JPH11251139A - Magnetoresistance material for vertical magnetic memory, and vertical magnetic memory element - Google Patents
Magnetoresistance material for vertical magnetic memory, and vertical magnetic memory elementInfo
- Publication number
- JPH11251139A JPH11251139A JP10046064A JP4606498A JPH11251139A JP H11251139 A JPH11251139 A JP H11251139A JP 10046064 A JP10046064 A JP 10046064A JP 4606498 A JP4606498 A JP 4606498A JP H11251139 A JPH11251139 A JP H11251139A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- vertical
- magnetic memory
- vertical magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3227—Exchange coupling via one or more magnetisable ultrathin or granular films
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Thin Magnetic Films (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、比抵抗が大きく性
能指数が十分に高く、大規模なアレイの作製に好適な縦
型磁気メモリ用磁気抵抗材料及び縦型磁気メモリに関す
る。The present invention relates to a magnetic resistance material for a vertical magnetic memory and a vertical magnetic memory which have a large specific resistance and a sufficiently high figure of merit and are suitable for manufacturing a large-scale array.
【0002】[0002]
【従来の技術】磁気メモリは、「1」「0」情報をセル
とよばれるユニット中の磁化膜の向きとして記憶させ、
情報の読み出しには、この情報を記憶させた膜とは異な
る磁気特性を有する膜との組み合わせによる磁気抵抗変
化を利用する。2. Description of the Related Art A magnetic memory stores information "1" and "0" as the direction of a magnetic film in a unit called a cell.
For reading out information, a change in magnetoresistance due to a combination with a film having magnetic properties different from that of the film storing the information is used.
【0003】この磁気抵抗メモリは、構造の面から、横
型セルと縦型セルの2種類に分類される。図4は横型素
子を示す斜視図である。この図4に示すように、横型セ
ルの構造を有する素子は、磁気抵抗を示す膜であるエレ
メント1の両端に電極2を接続し、この電極2の対向方
向に直交する方向に延びるワードライン3をエレメント
1の上方に設けている。このワードライン3は、情報の
書き込み及び読み出しを補助するための電流を流すもの
である。[0003] The magnetoresistive memories are classified into two types, a horizontal cell and a vertical cell, in terms of structure. FIG. 4 is a perspective view showing a horizontal element. As shown in FIG. 4, in the element having a horizontal cell structure, electrodes 2 are connected to both ends of an element 1 which is a film showing a magnetoresistance, and a word line 3 extending in a direction orthogonal to the direction in which the electrodes 2 face each other. Is provided above the element 1. The word line 3 is for passing a current for assisting writing and reading of information.
【0004】エレメント1は、図5に示すように、反強
磁性膜11と軟磁性膜12の2層膜と軟磁性膜12とが
非磁性膜13を介して積層されて構成されており、ワー
ド・ライン3の電流によって発生する磁界で軟磁性膜1
2が磁化反転することにより情報の読み出し及び記録を
行う。このような横型セルとしては、特開平8−139
387号公報及び日本応用磁気学会誌vol.20, No.1, 19
96に開示されたものがある。As shown in FIG. 5, the element 1 is formed by laminating a two-layer film of an antiferromagnetic film 11 and a soft magnetic film 12 and a soft magnetic film 12 with a non-magnetic film 13 interposed therebetween. The magnetic field generated by the current of the word line 3 causes the soft magnetic film 1
Reading and recording of information are performed by the magnetization reversal of 2. Such a horizontal cell is disclosed in Japanese Patent Application Laid-Open No. 8-139.
No. 387 and Journal of the Japan Society of Applied Magnetics vol.20, No.1, 19
96 has been disclosed.
【0005】この横型構造は、基本的には、ハードディ
スク等に使用されている磁気抵抗素子にワードラインを
付加したものであり、作成は容易であるが、これをセル
アレイの形に発展させる場合、図6(a)に示すよう
に、横型セル4を直列に接続する必要がある。このた
め、その1つのセルの磁気抵抗変化率は、下記数式1に
て示すように、極めて小さくなる。[0005] This horizontal structure is basically formed by adding a word line to a magnetoresistive element used for a hard disk or the like, and is easy to make. However, when this is developed into a cell array, As shown in FIG. 6A, it is necessary to connect the horizontal cells 4 in series. For this reason, the magnetoresistance change rate of the one cell becomes extremely small as shown by the following equation (1).
