関する以外の部分は実施例
1と同一であるため本実施例での説明は省略する。PN信
号発生器202で発生させられるPN信号の伝送速度と系
列長は、周波数相関特性の測定におけるFFT アナライザ
208の周波数分解能の設定と関係がある。なぜなら、
伝送速度を系列長で除算した値が送信信号のスペクトル
間隔であり、このスペクトル間隔より狭く周波数分解能
を設定した場合は、正確な周波数相関特性が測定できな
い。例えば、PN信号の伝送速度と系列長を各々30Mbit/s
と1023に設定した場合、周波数分解能の限界は約29.3kH
z となる。
FIG. 7 is a measurement system diagram for realizing the radio wave propagation characteristic measurement procedure 40. In FIG. 7, reference numeral 201 denotes a reference frequency generator that outputs a reference frequency signal having a high degree of stability necessary for measuring the power delay profile characteristic to a transmitting device, and 202 outputs a pseudo random noise signal (hereinafter, a PN signal). PN signal generator, 203 is a local oscillator for outputting a signal in a frequency band used for communication, 204 is PN signal generator 2
BPSK modulator that performs BPSK modulation with the PN signal from 02 and transmits a wideband signal, 205 is a transmission antenna that emits a transmission signal to a radio wave propagation path, 206 is a reception antenna that receives a reception signal, and 207 is power distribution of a reception signal. 209, a frequency converter that converts the frequency of the received signal, 210, a local oscillator that outputs a signal in a communication frequency band used for the operation of the frequency converter 209 , 211 are PN signal generators that output the same PN signal as the PN signal generator 202, 2
12 is a sliding correlator for measuring a power delay profile characteristic by taking a sliding correlation between the PN signal from the PN signal generator 211 and the received signal, and 213 is a reference frequency signal having the same stability as the reference frequency generator 201 and having the same high stability. Is a reference frequency generator that outputs to the receiving device. The parts other than those related to the measurement of the frequency correlation characteristic are the same as those in the first embodiment, and therefore the description in this embodiment is omitted. The transmission speed and sequence length of the PN signal generated by the PN signal generator 202 have a relationship with the setting of the frequency resolution of the FFT analyzer 208 in the measurement of the frequency correlation characteristic. Because
The value obtained by dividing the transmission rate by the sequence length is the spectrum interval of the transmission signal. If the frequency resolution is set narrower than this spectrum interval, accurate frequency correlation characteristics cannot be measured. For example, the transmission speed and sequence length of the PN signal are each 30 Mbit / s.
And 1023, the frequency resolution limit is about 29.3 kHz
z.

【0022】図8は、電波伝搬モデル作成手順B45で
求められた平均電力遅延プロファイルおよび複数個の電
波伝搬モデルの一例である。平均電力遅延プロファイル
は、図4と同一のものである。本例では、図8に示すよ
うにこの平均電力遅延プロファイルで受信レベルが-60d
Bmおよび-70dBm以上の極大値を取る到来波を抜き出し、
2つの電波伝搬モデルを作成した。周波数相関特性計算
手順50と瞬時受信レベル変動特性計算手順B65での
計算においては到来波が仲上ライス変動を行う条件で計
算する。
FIG. 8 shows an example of the average power delay profile and a plurality of radio wave propagation models obtained in the radio wave propagation model creation procedure B45. The average power delay profile is the same as in FIG. In this example, the reception level is -60d in this average power delay profile as shown in FIG.
Bm and extract the incoming wave that takes the maximum value of -70dBm or more,
Two radio wave propagation models were created. In the calculation in the frequency correlation characteristic calculation procedure 50 and the instantaneous reception level fluctuation characteristic calculation procedure B65, the calculation is performed under the condition that the incoming wave undergoes Nakagami Rice fluctuation.

【0023】多元接続方式毎の所要伝送帯域幅計算手順
B55での所要伝送帯域幅の計算は実施例1の所要伝送
帯域幅計算手順Aと同様であるので説明を省略する。た
だ、実施例1で多元接続方式の選択肢をTDMA方式と
CDMA方式に選んだこと、およびTDMA方式の所要
伝送帯域幅が300kHzで、CDMA方式の所要伝送帯域幅
が30MHz であることは本実施例2でも同様であることを
ここで再度言及しておく。
The calculation of the required transmission bandwidth in the required transmission bandwidth calculation procedure B55 for each multiple access system is the same as the required transmission bandwidth calculation procedure A of the first embodiment, and a description thereof will be omitted. However, the fact that the choice of the multiple access method in the first embodiment is selected between the TDMA method and the CDMA method, and that the required transmission bandwidth of the TDMA method is 300 kHz and the required transmission bandwidth of the CDMA method is 30 MHz is the present embodiment. It should be mentioned again here that the same applies to No. 2.

