JPH11307296A - Low-pressure discharge lamp lighting device - Google Patents
Low-pressure discharge lamp lighting deviceInfo
- Publication number
- JPH11307296A JPH11307296A JP11375098A JP11375098A JPH11307296A JP H11307296 A JPH11307296 A JP H11307296A JP 11375098 A JP11375098 A JP 11375098A JP 11375098 A JP11375098 A JP 11375098A JP H11307296 A JPH11307296 A JP H11307296A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- low
- discharge lamp
- pressure discharge
- small
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010438 heat treatment Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Landscapes
- Circuit Arrangements For Discharge Lamps (AREA)
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、各極にそれぞれ熱
容量の異なる2種類のフィラメントを設けた低圧放電灯
を点灯させるのに適した低圧放電灯点灯装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-pressure discharge lamp lighting device suitable for lighting a low-pressure discharge lamp provided with two types of filaments having different heat capacities at each pole.
【0002】[0002]
【従来の技術】従来より、各極にそれぞれ熱容量の異な
る2種類のフィラメントを設けた低圧放電灯が提供され
ている。以下では、熱容量の大きいほうのフィラメント
を大電極と呼び、小さいほうのフィラメントを小電極と
呼ぶ。2. Description of the Related Art Conventionally, there has been provided a low-pressure discharge lamp in which two types of filaments having different heat capacities are provided for each pole. Hereinafter, the filament having the larger heat capacity is referred to as a large electrode, and the filament having a smaller heat capacity is referred to as a small electrode.
【0003】たとえば、特開平8−298096号公報
には、図10に示すように、バルブ3の端部に設けたス
テム4に2本の導入線5aおよび1本の支持線5bを立
設し、大電極1と小電極2との一端をそれぞれ異なる導
入線5aに結合するとともに、大電極1と小電極2との
他端を支持線5bに共通に結合した電極が開示されてい
る。大電極1は主として定常点灯時に放電アークを形成
する点灯用電極として機能するものであり、低圧放電灯
の定格に応じて仕様が規定される。また、小電極2は主
として始動時に電流が流れる始動用電極として機能する
ものであり、大電極1よりも線径が小さく大電極1より
も熱容量が小さくなっている。大電極1および小電極2
はいずれも電子放出物質を担持している。For example, in Japanese Patent Application Laid-Open No. Hei 8-298096, as shown in FIG. 10, two introduction wires 5a and one support wire 5b are erected on a stem 4 provided at an end of a valve 3. An electrode is disclosed in which one end of a large electrode 1 and a small electrode 2 are coupled to different introduction lines 5a, respectively, and the other end of the large electrode 1 and the small electrode 2 is commonly coupled to a support line 5b. The large electrode 1 mainly functions as a lighting electrode that forms a discharge arc at the time of steady lighting, and its specifications are defined according to the rating of the low-pressure discharge lamp. The small electrode 2 mainly functions as a starting electrode through which current flows at the time of starting, and has a smaller wire diameter than the large electrode 1 and a smaller heat capacity than the large electrode 1. Large electrode 1 and small electrode 2
All carry an electron-emitting substance.