【0006】[0006]
【数1】MRapp.=ΔRe/(ΣRe+Rcon)## EQU1 ## MR app. = ΔR e / (ΣR e + R con )
【0007】但し、MRapp.はセル1つあたりの磁気抵
抗変化率、ΔReは抵抗全体の変化分、ΣReは全抵抗
値、Rconは配線抵抗を示す(日本応用磁気学会誌 Vo
l.20,No.1,1996、Vol.20,No.2,1996)。[0007] However, MR app. The magnetoresistance ratio per one cell 1, [Delta] R e is the total resistance variation, .SIGMA.R e is the total resistance, R con shows the wiring resistance (Journal of the Magnetics Society of Japan Vo
l.20, No.1,1996, Vol.20, No.2,1996).
【0008】一方、図7は縦型素子を示す斜視図であ
る。この図7に示すように、エレメント5は磁性膜及び
非磁性膜を交互に積層して構成され、このエレメント5
の積層方向の下端に下部電極8が設けられ、上部に上部
電極7が設けられている。そして、この上部電極7上
に、絶縁膜9を介してワードライン6が積層されてい
る。なお、ワードラインは上部電極7が兼ねる場合もあ
る。FIG. 7 is a perspective view showing a vertical element. As shown in FIG. 7, the element 5 is configured by alternately stacking magnetic films and non-magnetic films.
The lower electrode 8 is provided at the lower end in the stacking direction, and the upper electrode 7 is provided at the upper part. The word line 6 is stacked on the upper electrode 7 with an insulating film 9 interposed therebetween. Note that the upper electrode 7 may also serve as a word line.
【0009】この縦型セルをアレイ状に接続する場合
は、図6(b)に示すように、セル10は並列に接続さ
れる。このため、セルの数が多いアレイの場合でも、1
つのセルの磁気抵抗変化率は下記数式2に示されるよう
に、十分に大きいものである。即ち、多数のセルをアレ
イ状に接続した場合でも磁気抵抗変化率の減少は、横型
アレイに比して極めて少ない。When these vertical cells are connected in an array, the cells 10 are connected in parallel as shown in FIG. Therefore, even in an array having a large number of cells, one
The magnetoresistance change rates of the two cells are sufficiently large as shown in Equation 2 below. That is, even when a large number of cells are connected in an array, the decrease in the magnetoresistance ratio is extremely small as compared with the horizontal array.
【0010】[0010]
【数2】MRapp.=ΔRe/(Re+Rcon)## EQU2 ## MR app. = ΔR e / (R e + R con )
【0011】しかしながら、縦型セル構造を有する素子
はエレメント5の膜面に垂直に電流を流す構造をとるた
め、エレメント5の抵抗が小さい場合には取り出せる電
圧変化が極めて小さくなってしまう。従って、縦型構造
のセルは、磁気抵抗変化率が大きいと共に、抵抗自体が
大きいセルが必要である。そこで、縦型構造のセルとし
ては、磁気抵抗変化が大きいと共に、抵抗それ自体が大
きいことが必要である。即ち、縦型セル用の磁気抵抗材
料としては、磁気抵抗変化率と抵抗との積(以下、性能
指数という)が大きい材料であることが要望される。However, since the element having the vertical cell structure has a structure in which a current flows perpendicularly to the film surface of the element 5, when the resistance of the element 5 is small, the change in voltage that can be taken out is extremely small. Therefore, a cell having a vertical structure requires a cell having a large magnetoresistance change rate and a large resistance itself. Therefore, a cell having a vertical structure needs to have a large magnetoresistance change and a large resistance itself. That is, as the magnetoresistive material for the vertical cell, a material having a large product of the magnetoresistance change rate and the resistance (hereinafter, referred to as a figure of merit) is required.
【0012】また、ワード・ラインが発生可能な100
(Oe)程度以下の磁場において、メモリ層の磁化が反
転できることが必要である。即ち、メモリ層の保磁力が
100(Oe)以下であることが必要である。このよう
なことから、従来、縦型素子構造の磁気抵抗材料として
は、GMR積層膜及びスピン・トンネリング(Spin
−tunneling)膜が提案されている(USP
5,477,482、日本応用磁気学会誌Vol.20,No.2,
1996)。Also, a word line can be generated 100 times.
It is necessary that the magnetization of the memory layer can be reversed in a magnetic field of about (Oe) or less. That is, the coercive force of the memory layer needs to be 100 (Oe) or less. For this reason, conventionally, as a magnetoresistive material having a vertical element structure, a GMR laminated film and spin tunneling (Spin tunneling) have been used.