【0024】図9は、電波伝搬特性測定手順40で測定
した周波数相関特性の測定値および電波伝搬モデル毎に
周波数相関特性計算手順50で計算した周波数相関特性
の一例である。本例では電波伝搬モデル1よりも電波伝
搬モデル2の方がCDMA方式の所要伝送帯域幅30MHz
の範囲で測定値の周波数相関特性に近い特性を示してい
るので、電波伝搬モデル選択手順60では電波伝搬モデ
ル2を選択する。
FIG. 9 shows an example of the measured value of the frequency correlation characteristic measured in the radio wave propagation characteristic measurement procedure 40 and the frequency correlation characteristic calculated in the frequency correlation characteristic calculation procedure 50 for each radio wave propagation model. In this example, the required transmission bandwidth of the CDMA system is 30 MHz in the radio wave propagation model 2 than in the radio wave propagation model 1.
In the range of the above, the characteristic close to the frequency correlation characteristic of the measured value is shown, so that the radio wave propagation model 2 is selected in the radio wave propagation model selection procedure 60.

【0025】電波伝搬モデル選択手順以後の手順につい
ては実施例1と同様であるので、説明を省略する。
The procedure after the radio wave propagation model selection procedure is the same as that in the first embodiment, and the description is omitted.

【0026】[0026]

【発明の効果】以上説明したように、本発明の多元接続
方式選択方法は時間的な問題があるコンピューターシミ
ュレーションかつ設備的な問題がある電波伝搬路模擬装
置を用いた伝送実験を伴なわずに通信品質の評価を行う
ことを可能とするから、システム全体の設計を迅速に行
える効果がある。
As described above, the method of selecting a multiple access system of the present invention does not involve a computer simulation having a time problem and a transmission experiment using a radio wave path simulator having a facility problem. Since the communication quality can be evaluated, there is an effect that the entire system can be quickly designed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の多元接続方式選択方法のフローチャート
図である。
FIG. 1 is a flowchart of a conventional multiple access method selection method.

【図2】本発明の多元接続方式選択方法の実施例のフロ
ーチャート図である。
FIG. 2 is a flowchart of an embodiment of a multiple access method selection method according to the present invention.

【図3】電力遅延プロファイル特性の測定系図である。FIG. 3 is a measurement system diagram of a power delay profile characteristic.

【図4】平均電力遅延プロファイルおよび電波伝搬モデ
ルの一例である。
FIG. 4 is an example of an average power delay profile and a radio wave propagation model.

【図5】多元接続方式選択の一例である。FIG. 5 is an example of a multiple access method selection.

【図6】本発明の多元接続方式選択方法の別の実施例の
フローチャート図である。
FIG. 6 is a flowchart of another embodiment of the multiple access method selection method of the present invention.

【図7】電波伝搬特性測定系図である。FIG. 7 is a diagram of a radio wave propagation characteristic measurement system.

【図8】平均電力遅延プロファイルおよび複数個の電波
伝搬モデルの一例である。
FIG. 8 is an example of an average power delay profile and a plurality of radio wave propagation models.

【図9】周波数相関特性の測定および計算結果の一例で
ある。
FIG. 9 is an example of measurement and calculation results of a frequency correlation characteristic.

【符号の説明】[Explanation of symbols]

