[go: up one dir, main page]

JPH11274527A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPH11274527A
JPH11274527A JP10075839A JP7583998A JPH11274527A JP H11274527 A JPH11274527 A JP H11274527A JP 10075839 A JP10075839 A JP 10075839A JP 7583998 A JP7583998 A JP 7583998A JP H11274527 A JPH11274527 A JP H11274527A
Authority
JP
Japan
Prior art keywords
layer
microcrystalline
nitrogen
photovoltaic device
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10075839A
Other languages
Japanese (ja)
Inventor
Koji Endo
浩二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP10075839A priority Critical patent/JPH11274527A/en
Publication of JPH11274527A publication Critical patent/JPH11274527A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable application of microcrystal silicon wherein band gap is widened and optical deterioration is little to a photovoltaic layer, by containing nitrogen element in the whole of a photovoltaic layer or at least a region being in contact with a light incidence side doped layer. SOLUTION: In this photovoltaic device, a transparent electrode 2 is formed on an insulating substrate 1 composed of glass. On the electrode 2, a P-type microcrystal Si layer 3, an I-type microcrystal Si: N layer 4 and N-type microcrystal 5 are laminated in order. On the N-type microcrystal Si layer 5, a rear electrode 7 composed of aluminum is formed. A light enters from a translucent substrate 1. The I-type microcrystal Si: N layer 4 turns to somewhat of an N-type in which nitrogen acts as donor. In this case, when film thickness is increased, the level due to nitrogen acts as recombination center, and gathering effect is decreased. In order to cancel the nitrogen donor, it is desirable to introduce group III element like boron.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、微結晶シリコン
を光発電層に用いた光起電力装置に関する。
The present invention relates to a photovoltaic device using microcrystalline silicon for a photovoltaic layer.

【0002】[0002]

【従来の技術】従来、原料ガスのグロー放電分解や光C
VD法により形成される非晶質シリコン(以下、a−S
iと記す。)を主材料にした光起電力装置は、薄膜、大
面積化が容易という特長を持ち、低コスト光起電力装置
として期待されている。
2. Description of the Related Art Conventionally, glow discharge decomposition of raw material gas and light C
Amorphous silicon (hereinafter a-S) formed by the VD method
Write i. The photovoltaic device using () as a main material has features that it can be easily formed into a thin film and has a large area, and is expected as a low-cost photovoltaic device.

【0003】この種の光起電力装置の構造としては、p
in接合を有するpin型a−Si光起電力装置が一般
的である。図11はこのような光起電力装置の構造を示
し、ガラス基板21上に、透明電極22、p型a−Si
層23、i型a−Si層24、n型a−Si層25、金
属電極26を順次積層することにより作成される。この
光起電力装置は、ガラス基板21を通して入射する光に
より光起電力が発生する。
[0003] The structure of this type of photovoltaic device includes p
A pin-type a-Si photovoltaic device having an in-junction is common. FIG. 11 shows the structure of such a photovoltaic device, in which a transparent electrode 22 and a p-type a-Si
It is formed by sequentially laminating a layer 23, an i-type a-Si layer 24, an n-type a-Si layer 25, and a metal electrode 26. In this photovoltaic device, photovoltaic power is generated by light incident through the glass substrate 21.

【0004】上記したa−Si光起電力装置は、光照射
後、光劣化が生じることが知られている。そこで、薄膜
で且つ光照射に対して安定性の高い材料として、微結晶
シリコンがあり、この微結晶シリコンを光発電層に用い
た光起電力装置が提案されている(例えば、特開平5−
10055号公報参照。)。この微結晶シリコンは微結
晶Si相とa−Si相とが混在する薄膜である。
It is known that the a-Si photovoltaic device described above undergoes photodegradation after light irradiation. Therefore, microcrystalline silicon is a thin film and has high stability to light irradiation, and a photovoltaic device using this microcrystalline silicon for a photovoltaic layer has been proposed (see, for example, Japanese Patent Application Laid-Open No. H05-1993).
See No. 10055. ). This microcrystalline silicon is a thin film in which a microcrystalline Si phase and an a-Si phase are mixed.

【0005】また、この微結晶シリコンを光起電力装置
の窓層に用いるために、微結晶シリコン成膜時に酸素を
含有させることが提案されている(例えば、特開平6−
267868号公報参照。)。さらに、光起電力装置の
光発電層に微結晶シリコン層を挿入して高い光散乱を得
ようとするものが提案されている(例えば、特開平7−
312435号公報参照。)。
Further, in order to use this microcrystalline silicon for a window layer of a photovoltaic device, it has been proposed to include oxygen at the time of forming the microcrystalline silicon (for example, see Japanese Unexamined Patent Publication No.
See 267868. ). Further, there has been proposed a photovoltaic device in which a microcrystalline silicon layer is inserted into a photovoltaic layer to obtain high light scattering (for example, Japanese Patent Application Laid-Open No.
See Japanese Patent Publication No. 31435. ).