-Tunneling) membranes have been proposed (USP
5,477,482, Journal of the Japan Society of Applied Magnetics, Vol. 20, No. 2,
1996).
【0013】[0013]
【発明が解決しようとする課題】しかしながら、GMR
積層膜においては、積層膜の抵抗変化率は大きいが、比
抵抗が数十μΩ・cmと小さいため、セルとして十分な
電圧変化を得るためには膜厚を厚くする必要がある。し
かしながら、膜厚を厚くした場合、反磁界の影響が大き
くなり、その結果、磁界感度が減少してしまい、セル・
エレメントとしての十分な特性を得ることができない。SUMMARY OF THE INVENTION However, GMR
In the laminated film, although the resistance change rate of the laminated film is large, but the specific resistance is as small as several tens μΩ · cm, it is necessary to increase the film thickness in order to obtain a sufficient voltage change as a cell. However, when the film thickness is increased, the influence of the demagnetizing field increases, and as a result, the magnetic field sensitivity decreases, and the cell
Sufficient characteristics as an element cannot be obtained.
【0014】USP5,477,482においては、こ
れを解決する手段として、多層膜をリング状に加工する
方法を提案しているが、この方法では多層膜の積層体に
後から穴を開けることによりリングを作製しているた
め、大きなメモリー・アレーに適していないという問題
点がある。US Pat. No. 5,477,482 proposes a method for solving this problem by processing a multilayer film into a ring shape. In this method, a hole is formed in the multilayer film laminate later. The problem is that it is not suitable for large memory arrays because the ring is made.
【0015】また、スピン・トンネリング膜の場合、積
層膜の1層にアルミナ等の酸化膜を使用するため、GM
R積層膜に比して抵抗は高いが、膜厚が薄い均一なアル
ミナ膜を作製することが難しいため、スピン・トンネリ
ング膜は大きなアレーを安定して作成することには適し
ていないという欠点がある。In the case of a spin tunneling film, since an oxide film such as alumina is used for one layer of the laminated film,
Although the resistance is higher than that of the R laminated film, it is difficult to produce a uniform alumina film having a small thickness. Therefore, the spin tunneling film is not suitable for producing a large array stably. is there.
【0016】本発明はかかる問題点に鑑みてなされたも
のであって、比抵抗が大きく、十分な性能指数が得ら
れ、作成が容易で大規模なアレイを容易に作成すること
ができる縦型磁気メモリ用磁気抵抗材料及び縦型磁気メ
モリを提供することを目的とする。The present invention has been made in view of the above-mentioned problems, and has a large specific resistance, a sufficient figure of merit, can be easily formed, and can be easily formed in a vertical type. It is an object to provide a magnetoresistive material for a magnetic memory and a vertical magnetic memory.
【0017】[0017]
【課題を解決するための手段】本発明に係る縦型磁気メ
モリ用磁気抵抗材料は、酸化物中に磁性粒子を分散させ
た膜からなることを特徴とする。A magnetoresistive material for a vertical magnetic memory according to the present invention is characterized by comprising a film in which magnetic particles are dispersed in an oxide.
【0018】本発明に係る縦型磁気メモリは、酸化物中
に磁性粒子を分散させた磁気抵抗膜であって保磁力が異
なるものを積層して構成されたことを特徴とする。The vertical magnetic memory according to the present invention is characterized in that it is formed by laminating magnetoresistive films having magnetic particles dispersed in an oxide and having different coercive forces.
【0019】本発明に係る縦型磁気メモリ用磁気抵抗材
料は、酸化物中に磁性粒子を分散させた分散膜であるの
で、各分散膜における保磁力が異なるように積層して、
縦型磁気メモリを形成することができる。そして、この
ように、酸化物中に磁性粒子を分散させた分散膜は、比
抵抗が十分に高く、性能指数が高く、縦型磁気メモリの
セル材料として優れている。また、その作成が容易であ
り、大規模なアレイの作成に有効である。The magnetoresistive material for a vertical magnetic memory according to the present invention is a dispersion film in which magnetic particles are dispersed in an oxide.
A vertical magnetic memory can be formed. The dispersion film in which the magnetic particles are dispersed in the oxide as described above has a sufficiently high specific resistance, a high figure of merit, and is excellent as a cell material of a vertical magnetic memory. In addition, its creation is easy, which is effective for creating a large-scale array.