1 受信信号電力遅延プロファイル特性測定手順 2 電波伝搬モデル作成手順 3 コンピューターシミュレーションあるいは電波伝搬
路模擬装置を用いた伝送実験実施手順 4 通信品質評価手順 5 通信品質を基準にした多元接続方式選択手順 10 電力遅延プロファイル特性測定手順 15 電波伝搬モデル作成手順A 20 所要伝送帯域幅計算手順A 25 瞬時受信レベル変動特性計算手順A 30 瞬時受信レベル変動幅計算手順A 35 多元接続方式選択手順A 40 電波伝搬特性測定手順 45 電波伝搬モデル作成手順B 50 周波数相関特性計算手順 55 所要伝送帯域幅計算手順B 60 電波伝搬モデル選択手順 65 瞬時受信レベル変動特性計算手順B 70 瞬時受信レベル変動幅計算手順B 75 多元接続方式選択手順B
1 Received signal power delay profile characteristic measurement procedure 2 Radio wave propagation model creation procedure 3 Transmission simulation using computer simulation or radio wave propagation path simulator 4 Communication quality evaluation procedure 5 Multiple access method selection procedure based on communication quality 10 Power Delay profile characteristic measurement procedure 15 Radio propagation model creation procedure A 20 Required transmission bandwidth calculation procedure A 25 Instantaneous reception level fluctuation characteristic calculation procedure A 30 Instantaneous reception level fluctuation width calculation procedure A 35 Multiple access method selection procedure A 40 Radio propagation characteristic measurement Procedure 45 Radio propagation model creation procedure B 50 Frequency correlation characteristic calculation procedure 55 Required transmission bandwidth calculation procedure B 60 Radio propagation model selection procedure 65 Instantaneous reception level fluctuation characteristic calculation procedure B 70 Instantaneous reception level fluctuation width calculation procedure B 75 Multiple access method Selection procedure B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の無線基地局と、前記無線基地局と
無線回線を介して接続される複数の移動局からなる無線
通信システムの設計における無線通信システム多元接続
方式選択法において、 通信に使用する周波数帯での通信範囲での電波伝搬環境
における電力遅延プロファイル特性を測定し、 前記電力遅延プロファイル特性から通信に使用する周波
数帯での通信範囲での電波伝搬環境に対する電波伝搬モ
デルを作成し、 一方、選択肢の多元接続方式毎の所要伝送帯域幅を計算
し、 選択肢の多元接続方式毎に前記電波伝搬モデルを使い前
記所要伝送帯域幅に対する瞬時受信レベル変動特性を計
算し、 選択肢の多元接続方式毎に前記瞬時受信レベル変動特性
において第1の基準値以上の任意の累積確率を示す受信
信号瞬時レベルと、第2の基準値以下の任意の累積確率
を示す受信信号瞬時レベルの差で定義される瞬時受信レ
ベル変動幅を計算し、 選択肢の多元接続方式毎に求められた瞬時受信レベル変
動幅を選択基準として多元接続方式を選択することを特
徴とする無線通信システム多元接続方式選択法。
1. A method for selecting a plurality of wireless base stations and a plurality of mobile stations connected to the wireless base stations via a wireless line, the method being used for communication in a wireless communication system multiple access method selection method. Measure the power delay profile characteristics in the radio wave propagation environment in the communication range in the frequency band to create a radio wave propagation model for the radio wave propagation environment in the communication range in the frequency band used for communication from the power delay profile characteristics, On the other hand, the required transmission bandwidth for each of the alternative multiple access schemes is calculated, and the instantaneous reception level fluctuation characteristics for the required transmission bandwidth are calculated using the radio wave propagation model for each of the alternative multiple access schemes. A received signal instantaneous level indicating an arbitrary cumulative probability equal to or greater than a first reference value in the instantaneous reception level variation characteristic for each time; Calculate the instantaneous reception level fluctuation range defined by the difference between the received signal instantaneous levels indicating the following arbitrary cumulative probabilities, and select the multiple access system using the instantaneous reception level fluctuation range obtained for each of the multiple access system options as a selection criterion. A method for selecting a multiple access method for a wireless communication system, comprising:
【請求項2】 複数の無線基地局と、前記無線基地局と
無線回線を介して接続される複数の移動局からなる無線
通信システムの設計における無線通信システム多元接続
方式選択法において、 通信に使用する周波数帯での通信範囲での電波伝搬環境
における電力遅延プロファイル特性と周波数相関特性1
を測定し、 前記電力遅延プロファイル特性から通信に使用する周波
数帯での通信範囲での電波伝搬環境に対する到来波数と
到来波の遅延時間が異なる複数個の電波伝搬モデル1を
作成し、 複数個の前記電波伝搬モデル1毎に周波数相関特性2を
計算し、 一方、選択肢の多元接続方式毎の所要伝送帯域幅を計算
し、 選択肢の多元接続方式毎に前記電波伝搬モデル1の中か
ら前記所要伝送帯域幅内の前記周波数相関特性2が前記
周波数相関特性1の近似と評価できる電波伝搬モデル2
を選択し、 選択肢の多元接続方式毎に前記電波伝搬モデル2を使い
前記所要伝送帯域幅に対する瞬時受信レベル変動特性を
計算し、 選択肢の多元接続方式毎に前記瞬時受信レベル変動特性
において第1の基準値以上の任意の累積確率を示す受信
信号瞬時レベルと、第2の基準値以下の任意の累積確率
を示す受信信号瞬時レベルの差で定義される瞬時受信レ
ベル変動幅を計算し、 選択肢の多元接続方式毎に求められた瞬時受信レベル変
動幅を選択基準として多元接続方式を選択することを特
徴とする無線通信システム多元接続方式選択法。
2. A method for selecting a wireless communication system according to a multiple access method for designing a wireless communication system comprising a plurality of wireless base stations and a plurality of mobile stations connected to the wireless base stations via wireless lines. Delay Profile Characteristics and Frequency Correlation Characteristics 1 in Radio Wave Propagation Environment in Communication Range in Changing Frequency Band 1
And a plurality of radio wave propagation models 1 having different numbers of arriving waves and delay times of arriving waves with respect to a radio wave propagation environment in a communication range in a frequency band used for communication are created from the power delay profile characteristics. Calculate the frequency correlation characteristic 2 for each of the radio wave propagation models 1, calculate the required transmission bandwidth for each of the alternative multiple access systems, and calculate the required transmission bandwidth from the radio wave propagation model 1 for each of the alternative multiple access systems. A radio wave propagation model 2 in which the frequency correlation characteristic 2 within the bandwidth can be evaluated as an approximation of the frequency correlation characteristic 1.
And calculating an instantaneous reception level fluctuation characteristic for the required transmission bandwidth using the radio wave propagation model 2 for each of the multiple access schemes of choice. Calculating an instantaneous reception level variation width defined by a difference between a received signal instantaneous level indicating an arbitrary cumulative probability equal to or higher than the reference value and a received signal instantaneous level indicating an arbitrary cumulative probability equal to or lower than the second reference value; A method for selecting a multiple access system, wherein the multiple access system is selected based on an instantaneous reception level fluctuation range obtained for each multiple access system.
JP5905698A 1998-02-25 1998-02-25 Wireless communication system multiple access method selection method Withdrawn JPH11243361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5905698A JPH11243361A (en) 1998-02-25 1998-02-25 Wireless communication system multiple access method selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5905698A JPH11243361A (en) 1998-02-25 1998-02-25 Wireless communication system multiple access method selection method