【0004】以下に、この構成の電極の動作を説明す
る。いま、大電極1を電源側とし小電極2を非電源側と
して低圧放電灯を点灯させるとする。大電極1と小電極
2との直列回路に通電した直後には、熱容量の小さい小
電極2の温度が大電極1よりも先に上昇するから、まず
小電極2から熱電子の放出が開始され、小電極2から放
電が開始される。つまり、図11(a)に示すように、
小電極2に輝点Bが形成され、図11(a)のの経路
に電流が流れる。つまり、小電極2による放電が開始さ
れた時点では大電極1を電流が流れる。ここで、点灯開
始直後の大電極1の陰極降下電圧をVlc、点灯開始直
後の小電極2の陰極降下電圧をVsc、点灯開始直後に
大電極1に流れる電流による電圧降下をVfとすれば、
図11(a)に示す状態では、以下の関係が成り立つ。 Vsc+Vf<Vlc (1) 一方、低圧放電灯が点灯開始してから時間が経過する
と、大電極1の温度がジュール熱によって上昇するか
ら、大電極1からも熱電子が放出されるようになり、大
電極1の陰極降下電圧が低下するとともに、大電極1の
抵抗値が大きくなって大電極1を流れる電流による電圧
降下が大きくなる。また、小電極2の陰極降下電圧は点
灯開始から時間が経過しても点灯直後とほとんど変化し
ない。つまり、次の関係が成り立つ。 Vsc≒Vsc’ Vlc>Vlc’ Vf <Vf’ ただし、Vlc’は点灯開始から時間が経過した後の大
電極1の陰極降下電圧、Vsc’は点灯開始から時間が
経過した後の小電極2の陰極降下電圧、Vf’は点灯開
始から時間が経過した後の大電極1に流れる電流による
電圧降下である。こうして適当な時間(数秒)が経過し
て定常点灯状態になると、(1)式の左辺と右辺との大
小関係が逆転し、次式が成立する状態になる。 Vsc’+Vf’>Vlc’ 要するに、小電極2に輝点Bが形成される状態よりも、
大電極1に輝点Bが形成される状態のほうが印加電圧が
低くなるから(つまり低エネルギであるから)、図11
(b)のの経路に電流が流れ、大電極1に輝点Bが形
成されるようになる。[0004] The operation of the electrode having this configuration will be described below. Now, it is assumed that the low-pressure discharge lamp is turned on with the large electrode 1 as the power supply side and the small electrode 2 as the non-power supply side. Immediately after the series circuit of the large electrode 1 and the small electrode 2 is energized, the temperature of the small electrode 2 having a small heat capacity rises before the large electrode 1. , Discharge starts from the small electrode 2. That is, as shown in FIG.
A bright spot B is formed on the small electrode 2, and a current flows through the path shown in FIG. That is, when the discharge by the small electrode 2 is started, a current flows through the large electrode 1. Here, if the cathode drop voltage of the large electrode 1 immediately after the start of lighting is Vlc, the cathode drop voltage of the small electrode 2 immediately after the start of lighting is Vsc, and the voltage drop due to the current flowing through the large electrode 1 immediately after the start of lighting is Vf,
In the state shown in FIG. 11A, the following relationship is established. Vsc + Vf <Vlc (1) On the other hand, when a certain time has elapsed since the low-pressure discharge lamp started lighting, the temperature of the large electrode 1 rises due to Joule heat, so that thermionic electrons are also emitted from the large electrode 1, As the cathode drop voltage of the large electrode 1 decreases, the resistance value of the large electrode 1 increases, and the voltage drop due to the current flowing through the large electrode 1 increases. In addition, the cathode drop voltage of the small electrode 2 hardly changes from immediately after lighting even after a lapse of time from the start of lighting. That is, the following relationship holds. Vsc ≒ Vsc ′ Vlc> Vlc ′ Vf <Vf ′ where Vlc ′ is the cathode drop voltage of the large electrode 1 after a lapse of time from the start of lighting, and Vsc ′ is the cathode drop voltage of the small electrode 2 after a lapse of time from the start of lighting. The cathode drop voltage, Vf ', is a voltage drop due to a current flowing through the large electrode 1 after a lapse of time from the start of lighting. When an appropriate time (several seconds) elapses and a steady lighting state is reached, the magnitude relationship between the left side and the right side of equation (1) is reversed, and the following equation is established. Vsc ′ + Vf ′> Vlc ′ In short, compared to the state where the bright spot B is formed on the small electrode 2,
Since the applied voltage is lower when the bright spot B is formed on the large electrode 1 (that is, because the energy is lower), FIG.
A current flows through the path (b), and a bright spot B is formed on the large electrode 1.