【0020】[0020]
【発明の実施の形態】以下、本発明の実施例について、
添付の図面を参照して具体的に説明する。図1は本実施
例の縦型メモリの1セルの構造を示す図である。この縦
型メモリセルは、図7に示すものと同一の構造を有す
る。そして、下部電極8と上部電極7との間に配置され
るエレメント5は、硬磁性膜20と軟磁性膜21とを交
互に積層することにより形成されている。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be specifically described with reference to the accompanying drawings. FIG. 1 is a diagram showing the structure of one cell of the vertical memory according to the present embodiment. This vertical memory cell has the same structure as that shown in FIG. The element 5 disposed between the lower electrode 8 and the upper electrode 7 is formed by alternately stacking the hard magnetic films 20 and the soft magnetic films 21.
【0021】下部電極8及び上部電極7は、例えばCu
膜により形成されている。また、エレメント5を構成す
る読み出し補助層及びメモリ層の硬磁性膜20及び難磁
性膜21としては、例えば、磁性材料粒子用のCo材料
と、酸化物となるAl材料とをターゲットとして、Ar
−酸素混合ガス中にてスパッタリング処理することによ
り、Al2O3酸化物(アルミナ層)中にCo磁性材料粒
子を分散させたものがある。この場合に、硬質と軟質と
を区別するのは、Coの含有量である。Coを多く含有
した場合は硬質磁性層になり、少量含有すると軟質磁性
層になる。なお、硬磁性膜20の保磁力は100(O
e)以下となるようにする。The lower electrode 8 and the upper electrode 7 are made of, for example, Cu
It is formed by a film. The hard magnetic film 20 and the hard magnetic film 21 of the read auxiliary layer and the memory layer that constitute the element 5 are, for example, a target of a Co material for magnetic material particles and an Al material to be an oxide.
There is a type in which Co magnetic material particles are dispersed in an Al 2 O 3 oxide (alumina layer) by performing a sputtering process in an oxygen mixed gas. In this case, it is the Co content that distinguishes between hard and soft. When a large amount of Co is contained, a hard magnetic layer is formed, and when a small amount of Co is contained, a soft magnetic layer is formed. The coercive force of the hard magnetic film 20 is 100 (O
e) Make sure that:
【0022】この場合に、硬磁性膜20及び難磁性膜2
1の形成工程において、例えば、Co材料及びAl材料
からなるターゲットを取り付けたスパッタ装置におい
て、そのチャンバ内を真空排気した後、チャンバ内にA
r−酸素混合ガスを所定圧導入し、チャンバ内でターゲ
ットに対する投入電力を別々に制御しながらスパッタリ
ング処理することにより膜中の成分量を制御し、保磁力
が異なる硬磁性膜20及び難磁性膜21を形成すること
ができる。このように、保磁力が夫々異なる磁性積層膜
は、多層膜GMR素子と比して比抵抗が大きく、性能指
数が高く、縦型素子構造用のセルとして極めて優れてい
る。また、この分散膜は、作成が容易であるため、大規
模なアレーの作成に好適である。In this case, the hard magnetic film 20 and the hard magnetic film 2
In the forming step 1, for example, in a sputtering apparatus to which a target made of a Co material and an Al material is attached, the inside of the chamber is evacuated, and then A
The hard magnetic film 20 and the hard magnetic film having different coercive forces are controlled by introducing a predetermined pressure of an r-oxygen mixed gas and performing sputtering processing while separately controlling the power supplied to the target in the chamber. 21 can be formed. As described above, the magnetic laminated films having different coercive forces each have a higher specific resistance and a higher figure of merit than the multilayer GMR element, and are extremely excellent as cells for a vertical element structure. Further, since the dispersion film is easy to produce, it is suitable for producing a large-scale array.
【0023】以上のように、酸化物(アルミナ層)中に
磁性材料粒子を分散させた磁性膜を非磁性膜を介してブ
ロック上に積層させることにより、比抵抗が極めて大き
く、十分な性能指数が得られると共に、作成が容易であ
るため、大規模なアレーの作製に好適な磁気メモリー用
磁気抵抗材料を得ることができる。As described above, by stacking a magnetic film in which magnetic material particles are dispersed in an oxide (alumina layer) on a block via a non-magnetic film, the specific resistance is extremely large and a sufficient figure of merit is obtained. Is obtained and the fabrication is easy, so that a magnetoresistive material for a magnetic memory suitable for fabricating a large-scale array can be obtained.