Publications (1)

Publication Number Publication Date
JPH11243361A true JPH11243361A (en) 1999-09-07

Family

ID=13102307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5905698A Withdrawn JPH11243361A (en) 1998-02-25 1998-02-25 Wireless communication system multiple access method selection method

Country Status (1)

Country Link
JP (1) JPH11243361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024468A1 (en) * 1999-09-29 2001-04-05 Matsushita Electric Industrial Co., Ltd. Transmitting device and transmitting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024468A1 (en) * 1999-09-29 2001-04-05 Matsushita Electric Industrial Co., Ltd. Transmitting device and transmitting method

Similar Documents

Publication Publication Date Title
KR100776549B1 (en) How to Monitor Transmission Quality
KR100351787B1 (en) System and method for simulating user interference in a spread spectrum communications network
US20090029658A1 (en) Ultra-wideband ranging method and system using narrowband interference supression waveform
US20060094365A1 (en) Channel simulator and wireless apparatus evaluation method
KR20000022979A (en) Method and apparatus for estimating pilot coverages
GB2352129A (en) Testing receivers
Cannon et al. Damson HF channel characterisation-a review
JP3439396B2 (en) Electromagnetic environment design method and recording medium storing design program
EP1906544A2 (en) Code synchronization method and receiver
Mahasukhon et al. BER analysis of 802.11 b networks under mobility
JPH11243361A (en) Wireless communication system multiple access method selection method
Mohr Wideband propagation measurements of mobile radio channels in mountainous areas in the 1800 MHz frequency range
US7286608B2 (en) Apparatus and method for transmitting signal based on interleaving delay diversity
US20080096596A1 (en) Apparatus And Method For Optimising A Spread Spectrum Cellular Communication System
JPH11243587A (en) Wireless communication system multiple access method selection method
Monserrat et al. Complete shadowing modeling and its effect on system level performance evaluation
JPH11243355A (en) Radio communication system radio wave propagation model creation method
JP2002237777A (en) Base station simulator and transmission power control performance test method
Leijten Design of antenna-diversity transceivers for wireless consumer products
JP3664619B2 (en) Delay profile output apparatus and method, delay profile conversion apparatus and method, and fading simulator
KR100511668B1 (en) Apparatus and method for OVSF code search in mobile communication system
KR20000007839A (en) Wireless channel environment testing device of wireless subscriber network
JP2001160982A (en) Recording medium describing base station layout design method and base station layout design program for wireless communication system
Olivier et al. Measurement and processing techniques for the exposure assessment of electromagnetic fields of base stations using spread-spectrum modulation
KR100538027B1 (en) Fading generator and method of compensating power thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510