【0006】上記したように、微結晶シリコンは、微結
晶Si相とa−Si相とが混在する膜であり、両者の比
率、即ち結晶化率が微結晶シリコン膜の成膜時の条件等
により変化する。微結晶シリコンは、結晶化率の相違に
より光導電率の光劣化が相違することが知られている。
ここで、結晶化率の異なる微結晶シリコン膜及び非晶質
シリコン膜における光照射前後の光導電率の変化を測定
した結果を図3に示す。光照射は光強度500mW/c
2、5時間、25℃の条件で行った。光照射前後での
光導電率の変化は、図3に示すように、結晶化率が64
%の高い微結晶シリコンでは、光導電率が殆ど変化しな
いのに対し、結晶化率が47%の低い微結晶シリコンで
は、非晶質シリコンと同様に光導電率の低下が見られ
る。従って、結晶化率が低い微結晶シリコンを光起電力
装置に用いると、光劣化が生じることが分かる。このた
め、光劣化を生じさせないためには、微結晶シリコンの
結晶化率はできるだけ高くする方が好ましい。
As described above, microcrystalline silicon is a film in which a microcrystalline Si phase and an a-Si phase are mixed, and the ratio of the two, that is, the crystallization ratio, is such as a condition for forming a microcrystalline silicon film. It changes with. It is known that microcrystalline silicon has different photodegradation in photoconductivity due to a difference in crystallization rate.
Here, FIG. 3 shows a result of measuring a change in photoconductivity of the microcrystalline silicon film and the amorphous silicon film having different crystallization rates before and after light irradiation. Light irradiation is light intensity 500mW / c
m 2 for 5 hours at 25 ° C. The change in the photoconductivity before and after the light irradiation is, as shown in FIG.
%, The photoconductivity hardly changes, whereas microcrystalline silicon having a low crystallization rate of 47% shows a decrease in photoconductivity similarly to amorphous silicon. Therefore, it is understood that when microcrystalline silicon having a low crystallization rate is used for a photovoltaic device, photodegradation occurs. Therefore, in order to prevent light degradation, it is preferable that the crystallization ratio of microcrystalline silicon be as high as possible.

【0007】ここで、結晶化率の算出方法につき説明す
る。微結晶シリコンのラマン分光法によるシグナルのピ
ークが結晶成分は520cm-1と510cm-1付近に、
非晶質成分は480cm-1付近に存在することが分かっ
ている。そして、それぞれのピークに対してガウス分布
の和により図8に示すように、フィッティングする。こ
の時、結晶成分の全面積に対する比、即ち式(1)に基
づいて算出した値を結晶化率とする。
Here, a method of calculating the crystallization ratio will be described. The peaks of the signals is crystalline component by Raman spectroscopy of the microcrystalline silicon in the vicinity of 520 cm -1 and 510 cm -1,
It has been found that the amorphous component exists around 480 cm -1 . Then, fitting is performed for each peak by the sum of Gaussian distribution as shown in FIG. At this time, the ratio of the crystal component to the total area, that is, the value calculated based on the equation (1) is defined as the crystallization ratio.

【0008】[0008]

【数1】 (Equation 1)

【0009】[0009]

【発明が解決しようとする課題】ところで、上述した微
結晶シリコンを光起電力装置の光発電層として用いた場
合、広範囲な波長領域で光感度があるため非晶質シリコ
ンと比べて高い短絡電流が得られる。しかし、バンドギ
ャップが小さいために開放電圧が低く、光電変換効率と
してはあまり高いものは得られていない。
By the way, when the above-mentioned microcrystalline silicon is used as a photovoltaic layer of a photovoltaic device, the short-circuit current is higher than that of amorphous silicon because of its photosensitivity over a wide wavelength range. Is obtained. However, since the band gap is small, the open-circuit voltage is low, and a very high photoelectric conversion efficiency has not been obtained.

【0010】一方、微結晶シリコンに酸素を混入させる
と、バンドギャップは広がる傾向にあるが、結晶化率の
著しい低下があり、特に、長波長領域で光感度を失うた
め、結局光起電力素子の特性はあまり改善されなかっ
た。更に、光安定性も結晶化率の低下に伴い失われてし
まっていた。
On the other hand, when oxygen is mixed into microcrystalline silicon, the band gap tends to widen, but the crystallization rate is remarkably reduced, and the photosensitivity is lost particularly in a long wavelength region. Did not improve much. Furthermore, photostability has been lost as the crystallization rate decreases.

【0011】この発明は、上述した従来の問題点を解消
するためになされたものにして、バンドギャップのワイ
ド化と光劣化のない微結晶シリコンを光発電層に用いた
光起電力装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and provides a photovoltaic device using microcrystalline silicon for a photovoltaic layer without widening the band gap and light degradation. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】この発明は、微結晶シリ
コンと非晶質シリコンが混在する半導体層を光発電層と
する光起電力装置において、光発電層の全部または少な
くとも光入射側ドープ層と接する領域に窒素元素が含有
されていることを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a photovoltaic device in which a semiconductor layer in which microcrystalline silicon and amorphous silicon coexist is used as a photovoltaic layer. Is characterized by containing a nitrogen element in a region in contact with.

【0013】上記したように、微結晶シリコン膜に窒素
原子を導入することにより、バンドギャップの広がった
微結晶シリコンが得られ、開放電圧が向上する。
As described above, by introducing nitrogen atoms into the microcrystalline silicon film, microcrystalline silicon having a wide band gap can be obtained, and the open-circuit voltage can be improved.

【0014】前記半導体層は結晶化率が47%より高く
形成され、好ましくは前記半導体層の結晶化率を52%
以上にすると良い。
[0014] The semiconductor layer is formed with a crystallization ratio higher than 47%, and preferably, the crystallization ratio of the semiconductor layer is 52%.
It is good to do above.