【0024】[0024]
【実施例】以下、本発明の効果を実証するための実施例
について、その得られた特性について説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, an example for demonstrating the effect of the present invention will be described with respect to the obtained characteristics.
【0025】実施例1 先ず、スパッタリング装置に、Co及びAlのターゲッ
トを取り付け、スパッタリング装置のチャンバ内に予め
洗浄した50×50(mm)のガラス基板をセットし、
前記チャンバ内を1×10-6Torr以下まで減圧した
後、純度99.9999%のArガス及び純度99.9
99%酸素からなる混合ガスをチャンバ内に導入し、前
記チャンバ内の真空度が7×10-3Torrとなるよう
に調整した。そして、スパッタリング電力として、Co
ターゲットに100W、Alターゲットに40Wを投入
し、第1層として、ガラス基板上に膜厚が15nmの膜
を形成した。このときの成膜速度は14.5nm/秒で
あった。 Example 1 First, a Co and Al target was attached to a sputtering apparatus, and a 50 × 50 (mm) glass substrate which had been washed beforehand was set in a chamber of the sputtering apparatus.
After the pressure in the chamber was reduced to 1 × 10 −6 Torr or less, Ar gas having a purity of 99.9999% and purity of 99.9 were used.
A mixed gas containing 99% oxygen was introduced into the chamber, and the degree of vacuum in the chamber was adjusted to 7 × 10 −3 Torr. And, as sputtering power, Co
100 W was supplied to the target and 40 W was supplied to the Al target, and a film having a thickness of 15 nm was formed as a first layer on a glass substrate. At this time, the film forming speed was 14.5 nm / sec.
【0026】第1層成膜後、引き続き、スパッタリング
電力として、Coターゲットに75W、Alターゲット
に33Wを投入し、第2層として、膜厚が35nmの膜
を前記第1層上に成膜した。このときの成膜速度は1
1.1nm/秒であった。これにより得られた磁性膜で
ある第1層及び第2層は、アルミナ中にCo粒子が分散
したものであった。After the formation of the first layer, 75 W was supplied to the Co target and 33 W to the Al target as sputtering power, and a film having a thickness of 35 nm was formed as the second layer on the first layer. . The deposition rate at this time is 1
1.1 nm / sec. The first layer and the second layer, which are the magnetic films thus obtained, had Co particles dispersed in alumina.
【0027】図2はこのようにして得られた2層構成の
磁性膜の磁気抵抗特性を示す。図2は横軸に印加磁場
(Oe)をとり、縦軸に磁気抵抗変化率(MR比)
(%)をとって、両者の関係を示すグラフ図である。図
2において、◆は磁場を−200(Oe)から(+)側
に増加させたときの磁気抵抗曲線であり、■は磁場を+
200(Oe)から(−)側に減少させた場合の磁気抵
抗曲線である。この◆で示す曲線と、■で示す曲線と
は、MR比が極値となる印加磁場が相違し、0(Oe)
を挟んで+側と、−側とに対称的に位置するので、これ
によりメモリとしての動作が可能である。FIG. 2 shows the magnetoresistance characteristics of the magnetic film having a two-layer structure obtained in this manner. FIG. 2 shows the applied magnetic field (Oe) on the horizontal axis and the magnetoresistance ratio (MR ratio) on the vertical axis.
FIG. 7 is a graph showing the relationship between the two by taking (%). In FIG. 2, ◆ is a magnetoresistance curve when the magnetic field is increased from −200 (Oe) to the (+) side, and ■ is +
It is a magnetoresistive curve when decreasing from 200 (Oe) to the (-) side. The curve indicated by ◆ differs from the curve indicated by が in the applied magnetic field at which the MR ratio becomes an extreme value, and 0 (Oe)
Are located symmetrically on the + side and the-side with respect to the, so that a memory operation is possible.
【0028】そして、この2層からなる磁性膜の比抵抗
は200mΩ・cmであり、多層膜GMR素子に使用さ
れている材料と比較すると、10000倍程度大きく、
縦型メモリ用磁気抵抗材料として適している。The specific resistance of the two-layer magnetic film is 200 mΩ · cm, which is about 10,000 times larger than the material used for the multilayer GMR element.
It is suitable as a magnetoresistive material for a vertical memory.