【0005】以上説明したように、大電極1と小電極2
とを直列接続した電極を用い、大電極1を電源側に接続
しておけば、電極を予熱する機能を持たない点灯装置を
用いる場合でも、熱容量が小さい小電極2の温度が大電
極1よりも先に上昇して小電極2から熱電子が放出さ
れ、いわゆる熱陰極始動を行なうことになる。つまり、
始動時における電極へのイオン衝撃が大幅に減少して電
極からの電子放出物質の飛散が防止され、結果的に予熱
機能を持たない点灯装置に用いる場合でも始動可能な回
数(点灯寿命)が短くならないのである。また、点灯中
には大電極1に輝点が形成されるから、小電極2が過熱
されて小電極2の寿命が短くなることはなく点灯可能な
時間(点灯寿命)は主に大電極1で決定される。As described above, the large electrode 1 and the small electrode 2
If the large electrode 1 is connected to the power supply side using a series-connected electrode, the temperature of the small electrode 2 having a small heat capacity is higher than that of the large electrode 1 even when a lighting device having no function of preheating the electrode is used. Also rises first and thermionic electrons are emitted from the small electrode 2, so that a so-called hot cathode start is performed. That is,
Ion bombardment of the electrode during startup is greatly reduced, preventing the emission of electron-emitting substances from the electrode, and consequently the number of times the lamp can be started (lighting life) is short even when used in a lighting device without a preheating function. It doesn't. In addition, since a bright spot is formed on the large electrode 1 during lighting, the small electrode 2 is not overheated and the life of the small electrode 2 is not shortened. Is determined.
【0006】ところで、上述した従来構成では大電極1
を電源側に接続するという制約があり、点灯装置との接
続関係に制限があるが、特開平7−17373号公報に
は小電極2を一対の大電極1の間に接続することによ
り、この種の制限を不用にした構成が記載されている。
また、この公報には大電極1と小電極2との線径や線長
の条件についても記載されている。Incidentally, in the above-described conventional configuration, the large electrode 1
Is connected to the power supply side, and the connection relationship with the lighting device is limited. However, Japanese Patent Application Laid-Open No. 7-17373 discloses that the small electrode 2 is connected between the pair of large electrodes 1. An arrangement is described that obviates certain restrictions.
This publication also describes conditions for the wire diameter and wire length of the large electrode 1 and the small electrode 2.
【0007】図10に示した電極は大電極1と小電極2
とを直列接続したものであるが、図12に示す特公昭3
9−20120号公報に記載された構成のように、大電
極1と小電極2とを並列接続した電極もある。この電極
では、大電極1を小電極2に対して陽光柱寄りに配置す
ることによって、始動を小電極2で開始し、定常点灯状
態では電極間距離が小さい大電極1に輝点が移動する構
成としてある。つまり、この構成によっても大電極1と
小電極2とを直列接続した構成の電極と同様に機能す
る。The electrodes shown in FIG. 10 are a large electrode 1 and a small electrode 2.
Are connected in series, as shown in FIG.
There is also an electrode in which a large electrode 1 and a small electrode 2 are connected in parallel as in the configuration described in JP 9-20120. In this electrode, starting is started by the small electrode 2 by arranging the large electrode 1 near the positive electrode with respect to the small electrode 2, and the bright spot moves to the large electrode 1 having a small inter-electrode distance in a steady lighting state. There is a configuration. In other words, even with this configuration, it functions similarly to an electrode having a configuration in which the large electrode 1 and the small electrode 2 are connected in series.
【0008】しかしながら、いずれの電極においても、
始動から適当な時間が経過した後の定常点灯中でも大電
極1だけではなく小電極2にも電流が流れ続けるから、
放電アークの維持にはほとんど寄与しない電流が小電極
2に流れ続けることになりジュール損が生じる。However, in any of the electrodes,
Since the current continues to flow not only in the large electrode 1 but also in the small electrode 2 during steady lighting after an appropriate time has elapsed since the start,
A current that hardly contributes to maintaining the discharge arc continues to flow through the small electrode 2 and Joule loss occurs.
【0009】また、調光点灯時には電極に流れる電流が
定格点灯時よりも少なく、上式で示した定常点灯時の関
係が成立しにくいから、大電極1を通して流れ続ける電
流によるジュール損で小電極2が加熱され、小電極2が
過熱することになる。つまり、調光点灯時には小電極2
が大電極1に加熱され小電極2の寿命が過熱によって短
くなるという問題が生じる可能性がある。In addition, during dimming lighting, the current flowing through the electrode is smaller than during rated lighting, and it is difficult to establish the relationship during steady-state lighting as shown in the above equation. 2 is heated, and the small electrode 2 is overheated. In other words, the small electrode 2 is
May be heated by the large electrode 1 and the life of the small electrode 2 may be shortened by overheating.