【0015】半導体層の結晶化率が47%を越えた頃か
ら光導電率の劣化率の特性曲線の勾配に変化が現れ、結
晶化率を約52%以上とすることで、劣化率を大幅に改
善できる。
When the crystallization ratio of the semiconductor layer exceeds 47%, the slope of the characteristic curve of the deterioration rate of the photoconductivity changes, and by setting the crystallization rate to about 52% or more, the deterioration rate is greatly increased. Can be improved.

【0016】また、前記半導体層は、シランに対する窒
素ガスの流量比を30%未満にした混合ガスを分解して
形成することができる。
Further, the semiconductor layer can be formed by decomposing a mixed gas having a flow rate ratio of nitrogen gas to silane of less than 30%.

【0017】前記半導体層に含有される窒素濃度が約1
×1021cm-3以下、好ましくは約0.8×1021cm
-3以下にすると良い。
The concentration of nitrogen contained in the semiconductor layer is about 1
× 10 21 cm -3 or less, preferably about 0.8 × 10 21 cm
It is good to be -3 or less.

【0018】上記したように半導体層膜の窒素濃度を制
御することで、光導電率の劣化率が低減した膜が得られ
る。
By controlling the nitrogen concentration of the semiconductor layer film as described above, a film having a reduced rate of photoconductivity deterioration can be obtained.

【0019】また、前記窒素原子が含有されている領域
に第3族元素を導入すると良い。
It is preferable to introduce a Group 3 element into the region containing the nitrogen atom.

【0020】第3族元素を導入することにより、窒素ド
ナーが相殺され、収集効率の低下が防止できる。
By introducing a Group 3 element, a nitrogen donor is offset, and a decrease in collection efficiency can be prevented.

【0021】[0021]

【発明の実施の形態】以下、この発明の実施の形態につ
き図面を参照して説明する。この発明に用いられる窒素
原子を含有した微結晶シリコン(以下、微結晶Si:N
という。)膜は、プラズマCVD法により形成される。
その形成条件を表1に示す。また、比較のために酸素も
窒素も含有しない微結晶シリコン(以下、微結晶Siと
いう。)膜と酸素を含有した微結晶シリコン(以下、微
結晶Si:Oという。)膜の形成条件を表2に示す。た
だし、酸素も窒素も含有しない微結晶Si膜においても
5×1018cm-3以下の酸素と5×1018cm-3以下の
窒素が含まれる。
Embodiments of the present invention will be described below with reference to the drawings. The microcrystalline silicon containing nitrogen atoms used in the present invention (hereinafter, microcrystalline Si: N
That. ) The film is formed by a plasma CVD method.
Table 1 shows the forming conditions. For comparison, conditions for forming a microcrystalline silicon (hereinafter, microcrystalline Si) film containing neither oxygen nor nitrogen and a microcrystalline silicon (hereinafter, microcrystalline Si: O) film containing oxygen are shown in the table. It is shown in FIG. However, oxygen is also contain 5 × 10 18 cm -3 or less of oxygen and 5 × 10 18 cm -3 or less of nitrogen even in the microcrystalline Si film that does not contain nitrogen.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】前述したように、微結晶Siとは、径が数
十から数百オングストロームの結晶構造を持ったシリコ
ン粒が集まった微結晶Si相とその隙間に存在するa−
Si相が混在したものである。
As described above, the microcrystalline Si refers to a microcrystalline Si phase in which silicon grains having a crystal structure with a diameter of several tens to several hundreds of angstroms are gathered and a-
It is a mixture of Si phases.

【0025】表1の条件で作成された微結晶Si:N膜
のシラン(SiH4)に対する窒素(N2)ガスの流量比
(N2/SiH4)と膜中窒素濃度の関係を図1に、シラ
ンに対する窒素ガスの流量比(N2/SiH4)と結晶化
率の関係を図2に示す。
FIG. 1 shows the relationship between the flow rate ratio (N 2 / SiH 4 ) of nitrogen (N 2 ) gas to silane (SiH 4 ) of the microcrystalline Si: N film prepared under the conditions shown in Table 1 and the nitrogen concentration in the film. FIG. 2 shows the relationship between the flow rate ratio of nitrogen gas to silane (N 2 / SiH 4 ) and the crystallization ratio.

【0026】図1から分かるように、膜中の窒素濃度は
窒素流量比を変化させる、即ち窒素流量によって制御す
ることができる。また、図2から分かるように、窒素流
量が増加すると結晶化率が低下する。微結晶Si:Oの
場合もこれと同様に二酸化炭素量の増加により結晶化率
が低下することが分かっている。
As can be seen from FIG. 1, the nitrogen concentration in the film can be controlled by changing the nitrogen flow ratio, that is, by controlling the nitrogen flow. As can be seen from FIG. 2, the crystallization rate decreases as the nitrogen flow rate increases. Similarly, it has been found that the crystallinity of microcrystalline Si: O decreases with an increase in the amount of carbon dioxide.

【0027】前述したように、図3は、結晶化率の異な
る微結晶Si及びa−Siにおける光照射前後の光導電
率の変化を測定した結果を示すものである。光照射前後
での光導電率の変化は、図3に示すように、結晶化率が
64%の微結晶Siでは、光導電率が殆ど変化せず、光
劣化が見られないのに対し、結晶化率が47%の低い微
結晶Siではa−Siと同様に光導電率の低下が見ら
れ、光劣化が生じることが分かる。
As described above, FIG. 3 shows the results of measuring the change in photoconductivity before and after light irradiation in microcrystalline Si and a-Si having different crystallization ratios. As shown in FIG. 3, the change in photoconductivity before and after light irradiation is that microcrystal Si having a crystallization rate of 64% has almost no change in photoconductivity and no photodegradation. In microcrystalline Si having a low crystallization ratio of 47%, a decrease in photoconductivity is observed as in the case of a-Si, and it can be seen that photodeterioration occurs.