【0029】また、上述と同一条件で作成した膜の成分
組成は、第1層がCo:65原子%、残部:アルミナで
あり、第2層がCo:58原子%、残部:アルミナであ
る。第1層及び第2層の保磁力は夫々30(Oe)及び
1.5(Oe)であった。成分分析はICP発光分光法
により行い、磁気測定はVSMにより行った。The component composition of the film formed under the same conditions as described above is as follows: the first layer is Co: 65 at%, balance: alumina, the second layer is Co: 58 at%, balance: alumina. The coercive force of the first and second layers was 30 (Oe) and 1.5 (Oe), respectively. The component analysis was performed by ICP emission spectroscopy, and the magnetic measurement was performed by VSM.
【0030】上述の如く形成して得られた積層膜をメモ
リ素子として使用するために、先ず、下部電極として、
ガラス基板上にCu膜を成膜し、得られたCu膜を電極
形状に加工した後、この下部電極上に上述と同様にし
て、第1層がCo:65原子%、残部:アルミナであ
り、第2層がCo:58原子%、残部:アルミナである
2層の磁性粒子分散膜を成膜し、これを1×4(μm)
の大きさに加工した。In order to use the laminated film formed as described above as a memory element, first, as a lower electrode,
After a Cu film is formed on a glass substrate and the obtained Cu film is processed into an electrode shape, the first layer is Co: 65 atomic% and the balance is alumina on the lower electrode in the same manner as described above. A two-layer magnetic particle dispersion film in which the second layer is Co: 58 atomic% and the balance is alumina is formed, and this is 1 × 4 (μm).
Processed to the size of.
【0031】更に、層間絶縁膜として、SiO2膜を4
00nmの厚さに成膜した後、記憶部と上部電極とのコ
ンタクトをとるために、前記SiO2膜にコンタクトホ
ールを形成し、その後、上部電極としてCu膜を500
nmの膜厚で成膜した。そして、これを所定の形状に加
工して、上部電極とした。Furthermore, as an interlayer insulating film, a SiO 2 film 4
After the film was formed to a thickness of 00 nm, a contact hole was formed in the SiO 2 film in order to make contact between the storage unit and the upper electrode, and then a Cu film was formed
The film was formed with a thickness of nm. Then, this was processed into a predetermined shape to obtain an upper electrode.
【0032】更にまた、この上部電極の上に膜厚が10
0nmの層間絶縁膜を形成し、この層間絶縁膜の上にC
u膜を成膜し、これを加工して、ワードラインとした。Further, a film thickness of 10
A 0 nm interlayer insulating film is formed, and C is formed on the interlayer insulating film.
A u film was formed and processed to form a word line.
【0033】以上のように形成した縦型素子において、
ワードラインにピーク電流が60mAのパルス電流を流
した後、引き続きこのワードラインにピーク電流が5m
Aのパルス電流を流し、上下電極間に10mAを流す
と、0.3mVの応答パルスが上下電極間に発生した。
この最初のワードラインに流す電流の向きを変えると、
後に得られるパルスの向きが変わったので、情報が書き
込まれたことがわかる。In the vertical device formed as described above,
After a pulse current having a peak current of 60 mA flows through the word line, a peak current of 5 m continues to flow through the word line.
When a pulse current of A was passed and 10 mA was passed between the upper and lower electrodes, a 0.3 mV response pulse was generated between the upper and lower electrodes.
By changing the direction of the current flowing through this first word line,
Since the direction of the pulse obtained later has changed, it can be seen that the information has been written.
【0034】実施例2 先ず、スパッタ装置に、Co:75原子%、Al:20
原子%のCo−Al合金及びCo:80原子%、Al:
20原子%のCo−Al合金からなるターゲットを取り
付け、スパッタ装置のチャンバ内に予め洗浄した50×
50(mm)のガラス基板をセットし、チャンバ内を1
×10-6Torr以下まで排気した後、純度99.99
99重量%のArガスと純度99.999重量%の酸素
ガスとを混合した混合ガスを導入し、チャンバ内の真空
度が7×10-3Torrとなるように調整した。そし
て、両ターゲットに夫々150Wを投入し、膜厚が5n
mの膜を2種類交互に形成し、計20層積層した。この
ときの成膜速度は14.5nm/秒であった。また、得
られた2種類の膜は、第1層がCo:67原子%、残
部:アルミナであり、第2層がCo:56原子%、残
部:アルミナであり、膜自体の保磁力は夫々30(O
e)、1.4(Oe)であった。 Example 2 First, Co: 75 atomic%, Al: 20
Atomic% Co-Al alloy and Co: 80 atomic%, Al:
A target made of a 20 atomic% Co-Al alloy was attached, and a 50.times.
A glass substrate of 50 (mm) is set, and 1
After evacuating to 10-6 Torr or less, the purity was 99.99.