【0010】この種の問題を回避するために、特開平9
−147807号公報には、大電極1と小電極2とを直
列接続した図10の構成の電極において、小電極2の両
端間にスイッチを接続した構成が記載されている。この
構成では、始動から適当な時間が経過した後や調光時に
はスイッチをオンにして小電極2に電流を流さないよう
にすることで、小電極2によるジュール損や小電極2の
過熱による劣化を防止している。In order to avoid this kind of problem, Japanese Patent Laid-Open No.
JP-A-147807 describes a configuration in which a large electrode 1 and a small electrode 2 are connected in series, and a switch is connected between both ends of the small electrode 2 in the configuration of FIG. In this configuration, the switch is turned on so that no current flows through the small electrode 2 after an appropriate time has elapsed from the start or at the time of dimming, so that the Joule loss due to the small electrode 2 and the deterioration due to overheating of the small electrode 2 can be achieved. Has been prevented.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、小電極
2の両端間にスイッチを接続した上述の構成では調光時
において大電極1にのみ輝点が形成されるものであるか
ら、たとえば光出力を定格出力の数%程度まで小さくし
ようとすると、輝点の位置を安定させるのが難しく、ち
らつきが発生しやすくなるという問題がある。要する
に、光出力を定格の10%以下程度まで小さくするよう
な用途には使用することができない。However, in the above-described configuration in which a switch is connected between both ends of the small electrode 2, a bright spot is formed only on the large electrode 1 during dimming. If the output is reduced to about several percent of the rated output, it is difficult to stabilize the position of the luminescent spot, and there is a problem that flicker tends to occur. In short, it cannot be used in applications where the light output is reduced to about 10% or less of the rated value.
【0012】本発明は上記事由に鑑みて為されたもので
あり、その目的は、大電極と小電極とを備えた構成の電
極を用いながらも調光範囲の広い調光を可能とした低圧
放電灯点灯装置を提供することにある。The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a low-voltage control apparatus capable of performing dimming with a wide dimming range while using an electrode having a large electrode and a small electrode. An object of the present invention is to provide a discharge lamp lighting device.
【0013】[0013]
【課題を解決するための手段】請求項1の発明は、熱容
量の異なる2つのフィラメントである大電極と小電極と
を1つの電極に備える低圧放電灯に電力を供給する調光
用電子バラストを備え、始動時には小電極から放電を開
始させるとともに、ランプ電流が規定値以下の低出力領
域では小電極を用いて点灯させるものである。According to a first aspect of the present invention, there is provided a dimming electronic ballast for supplying power to a low-pressure discharge lamp having two filaments having different heat capacities, a large electrode and a small electrode. At the time of starting, the discharge is started from the small electrode, and the lamp is lit using the small electrode in a low output region where the lamp current is equal to or less than a specified value.
【0014】請求項2の発明は、熱容量の異なる2つの
フィラメントである大電極と小電極とを1つの電極に備
える低圧放電灯に電力を供給する調光用電子バラストを
備え、始動時には小電極から放電を開始させるととも
に、ランプ電流が規定値以上で定格以下である定常出力
領域では大電極を用いて点灯させるものである。According to a second aspect of the present invention, there is provided a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, on one electrode. , And the lamp is turned on using a large electrode in a steady output region where the lamp current is equal to or higher than a specified value and equal to or lower than the rated value.
【0015】請求項3の発明は、熱容量の異なる2つの
フィラメントである大電極と小電極とを1つの電極に備
える低圧放電灯に電力を供給する調光用電子バラストを
備え、始動時には小電極から放電を開始させるととも
に、定格出力を超える高出力領域では大電極と小電極と
を用いて点灯させるものである。According to a third aspect of the present invention, there is provided a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, on one electrode. The discharge is started from the beginning, and in the high output region exceeding the rated output, the lighting is performed using the large electrode and the small electrode.
【0016】請求項4の発明は、請求項3の発明におい
て、高出力領域では、低圧放電灯の電極間に印加するラ
ンプ電圧の点灯周波数と、大電極と小電極との直列回路
の両端間に印加する加熱電圧の電極加熱周波数とを互い
に異ならせるものである。According to a fourth aspect of the present invention, in the third aspect of the present invention, in the high output region, the operating frequency of the lamp voltage applied between the electrodes of the low-pressure discharge lamp and the voltage between both ends of the series circuit of the large electrode and the small electrode. And the electrode heating frequency of the heating voltage applied to the electrodes is made different from each other.