【0028】次に、バンドギャップの拡がりを比較する
ために、シランに対する窒素流量(N2/SiH4)を変
化させたときの吸収係数(α)を測定した結果を図4に
示す。図4から分かるように、窒素流量のパーセンテー
ジの増加に伴い吸収係数の落ちが高エネルギー側にシフ
トしていることが分かる。特に8%を越えてからのシフ
トがより顕著である。これは、窒素流量を増加させるこ
とにより、バンドギャップの拡がりが大きいことを示し
ている。
Next, in order to compare the spread of the band gap, FIG. 4 shows the results of measuring the absorption coefficient (α) when the nitrogen flow rate (N 2 / SiH 4 ) for silane was changed. As can be seen from FIG. 4, it can be seen that the decrease in the absorption coefficient shifts to the higher energy side as the percentage of the nitrogen flow rate increases. In particular, the shift after exceeding 8% is more remarkable. This indicates that the band gap is widened by increasing the nitrogen flow rate.

【0029】尚、この発明においては、バンドギャップ
は図4に示した光吸収特性の図において、直線α=10
0と吸収係数曲線との交点のX座標と定義する。
In the present invention, the band gap is represented by a straight line α = 10 in the light absorption characteristic diagram shown in FIG.
It is defined as the X coordinate of the intersection of 0 and the absorption coefficient curve.

【0030】図5は、微結晶Siの結晶化率と光導電率
の劣化率との関係を示した図である。この図5によれ
ば、結晶化率が47%を越えた頃から特性曲線の勾配に
変化が現れ、50%を越えてから急激に劣化率が向上し
ていることが分かる。更に、結晶化率を約52%とする
ことで、結晶化率47%のものに比べて劣化率が半分以
下にできることが分かる。
FIG. 5 is a graph showing the relationship between the crystallization ratio of microcrystalline Si and the deterioration ratio of photoconductivity. According to FIG. 5, it can be seen that the gradient of the characteristic curve changes when the crystallization ratio exceeds 47%, and that the deterioration ratio sharply increases after exceeding 50%. Further, it can be seen that by setting the crystallization rate to about 52%, the deterioration rate can be reduced to half or less as compared with the case where the crystallization rate is 47%.

【0031】図6は、微結晶Si:O及び微結晶Si:
Nのそれぞれのバンドギャップと結晶化率との関係を示
す図である。この図から、同じバンドギャップでも微結
晶Si:Nの方が結晶化率の高い微結晶膜が得られるこ
とが分かる。従って、図5及び図6から同じバンドギャ
ップでも微結晶Si:Oに比べ、微結晶Si:Nの方が
光導電率の劣化率を低減できることが分かる。
FIG. 6 shows microcrystalline Si: O and microcrystalline Si:
FIG. 3 is a diagram showing a relationship between each band gap of N and a crystallization ratio. From this figure, it can be seen that even with the same band gap, microcrystalline Si: N can provide a microcrystalline film with a higher crystallization ratio. Therefore, it can be seen from FIGS. 5 and 6 that the microcrystalline Si: N can reduce the deterioration rate of the photoconductivity as compared with the microcrystalline Si: O even at the same band gap.

【0032】また、図6によれば、これらの結晶化率に
対するバンドギャップは、結晶化率50%の時が1.4
9eV、結晶化率52%の時が1.48eVである。N
2/SiH4流量比とバンドギャップの関係を示す図7か
らこの時のシランに対する窒素ガスの流量比(N2/S
iH4)はそれぞれ約30%、約25%である。図1に
よれば、この時の窒素濃度はそれぞれ約1×1021cm
-3、約0.8×1021cm-3である。従って、微結晶S
i:N膜に含有される窒素濃度は、約1×10 21cm-3
が好ましく、より好ましくは約0.8×1021cm-3
下である。
FIG. 6 shows that these crystallization rates
On the other hand, the band gap is 1.4 when the crystallization rate is 50%.
At the time of 9 eV and the crystallization rate of 52%, the value is 1.48 eV. N
Two/ SiHFourFIG. 7 showing the relationship between the flow ratio and the band gap
At this time, the flow ratio of nitrogen gas to silane (NTwo/ S
iHFour) Are about 30% and about 25%, respectively. In FIG.
According to this, the nitrogen concentration at this time is about 1 × 10twenty onecm
-3, About 0.8 × 10twenty onecm-3It is. Therefore, the microcrystal S
The concentration of nitrogen contained in the i: N film is about 1 × 10 twenty onecm-3
And more preferably about 0.8 × 10twenty onecm-3Less than
Below.

【0033】微結晶Si:N膜中に含有される窒素濃度
の下限については、特に規定するものではないが、バン
ドギャップを広くするために窒素は含有する必要があ
り、通常、原料ガスに窒素(N2)等の窒素源となるガ
スを添加しなくても微結晶シリコン膜中には5×1018
cm-3程度の窒素は含まれるために、これ以上の窒素濃
度は必要とする。
Although the lower limit of the concentration of nitrogen contained in the microcrystalline Si: N film is not particularly limited, it is necessary to contain nitrogen in order to widen the band gap. Even if a gas serving as a nitrogen source such as (N 2 ) is not added, 5 × 10 18
Since nitrogen of about cm -3 is contained, a higher nitrogen concentration is required.