A mixed gas obtained by mixing 99% by weight of Ar gas and 99.999% by weight of oxygen gas was introduced, and the degree of vacuum in the chamber was adjusted to 7 × 10 −3 Torr. Then, 150 W is supplied to each of the targets, and the film thickness is 5 n.
m were alternately formed, and a total of 20 layers were laminated. At this time, the film forming speed was 14.5 nm / sec. In the two types of films obtained, the first layer was composed of 67 atomic% of Co and the balance was alumina, the second layer was composed of 56 atomic% of Co and the balance was alumina, and the coercive force of the film itself was each. 30 (O
e) 1.4 (Oe).
【0035】図3はこのようにして得られた20層の多
層積層磁性膜の磁気抵抗特性を示す。この磁気抵抗特性
は図2の場合と同様に、MR比が極値となる印加磁場
が、0(Oe)を境にその両側に位置し、曲線が0(O
e)を中心として対称な形状をなしており、得られた磁
性膜が非破壊読み出し特性を有した磁気メモリとして好
適な磁性膜であることがわかる。FIG. 3 shows the magnetoresistive characteristics of the thus obtained 20-layer multilayer magnetic film. As in the case of FIG. 2, the applied magnetic field at which the MR ratio has an extreme value is located on both sides of the boundary of 0 (Oe) and the curve is 0 (O).
It has a symmetrical shape with respect to e), and it can be seen that the obtained magnetic film is a magnetic film suitable for a magnetic memory having non-destructive read characteristics.
【0036】以上のように形成した縦型素子において、
ワードラインにピーク電流が60mAのパルス電流を流
した後、引き続き同ワードラインにピーク電流が5mA
のパルス電流を流し、上下電極間に10mAを流すと、
0.65mVの応答パルスが上下電極間に発生した。こ
の最初のワードラインに流す電流の向きを変えると、後
に得られるパルスの向きが変わり、ビットがパルスの向
きで選択され、情報が書き込まれたことがわかる。In the vertical device formed as described above,
After a pulse current with a peak current of 60 mA flows through the word line, a peak current of 5 mA continues through the word line.
When a pulse current of 10 mA flows between the upper and lower electrodes,
A response pulse of 0.65 mV was generated between the upper and lower electrodes. When the direction of the current flowing through the first word line is changed, the direction of the pulse obtained later changes, and it is understood that the bit is selected by the direction of the pulse and the information is written.
【0037】[0037]
【発明の効果】以上詳述したように、本発明によれば、
酸化物中に磁性粒子が分散した磁性膜を積層することに
より縦型磁気メモリが構成されているので、比抵抗が極
めて高く、性能指数が極めて高い。また、本発明の磁性
材料及び縦型磁気メモリは、作成が容易であるため、大
規模なアレイの構成に極めて有効である。As described in detail above, according to the present invention,
Since a vertical magnetic memory is formed by laminating magnetic films in which magnetic particles are dispersed in an oxide, the specific resistance is extremely high and the figure of merit is extremely high. In addition, the magnetic material and the vertical magnetic memory of the present invention are very effective for a large-scale array configuration because they are easy to make.
【図1】 縦型セルのエレメント構造を示す図である。FIG. 1 is a diagram showing an element structure of a vertical cell.
【図2】 本発明の第1実施例における磁性膜の磁気抵
抗特性を示す。FIG. 2 shows a magnetoresistance characteristic of a magnetic film according to the first embodiment of the present invention.
【図3】 本発明の第2実施例における磁性膜の磁気抵
抗特性を示す。FIG. 3 shows a magnetoresistance characteristic of a magnetic film according to a second embodiment of the present invention.
【図4】 横型セル構造を示す斜視図である。FIG. 4 is a perspective view showing a horizontal cell structure.
【図5】 横型セルのエレメント構造を示す図である。FIG. 5 is a diagram showing an element structure of a horizontal cell.
【図6】 (a)は横型アレイを示す模式図、(b)は
縦型アレイを示す模式図である。6A is a schematic diagram illustrating a horizontal array, and FIG. 6B is a schematic diagram illustrating a vertical array.
【図7】 縦型セル構造を示す斜視図である。FIG. 7 is a perspective view showing a vertical cell structure.