【0017】請求項5の発明は、請求項1の発明におい
て、前記低出力領域をランプ電流が大電極の定格電流の
30%以下の領域としたものである。According to a fifth aspect of the present invention, in the first aspect of the present invention, the low output region is a region where the lamp current is 30% or less of the rated current of the large electrode.
【0018】請求項6の発明は、請求項1の発明におい
て、前記定常出力領域をランプ電流が大電極の定格電流
の30〜100%の領域としたものである。According to a sixth aspect of the present invention, in the first aspect of the invention, the steady output region is a region where the lamp current is 30 to 100% of the rated current of the large electrode.
【0019】請求項7の発明は、請求項3の発明におい
て、前記高出力領域としてランプ電流を大電極の定格電
流の100%以上としたことを特徴とするものである。According to a seventh aspect of the present invention, in the third aspect of the invention, the lamp current is set to 100% or more of the rated current of the large electrode in the high output region.
【0020】請求項8の発明は、熱容量の異なる2つの
フィラメントである大電極と小電極とを1つの電極に備
える低圧放電灯に電力を供給する調光用電子バラストを
備え、始動時には小電極から放電を開始させるととも
に、調光点灯時に電極温度を所定範囲内に保つように大
電極に通電する状態と小電極に通電する状態とを選択す
る手段を設けたものである。The invention according to claim 8 is provided with a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, in one electrode. And means for selecting between a state in which the large electrode is energized and a state in which the small electrode is energized so that the electrode temperature is kept within a predetermined range during dimming lighting.
【0021】請求項9の発明は、請求項8の発明におい
て、前記温度範囲を電極にエンドグローが生じる状態を
上限とし、輝点が不安定に移動する状態を下限とするも
のである。In a ninth aspect of the present invention, in the invention of the eighth aspect, the upper limit of the temperature range is a state in which an end glow occurs in the electrode, and the lower limit is a state in which the luminescent spot moves in an unstable manner.
【0022】請求項10の発明は、請求項8の発明にお
いて、前記手段が電極温度を800〜1200℃に保つ
ものである。According to a tenth aspect, in the eighth aspect, the means maintains the electrode temperature at 800 to 1200 ° C.
【0023】請求項11の発明は、請求項1ないし請求
項10の発明において、大電極と小電極とが直列接続さ
れたものである。According to an eleventh aspect, in the first to tenth aspects, the large electrode and the small electrode are connected in series.
【0024】請求項12の発明は、請求項1ないし請求
項10の発明において、大電極と小電極とが並列接続さ
れたものである。According to a twelfth aspect of the present invention, in the first to tenth aspects, the large electrode and the small electrode are connected in parallel.
【0025】請求項13の発明は、請求項1ないし請求
項12の発明において、調光範囲を定格値の0.1〜1
00%と130%としたものである。According to a thirteenth aspect of the present invention, in the first to twelfth aspects, the dimming range is set to 0.1 to 1 of a rated value.
00% and 130%.
【0026】[0026]
【発明の実施の形態】(実施形態1)本実施形態は、図
1に示すように、低圧放電灯Laとして各電極がそれぞ
れ大電極1と小電極2とを備えるものを用いている。大
電極1と小電極2とは直列接続され、大電極1と小電極
2との直列回路の両端および大電極1と小電極2との接
続点にそれぞれ導入線5aが接続されている。また、大
電極1と小電極2との直列回路の両端から陽光柱側に金
属棒よりなる補助陽極6が突設されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) In this embodiment, as shown in FIG. 1, a low-pressure discharge lamp La having a large electrode 1 and a small electrode 2 is used as each electrode. The large electrode 1 and the small electrode 2 are connected in series, and lead-in lines 5a are connected to both ends of a series circuit of the large electrode 1 and the small electrode 2 and to a connection point between the large electrode 1 and the small electrode 2, respectively. Auxiliary anodes 6 made of metal rods project from both ends of a series circuit of the large electrode 1 and the small electrode 2 to the positive column.