【0034】上記したように、微結晶シリコン膜に窒素
原子を導入することにより、バンドギャップの広がった
微結晶シリコンが得られ、開放電圧が向上する。また、
酸素原子も窒素原子も含有量が増加すると、微結晶シリ
コン膜の結晶化率は低下するが、同じバンドギャップで
比較すると窒素原子の方が結晶化率は高くなる。このた
め、光照射に対する劣化は小さくなり、窒素原子を含有
させた微結晶シリコン膜は光発電層として有効な膜とし
て用いることができる。
As described above, by introducing nitrogen atoms into the microcrystalline silicon film, microcrystalline silicon having a wide band gap can be obtained, and the open-circuit voltage can be improved. Also,
As the content of both oxygen atoms and nitrogen atoms increases, the crystallization rate of the microcrystalline silicon film decreases, but the crystallization rate of nitrogen atoms becomes higher when compared at the same band gap. Therefore, deterioration due to light irradiation is small, and the microcrystalline silicon film containing nitrogen atoms can be used as a film effective as a photovoltaic layer.

【0035】次に、この発明の微結晶Si:N膜を光発
電層とする光起電力装置の実施の形態を図9に従い説明
する。図9は、この発明の一実施の形態にかかる光起電
力装置を示す断面図である。
Next, an embodiment of a photovoltaic device using a microcrystalline Si: N film as a photovoltaic layer according to the present invention will be described with reference to FIG. FIG. 9 is a sectional view showing a photovoltaic device according to one embodiment of the present invention.

【0036】図9に示すように、ガラスからなる絶縁性
透光性基板1上に、膜厚が6000オングストロームの
SnO2からなる透明電極2が設けられる。この透明電
極2上に、膜厚100オングストロームのp型微結晶S
i層3、膜厚3μmのi型微結晶Si:N層4及び膜厚
200オングストロームのn型微結晶Si層5が順次積
層形成されている。そして、n型微結晶Si層5上にア
ルミニウム(Al)からなる裏面電極6が設けられてい
る。光は透光性基板1側から入射する。p型微結晶Si
層3、i型微結晶Si:N層4及びn型微結晶Si層5
は高水素希釈によるプラズマCVD法で形成した。
As shown in FIG. 9, a transparent electrode 2 made of SnO 2 and having a thickness of 6000 Å is provided on an insulating light-transmitting substrate 1 made of glass. On this transparent electrode 2, a 100-Å-thick p-type microcrystal S
An i layer 3, an i-type microcrystalline Si: N layer 4 having a thickness of 3 μm, and an n-type microcrystalline Si layer 5 having a thickness of 200 Å are sequentially laminated. A back electrode 6 made of aluminum (Al) is provided on the n-type microcrystalline Si layer 5. Light enters from the translucent substrate 1 side. p-type microcrystalline Si
Layer 3, i-type microcrystalline Si: N layer 4, and n-type microcrystalline Si layer 5
Was formed by a plasma CVD method using high hydrogen dilution.

【0037】ここで、i型微結晶Si:N層4は窒素
(N)がドナーとなって若干n型となる。この場合、膜
厚が厚くなると窒素による準位が再結合中心として作用
し、収集効率の低下を招く。そこで、窒素ドナーが相殺
されるようにボロン等の第3族元素を導入するとよい。
ボロン等の第3族元素を導入することによって、収集効
率の低下は防止できる。
Here, the i-type microcrystalline Si: N layer 4 is slightly n-type with nitrogen (N) as a donor. In this case, when the film thickness is large, the level due to nitrogen acts as a recombination center, which causes a decrease in collection efficiency. Therefore, a Group 3 element such as boron may be introduced so that the nitrogen donor is offset.
By introducing a Group 3 element such as boron, a decrease in collection efficiency can be prevented.

【0038】次に、比較用にi型微結晶Si膜とi型微
結晶Si:O膜を光発電層として用いた光起電力装置を
形成した。尚、微結晶Si:Oも酸素(O)がドナーと
なるが同様に第3族元素を導入した。また、微結晶S
i:N中の窒素濃度は6×10 20cm-3として、その結
晶化率は約60%の膜を用いた。また、微結晶Si:O
膜は微結晶Si:Nの結晶化率に合わせ、結晶化率は約
60%になるように酸素濃度を制御した。更に、微結晶
Si膜の結晶化率は70%である。
Next, an i-type microcrystalline Si film and an i-type microcrystalline
Photovoltaic device using crystalline Si: O film as photovoltaic layer
Formed. Oxygen (O) also acts as a donor for microcrystalline Si: O.
In the same manner, a Group 3 element was introduced in the same manner. In addition, microcrystal S
i: Nitrogen concentration in N is 6 × 10 20cm-3As the result
A film having a crystallization ratio of about 60% was used. Microcrystalline Si: O
The film is made to match the crystallization rate of microcrystalline Si: N, and the crystallization rate is about
The oxygen concentration was controlled to be 60%. Furthermore, microcrystals
The crystallization ratio of the Si film is 70%.