1、5;エレメント 2;読み出し電極 3、6;ワー
ドライン 4、10;セル 7;上部電極 8;下部電
極 9;絶縁膜 11;反強磁性膜 12;軟絶縁膜
13;非磁性膜 20;硬磁性膜(分散膜) 21;軟
磁性膜(分散膜)1, reading element 3, 6; word line 4, 10; cell 7, upper electrode 8, lower electrode 9, insulating film 11, antiferromagnetic film 12, soft insulating film
13; non-magnetic film 20; hard magnetic film (dispersed film) 21; soft magnetic film (dispersed film)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 青島 拓男 静岡県浜松市中沢町10番1号 ヤマハ株式 会社内 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Takuo Aoshima 10-1 Nakazawacho, Hamamatsu-shi, Shizuoka Yamaha Corporation
Claims (2)
なることを特徴とする縦型磁気メモリ用磁気抵抗材料。1. A magnetoresistive material for a vertical magnetic memory, comprising a film in which magnetic particles are dispersed in an oxide.
抗膜であって保磁力が異なるものを積層して構成された
ことを特徴とする縦型磁気メモリ素子。2. A vertical magnetic memory device comprising a magnetoresistive film in which magnetic particles are dispersed in an oxide and having different coercive forces.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10046064A JPH11251139A (en) | 1998-02-26 | 1998-02-26 | Magnetoresistance material for vertical magnetic memory, and vertical magnetic memory element |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10046064A JPH11251139A (en) | 1998-02-26 | 1998-02-26 | Magnetoresistance material for vertical magnetic memory, and vertical magnetic memory element |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11251139A true JPH11251139A (en) | 1999-09-17 |
Family
ID=12736588
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP10046064A Pending JPH11251139A (en) | 1998-02-26 | 1998-02-26 | Magnetoresistance material for vertical magnetic memory, and vertical magnetic memory element |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11251139A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6667526B2 (en) | 2001-12-07 | 2003-12-23 | Mitsubishi Denki Kabushiki Kaisha | Tunneling magnetoresistive storage unit |
-
1998
- 1998-02-26 JP JP10046064A patent/JPH11251139A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6667526B2 (en) | 2001-12-07 | 2003-12-23 | Mitsubishi Denki Kabushiki Kaisha | Tunneling magnetoresistive storage unit |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6947263B2 (en) | CPP mode magnetic sensing element including a multilayer free layer biased by an antiferromagnetic layer | |
| JP4001738B2 (en) | Manufacturing method of magnetic tunnel junction element and manufacturing method of magnetic tunnel junction type head | |
| JP3625199B2 (en) | Magnetoresistive element | |
| JP3177199B2 (en) | Magnetic tunnel junction device and magnetoresistive read head | |
| JP4732799B2 (en) | Magnetic tunnel junction element and method for forming the same | |
| CN100433182C (en) | Magneto-resistive element | |
| US6760201B2 (en) | Magnetic tunnel element and its manufacturing method, thin-film magnetic head, magnetic memory and magnetic sensor | |
| US6560077B2 (en) | CPP spin-valve device | |
| JP4088641B2 (en) | Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, magnetic disk drive, magnetic memory cell and current sensor | |
| JP2003124541A (en) | Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic random access memory | |
| JPH0916920A (en) | Spin valve magnetoresistance sensor and magnetic recording system using said sensor | |
| JP3231313B2 (en) | Magnetic head | |
| JPH11176149A (en) | Magnetic memory | |
| JP3181525B2 (en) | Spin valve thin film element and thin film magnetic head using the spin valve thin film element | |
| WO2001099206A1 (en) | Magnetoresistance effect device and magnetoresistance effect head comprising the same, and magnetic recording/reproducing apparatus | |
| JP2000293982A (en) | Magnetic memory | |
| JP2001094173A (en) | Magnetic sensor, magnetic head and magnetic disk drive | |
| JP2005285936A (en) | Magnetoresistive element, magnetic reproducing head, and magnetic reproducing apparatus | |
| JPH11251139A (en) | Magnetoresistance material for vertical magnetic memory, and vertical magnetic memory element | |
| JP2000150985A (en) | Magneto-resistance effect element | |
| JP3261698B2 (en) | Magnetic head and magnetoresistive element | |
| JP2005101441A (en) | Magnetoresistive multilayer film | |
| JPH10308313A (en) | Magnetic element, magnetic head and magnetic storage device using the same | |
| JP2004079936A (en) | Laminated film having ferromagnetic tunnel junction, method of manufacturing the same, magnetic sensor, magnetic recording device, and magnetic memory device | |
| KR20040047663A (en) | Spin valve head and magnetic recording device using the same |