【0027】大電極1と小電極2との直列回路はトラン
スT1の2次巻線の両端間に接続され、トランスT1の
1次巻線に接続された図示しない電極加熱回路により加
熱電圧が印加される。また、大電極1と小電極2とには
それぞれスイッチ要素S1,S2が並列接続される。点
灯回路としては、商用電源のような交流電源Vsを入力
電源として高周波交流電圧を出力してランプ電圧を印加
するインバータ装置INVを用いており、インバータ装
置INVの出力端間に抵抗Rを介して低圧放電灯Laを
接続してある。このインバータ装置INVは、低圧放電
灯Laへの供給電力が可変であって、調光用バラストと
して用いられる。ここに、低圧放電灯Laの各極におけ
る大電極1の一端を電源側としている。A series circuit of the large electrode 1 and the small electrode 2 is connected between both ends of a secondary winding of the transformer T1, and a heating voltage is applied by an electrode heating circuit (not shown) connected to the primary winding of the transformer T1. Is done. Further, switch elements S1 and S2 are connected in parallel to the large electrode 1 and the small electrode 2, respectively. As the lighting circuit, an inverter INV that outputs a high-frequency AC voltage and applies a lamp voltage using an AC power supply Vs such as a commercial power supply as an input power supply is used, and a resistor R is connected between output terminals of the inverter INV. The low-pressure discharge lamp La is connected. This inverter device INV has a variable power supply to the low-pressure discharge lamp La, and is used as a dimming ballast. Here, one end of the large electrode 1 in each pole of the low-pressure discharge lamp La is set as a power supply side.
【0028】抵抗Rはランプ電流を検出するものであっ
て、抵抗Rの両端電圧を検出することにより低圧放電灯
Laに流れるランプ電流に比例した電圧が得られる。抵
抗Rの両端電圧は検知回路SNに入力される。検知回路
SNは、たとえば図2に示す構成であって、抵抗Rの両
端電圧に基づいてスイッチ要素S1,S2を制御するも
のである。抵抗Rの両端間には、ダイオードD1および
抵抗R1を介してコンデンサC1が接続され、抵抗Rの
両端電圧はダイオードD1により整流され、コンデンサ
C1により平滑される。コンデンサC1の両端電圧は3
個の抵抗R2〜R4の直列回路により分圧される。抵抗
R2〜R4の直列回路には発光ダイオードLD1が並列
接続され、抵抗R3,R4の直列回路には発光ダイオー
ドLD2が並列接続され、抵抗R4の直列回路には発光
ダイオードLD3が並列接続される。つまり、抵抗Rの
両端電圧の平均値を4つの電圧区間に分けるとすれば、
電圧がもっとも低い第1電圧区間では発光ダイオードL
D1〜LD3はいずれも点灯せず、2番目の第2電圧区
間では発光ダイオードLD1のみが点灯し、3番目の第
3電圧区間では発光ダイオードLD1,LD2が点灯
し、4番目の第4電圧区間ではすべての発光ダイオード
LD1〜LD3が点灯する。The resistor R detects a lamp current. By detecting the voltage across the resistor R, a voltage proportional to the lamp current flowing through the low-pressure discharge lamp La can be obtained. The voltage across the resistor R is input to the detection circuit SN. The detection circuit SN has, for example, the configuration shown in FIG. 2 and controls the switch elements S1 and S2 based on the voltage across the resistor R. A capacitor C1 is connected between both ends of the resistor R via a diode D1 and the resistor R1, and a voltage across the resistor R is rectified by the diode D1 and smoothed by the capacitor C1. The voltage across the capacitor C1 is 3
The voltage is divided by a series circuit of the resistors R2 to R4. The light emitting diode LD1 is connected in parallel to the series circuit of the resistors R2 to R4, the light emitting diode LD2 is connected in parallel to the series circuit of the resistors R3 and R4, and the light emitting diode LD3 is connected in parallel to the series circuit of the resistors R4. That is, if the average value of the voltage across the resistor R is divided into four voltage sections,
In the first voltage section where the voltage is the lowest, the light emitting diode L
None of D1 to LD3 is turned on, only the light emitting diode LD1 is turned on in the second second voltage section, the light emitting diodes LD1 and LD2 are turned on in the third third voltage section, and the fourth fourth voltage section is turned on. Then, all the light emitting diodes LD1 to LD3 are turned on.