【0039】表3に上記微結晶シリコン材料を光発電層
としたセルの太陽電池特性を比較した結果を示す。尚、
表3は膜厚3μmのi型微結晶Si膜を光発電層とした
場合を規格化している。
Table 3 shows the results of comparing the solar cell characteristics of cells using the microcrystalline silicon material as a photovoltaic layer. still,
Table 3 standardizes the case where a photovoltaic layer is an i-type microcrystalline Si film having a thickness of 3 μm.

【0040】[0040]

【表3】 [Table 3]

【0041】表3より微結晶Si:N膜を光発電層に用
いた場合、バンドギャップの拡がりによる開放電圧(V
oc)の著しい向上により、微結晶Si膜や微結晶Si:
O膜を光発電層として用いた光起電力装置の光電変換効
率を上回っている。この実施の形態では、i型微結晶S
i:N層の膜厚は3μmとして作成したが、この膜厚は
これに限らず、膜の吸収係数や拡散長によって変化させ
ることができる。
As shown in Table 3, when the microcrystalline Si: N film was used for the photovoltaic layer, the open-circuit voltage (V
oc), the microcrystalline Si film or microcrystalline Si:
It exceeds the photoelectric conversion efficiency of a photovoltaic device using an O film as a photovoltaic layer. In this embodiment, i-type microcrystal S
Although the thickness of the i: N layer is 3 μm, the thickness is not limited to this and can be changed by the absorption coefficient or diffusion length of the film.

【0042】上記実施の形態においては、光発電層の全
部を微結晶Si:N膜としたが、少なくとも光入射側ド
ープ層と接する領域にのみ適用しても良い。光入射側ド
ープ層と接する領域に適用した微結晶Si:N膜の光発
電層に占める割合を30%とし、他の領域は微結晶Si
膜とした光発電層と、光発電層の全体を微結晶Si膜と
したものとを比較した結果を表4に示す。尚、微結晶S
i:N膜の結晶化率は60%、微結晶Si膜の結晶化率
は70%である。
In the above embodiment, the entire photovoltaic layer is a microcrystalline Si: N film. However, the photovoltaic layer may be applied to at least a region in contact with the light incident side doped layer. The ratio of the microcrystalline Si: N film applied to the region in contact with the light incident side doped layer to the photovoltaic layer is 30%, and the other regions are microcrystalline Si.
Table 4 shows the results of comparison between the photovoltaic layer formed as a film and the photovoltaic layer formed entirely of a microcrystalline Si film. In addition, microcrystal S
The crystallization ratio of the i: N film is 60%, and the crystallization ratio of the microcrystalline Si film is 70%.

【0043】[0043]

【表4】 [Table 4]

【0044】一部を微結晶Si:N膜にしたものにおい
ては、全体を微結晶Si:N膜にしたもの以上に変換効
率の向上が見られる。これは結晶化率の低下による膜厚
方向の抵抗成分の増加を抑えることで、より変換効率の
改善が図られたからだと思われる。
In the case where a part is made of a microcrystalline Si: N film, the conversion efficiency is improved more than in the case where the whole is made of a microcrystalline Si: N film. This is probably because the conversion efficiency was further improved by suppressing the increase in the resistance component in the film thickness direction due to the decrease in the crystallization ratio.

【0045】図10はこの発明の他の実施の形態にかか
る光起電力装置を示す断面図である。尚、上記した実施
の形態と同じ部分には、同じ符号を付し,説明をしょう
りゃくする。この実施の形態は、pin構造の半導体層
を数段階積層した構造を持つ。すなわち、ガラス基板1
上に透明導電膜2を設け、その上にp型半導体層7、i
型半導体層8、n型半導体層9をこの順序で数段階積層
形成している。
FIG. 10 is a sectional view showing a photovoltaic device according to another embodiment of the present invention. Note that the same parts as those in the above-described embodiment are denoted by the same reference numerals, and description thereof will be omitted. This embodiment has a structure in which semiconductor layers having a pin structure are stacked in several stages. That is, the glass substrate 1
A transparent conductive film 2 is provided thereon, and a p-type semiconductor layer 7, i
The type semiconductor layer 8 and the n-type semiconductor layer 9 are stacked in several steps in this order.

【0046】このような光起電力装置の場合、各光発電
層材料のバンドギャップを光入射側では一番大きくし、
その後は順次小さくしていくことによって各層で吸収で
きる波長領域が決定され、広範囲の波長領域で感度の高
い光起電力装置が得られる。微結晶Siは、これらの積
層型光起電力装置の光入射側から一番最後の層として用
いられることが多い。この一番最後の光発電層としてこ
の発明にかかるi型微結晶Si:Nを採用することによ
り、上記した第1の実施の形態と同様の効果が得られ
る。
In the case of such a photovoltaic device, the band gap of each photovoltaic layer material is maximized on the light incident side,
Thereafter, the wavelength region that can be absorbed by each layer is determined by sequentially reducing the size, and a photovoltaic device having high sensitivity in a wide wavelength region can be obtained. Microcrystalline Si is often used as the last layer from the light incident side of these stacked photovoltaic devices. By employing the i-type microcrystalline Si: N according to the present invention as the last photovoltaic layer, the same effect as in the first embodiment can be obtained.

【0047】[0047]

【発明の効果】以上説明したように、微結晶Siに窒素
を含有した微結晶Si:Nを光発電層として用いること
により、微結晶Siや微結晶Si:Oに比べてバンドギ
ャップのワイド化が可能となり、変換効率の向上と共に
光劣化も防止できる。また、微結晶Si:Nを光入射側
のドープ層に接する領域に用いることによっても同様の
効果が得られる。
As described above, by using microcrystalline Si: N containing nitrogen in microcrystalline Si as a photovoltaic layer, the band gap can be made wider than that of microcrystalline Si or microcrystalline Si: O. It is possible to improve the conversion efficiency and to prevent light deterioration. The same effect can be obtained by using microcrystalline Si: N in a region in contact with the doped layer on the light incident side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】微結晶Si:N膜のシラン(SiH4)に対す
る窒素(N2)ガスの流量比(N 2/SiH4)と膜中窒
素濃度の関係を示す特性図である。
FIG. 1 shows silane (SiH) of a microcrystalline Si: N film.FourAgainst)
Nitrogen (NTwo) Gas flow ratio (N Two/ SiHFour) And nitrogen in the membrane
FIG. 4 is a characteristic diagram illustrating a relationship between element concentrations.

【図2】微結晶Si:N膜のシラン(SiH4)に対す
る窒素(N2)ガスの流量比(N 2/SiH4)と結晶化
率の関係を示す特性図である。
FIG. 2 shows silane (SiH) of a microcrystalline Si: N film.FourAgainst)
Nitrogen (NTwo) Gas flow ratio (N Two/ SiHFour) And crystallization
It is a characteristic view which shows the relationship of a rate.

【図3】光導電率における結晶化率と光劣化の関係を示
す特性図である。
FIG. 3 is a characteristic diagram showing a relationship between crystallization rate and photodegradation in photoconductivity.

【図4】微結晶Si:N膜のシラン(SiH4)に対す
る窒素(N2)ガスの流量比(N 2/SiH4)と吸収係
数の関係を示す特性図である。
FIG. 4 shows silane (SiH) of a microcrystalline Si: N film.FourAgainst)
Nitrogen (NTwo) Gas flow ratio (N Two/ SiHFour) And absorber
It is a characteristic view which shows the relationship of a number.

【図5】微結晶Siの結晶化率と光導電率の劣化率との
関係を示した特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a crystallization rate of microcrystalline Si and a deterioration rate of photoconductivity.

【図6】微結晶Si:O及び微結晶Si:Nのそれぞれ
のバンドギャップと結晶化率との関係を示す特性図であ
る。
FIG. 6 is a characteristic diagram showing the relationship between the respective band gaps and the crystallization ratio of microcrystalline Si: O and microcrystalline Si: N.

【図7】微結晶Si:N膜のシラン(SiH4)に対す
る窒素(N2)ガスの流量比(N 2/SiH4)とバンド
ギャップの関係を示す特性図である。
FIG. 7 shows silane (SiH) of a microcrystalline Si: N film.FourAgainst)
Nitrogen (NTwo) Gas flow ratio (N Two/ SiHFour) And band
FIG. 4 is a characteristic diagram illustrating a relationship between gaps.

【図8】結晶化率算出のための分布図である。FIG. 8 is a distribution diagram for calculating a crystallization ratio.

【図9】この発明の一実施の形態にかかる光起電力装置
を示す断面図である。
FIG. 9 is a sectional view showing a photovoltaic device according to one embodiment of the present invention.

【図10】この発明の他の実施の形態にかかる光起電力
装置を示す断面図である。
FIG. 10 is a sectional view showing a photovoltaic device according to another embodiment of the present invention.

【図11】従来のpin接合を有するpin型a−Si
光起電力装置の構造を示す概略断面図である。
FIG. 11 shows a pin-type a-Si having a conventional pin junction.
It is an outline sectional view showing the structure of a photovoltaic device.

【符号の説明】[Explanation of symbols]

1 絶縁性透光性基板 2 透明電極 3 p型微結晶Si 4 i型微結晶Si:N 5 n型微結晶Si 6 裏面電極 DESCRIPTION OF SYMBOLS 1 Insulating translucent substrate 2 Transparent electrode 3 p-type microcrystalline Si 4 i-type microcrystalline Si: N 5 n-type microcrystalline Si 6 Back electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 微結晶シリコンと非晶質シリコンが混在
する半導体層を光発電層とする光起電力装置において、
光発電層の全部または少なくとも光入射側ドープ層と接
する領域に窒素元素が含有されていることを特徴とする
光起電力装置。
1. A photovoltaic device in which a semiconductor layer in which microcrystalline silicon and amorphous silicon coexist is used as a photovoltaic layer.
A photovoltaic device, characterized in that a nitrogen element is contained in the entire photovoltaic layer or at least in a region in contact with the light incident side doped layer.
【請求項2】 前記半導体層は結晶化率が47%より高
く形成されていることを特徴とする請求項1に記載の光
起電力装置。
2. The photovoltaic device according to claim 1, wherein the semiconductor layer has a crystallization ratio higher than 47%.
【請求項3】 前記半導体層の結晶化率は52%以上で
あることを特徴とする請求項1に記載の光起電力装置。
3. The photovoltaic device according to claim 1, wherein the crystallization ratio of the semiconductor layer is 52% or more.
【請求項4】 前記半導体層は、シランに対する窒素ガ
スの流量比を30%未満にした混合ガスを分解して形成
されることを特徴とする請求項1または3のいずれかに
記載の光起電力装置。
4. The photovoltaic device according to claim 1, wherein the semiconductor layer is formed by decomposing a mixed gas having a flow rate ratio of nitrogen gas to silane of less than 30%. Power equipment.
【請求項5】 前記半導体層に含有される窒素濃度が約
1×1021cm-3以下であることを特徴とする請求項1
ないし4のいずれかに記載の光起電力装置。
5. The semiconductor device according to claim 1, wherein the concentration of nitrogen contained in the semiconductor layer is about 1 × 10 21 cm −3 or less.
5. The photovoltaic device according to any one of claims 4 to 4.
【請求項6】 前記半導体層に含有される窒素濃度が約
0.8×1021cm -3以下であることを特徴とする請求
項5に記載の光起電力装置。
6. The method according to claim 1, wherein the concentration of nitrogen contained in said semiconductor layer is about
0.8 × 10twenty onecm -3Claims characterized by the following
Item 6. A photovoltaic device according to Item 5.
【請求項7】 前記窒素原子が含有されている領域に第
3族元素が導入されていることを特徴とする請求項1な
いし6のいずれかに記載の光起電力装置。
7. The photovoltaic device according to claim 1, wherein a group III element is introduced into the region containing the nitrogen atom.
JP10075839A 1998-03-24 1998-03-24 Photovoltaic device Pending JPH11274527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10075839A JPH11274527A (en) 1998-03-24 1998-03-24 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10075839A JPH11274527A (en) 1998-03-24 1998-03-24 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPH11274527A true JPH11274527A (en) 1999-10-08