【0029】一方、各スイッチ要素S1,S2は、それ
ぞれ2個ずつのMOSFETQa1,Qb1,Qa2,
Qb2を備え、各2個のMOSFETQa1,Qb1,
Qa2,Qb2はソース同士、ゲート同士が共通に接続
されている。図には逆直列に接続されたダイオードを示
しているが、MOSFETQa1,Qb1,Qa2,Q
b2のボディダイオードを用いるのであれば別途にダイ
オードを接続する必要はない。MOSFETQa1,Q
b1のゲート−ソース間にはトランジスタQc1が接続
され、MOSFETQa2,Qb2のゲート−ソース間
にはトランジスタQc2のコレクタ−エミッタが接続さ
れる。On the other hand, each of the switch elements S1 and S2 includes two MOSFETs Qa1, Qb1, Qa2,
Qb2 and two MOSFETs Qa1, Qb1,
In Qa2 and Qb2, sources are commonly connected and gates are commonly connected. The figure shows diodes connected in anti-series, but the MOSFETs Qa1, Qb1, Qa2, Q
If a body diode of b2 is used, there is no need to separately connect a diode. MOSFET Qa1, Q
The transistor Qc1 is connected between the gate and source of b1, and the collector and emitter of the transistor Qc2 are connected between the gate and source of the MOSFETs Qa2 and Qb2.
【0030】スイッチ要素S1を構成するMOSFET
Qa1,Qb1のゲート−ソース間にはフォトトランジ
スタPT1と抵抗Ra1と直流電源Ea1との直列回路
が接続される。また、トランジスタQc1のベース−エ
ミッタ間にはフォトトランジスタPT21と抵抗Rb1
と直流電源Eb1との直列回路が接続される。一方、ス
イッチ要素S2を構成するMOSFETQa2,Qb2
のゲート−ソース間にはフォトトランジスタPT22と
抵抗Ra2と直流電源Ea2との直列回路が接続され、
トランジスタQc2のベース−エミッタ間にはフォトト
ランジスタPT3と抵抗Rb2と直流電源Eb2との直
列回路が接続される。フォトトランジスタPT1は発光
ダイオードLD1とともにフォトカプラを構成し、フォ
トトランジスタPT21,PT22は発光ダイオードL
D2とともにフォトカプラを構成し、フォトトランジス
タPT3は発光ダイオードLD3とともにフォトカプラ
を構成する。MOSFET constituting switch element S1
A series circuit of a phototransistor PT1, a resistor Ra1, and a DC power supply Ea1 is connected between the gates and sources of Qa1 and Qb1. The phototransistor PT21 and the resistor Rb1 are connected between the base and the emitter of the transistor Qc1.
And a DC power supply Eb1 are connected in series. On the other hand, MOSFETs Qa2 and Qb2
, A series circuit of a phototransistor PT22, a resistor Ra2, and a DC power supply Ea2 is connected between
A series circuit of a phototransistor PT3, a resistor Rb2, and a DC power supply Eb2 is connected between the base and the emitter of the transistor Qc2. The phototransistor PT1 forms a photocoupler together with the light emitting diode LD1, and the phototransistors PT21 and PT22 include the light emitting diode L1.
D2 forms a photocoupler, and the phototransistor PT3 forms a photocoupler together with the light emitting diode LD3.
【0031】上記構成では、抵抗Rの両端電圧の平均値
が第1電圧区間であると両スイッチ要素S1,S2はオ
フになる。また、第2電圧区間ではスイッチ要素S1が
オン、スイッチ要素S2がオフであり、第3電圧区間で
はスイッチ要素S1がオフ、スイッチ要素S2がオンに
なり、第4電圧区間では両スイッチ要素S1,S2がオ
フになる。In the above configuration, when the average value of the voltage across the resistor R is in the first voltage section, both switch elements S1 and S2 are turned off. In the second voltage section, the switch element S1 is on and the switch element S2 is off. In the third voltage section, the switch element S1 is off and the switch element S2 is on. S2 turns off.