Family

ID=13587781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10075839A Pending JPH11274527A (en) 1998-03-24 1998-03-24 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPH11274527A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151719A (en) * 2000-11-13 2002-05-24 Sharp Corp Thin film solar cell and method of manufacturing the same
WO2003073515A1 (en) * 2002-02-28 2003-09-04 National Institute Of Advanced Industrial Science And Technology Thin-film solar cell and its production method
JP2006100611A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Photovoltaic device
JP2009295970A (en) * 2008-05-09 2009-12-17 Semiconductor Energy Lab Co Ltd Optoelectric transducer and its manufacturing method
WO2010067704A1 (en) * 2008-12-09 2010-06-17 三洋電機株式会社 Photovoltaic device and method for manufacturing same
US8124867B2 (en) 2005-02-28 2012-02-28 Sanyo Electric Co., Ltd. Stacked photovoltaic device and method of manufacturing the same
WO2013065522A1 (en) * 2011-10-31 2013-05-10 三洋電機株式会社 Photovoltaic device and manufacturing method thereof
CN115117182A (en) * 2021-12-07 2022-09-27 福建金石能源有限公司 High-efficiency heterojunction solar cell and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151719A (en) * 2000-11-13 2002-05-24 Sharp Corp Thin film solar cell and method of manufacturing the same
WO2003073515A1 (en) * 2002-02-28 2003-09-04 National Institute Of Advanced Industrial Science And Technology Thin-film solar cell and its production method
JP2006100611A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Photovoltaic device
US8124867B2 (en) 2005-02-28 2012-02-28 Sanyo Electric Co., Ltd. Stacked photovoltaic device and method of manufacturing the same
US8383927B2 (en) 2005-02-28 2013-02-26 Sanyo Electric Co., Ltd. Stacked photovoltaic device and method of manufacturing the same
JP2009295970A (en) * 2008-05-09 2009-12-17 Semiconductor Energy Lab Co Ltd Optoelectric transducer and its manufacturing method
WO2010067704A1 (en) * 2008-12-09 2010-06-17 三洋電機株式会社 Photovoltaic device and method for manufacturing same
JP2010140935A (en) * 2008-12-09 2010-06-24 Sanyo Electric Co Ltd Photoelectromotive force device, and method of manufacturing the same
WO2013065522A1 (en) * 2011-10-31 2013-05-10 三洋電機株式会社 Photovoltaic device and manufacturing method thereof
CN115117182A (en) * 2021-12-07 2022-09-27 福建金石能源有限公司 High-efficiency heterojunction solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5507881A (en) Thin-film solar cell and method of manufacturing same
US6242686B1 (en) Photovoltaic device and process for producing the same
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5256887A (en) Photovoltaic device including a boron doping profile in an i-type layer
US6512171B2 (en) Thin film solar cell
US4776894A (en) Photovoltaic device
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
JPS6249672A (en) Amorphous photovoltaic device
JP2814351B2 (en) Photoelectric device
US20050092357A1 (en) Hybrid window layer for photovoltaic cells
JP2006080557A (en) Improved stabilization characteristics of amorphous silicon-based devices fabricated by high hydrogen dilution low temperature plasma deposition
US5114498A (en) Photovoltaic device
JPH0738454B2 (en) Solar cell
JP4284582B2 (en) Multi-junction thin film solar cell and manufacturing method thereof
JPH06267868A (en) Formation of silicon oxide semiconductor film
US4781765A (en) Photovoltaic device
Delahoy et al. Impurity effects in a‐Si: H solar cells due to air, oxygen, nitrogen, phosphine, or monochlorosilane in the plasma
JP2989923B2 (en) Solar cell element
JPH11274527A (en) Photovoltaic device
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JP3248227B2 (en) Thin film solar cell and method of manufacturing the same
US4857115A (en) Photovoltaic device
JP4110718B2 (en) Manufacturing method of multi-junction thin film solar cell
US20100147380A1 (en) Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers and Wide Bandgap Dopant Layers
JP3245962B2 (en) Manufacturing method of thin film solar cell