【0032】ところで、抵抗R2,R3,R4の直列回
路の両端間に印加される電圧V1は、抵抗Rの両端電圧
のピーク値をVpとすると、次式で表される。V1=V
p[1−exp{−(R1+Rx)t/C1・R1・R
x}]/R1ただし、Rx=R2+R3+R4である。
したがって、インバータ装置INVの電源を投入してか
ら所定の起動期間の経過後に(たとえば、0.5秒に設
定する)フォトトランジスタPT1がオンになるように
(つまり、上記tが0.5のときに発光ダイオードLD
1が点灯してフォトトランジスタPT1がオンになるよ
うに)、抵抗R1,RxとコンデンサC1とを設定して
おけば、インバータ装置INVの電源を投入してから起
動期間内は、第1電圧区間になり両スイッチ要素S1,
S2がともにオフになる。The voltage V1 applied between both ends of the series circuit of the resistors R2, R3 and R4 is expressed by the following equation, where the peak value of the voltage across the resistor R is Vp. V1 = V
p [1-exp {-(R1 + Rx) t / C1.R1.R
x}] / R1, where Rx = R2 + R3 + R4.
Therefore, the phototransistor PT1 is turned on after a predetermined start-up period (for example, set to 0.5 seconds) after the power supply of the inverter INV is turned on (that is, when the above-mentioned t is 0.5). Light emitting diode LD
1 so that the phototransistor PT1 is turned on), the resistors R1 and Rx, and the capacitor C1 are set. If the power supply of the inverter INV is turned on, the first voltage section is set during the startup period. And both switch elements S1,
Both S2 are turned off.
【0033】起動期間が終了すれば、発光ダイオードL
D1が点灯してスイッチ要素S1のみがオンになるから
大電極1は短絡された状態になり、小電極2にのみ電流
を流すことができる。また、抵抗Rを流れる電流が大き
くなり発光ダイオードLD2も点灯するようになると、
スイッチ要素S1がオフになるがスイッチ要素S2がオ
ンになるから、小電極2が短絡されて大電極1のみに電
流を流すことができるようになる。さらに電流が増加し
て発光ダイオードLD3にも電流が流れるようになる
と、スイッチ要素S1,S2がともにオフになるから大
電極1と小電極2との直列回路に電流を流すことができ
るようになる。When the startup period ends, the light emitting diode L
Since D1 is turned on and only the switch element S1 is turned on, the large electrode 1 is short-circuited, and current can flow only to the small electrode 2. When the current flowing through the resistor R increases and the light emitting diode LD2 also lights up,
Since the switch element S1 is turned off but the switch element S2 is turned on, the small electrode 2 is short-circuited, so that current can flow only to the large electrode 1. When the current further increases and the current also flows through the light emitting diode LD3, the switch elements S1 and S2 are both turned off, so that the current can flow through the series circuit of the large electrode 1 and the small electrode 2. .
【0034】ところで、一般的な電極を用いた低圧放電
灯は、定格電流の0.5%程度までは安定に調光可能で
あることが知られている。一方、電極として大電極1と
小電極2とを直列接続したものを用いる場合に、小電極
2の電流定格値を大電極1の電流定格値の30%程度に
設定すると点滅寿命がもっとも長くなることが特開平7
−17373号公報などの記載によって知られている。
そこで、大電極1の電流定格値の30%の電流定格値を
持つ小電極2を用い、小電極2のみで調光するとすれ
ば、0.1%付近まで安定に調光することが可能にな
る。以下では、大電極1の定格電流の0.1〜30%を
低出力領域、30〜100%を定常出力領域とする。By the way, it is known that a low-pressure discharge lamp using a general electrode can stably control light up to about 0.5% of the rated current. On the other hand, when a large electrode 1 and a small electrode 2 are connected in series as electrodes, the blinking life becomes the longest when the current rating of the small electrode 2 is set to about 30% of the current rating of the large electrode 1. It is
It is known by the description in US Pat.
Therefore, if the small electrode 2 having a current rating of 30% of the current rating of the large electrode 1 is used, and only the small electrode 2 is used for dimming, the dimming can be stably performed to around 0.1%. Become. Hereinafter, 0.1 to 30% of the rated current of the large electrode 1 is defined as a low output region, and 30 to 100% is defined as a steady output region.
【0035】このような知見に基づいて、封入物および
管径がFL30Wと同等であって、大電極1として現状
の30Wの蛍光ランプ用のフィラメント(芯線径が約9
3μm)を用い、小電極2として現状の10Wの蛍光ラ
ンプ用のフィラメント(芯線径が約50μm)を用いた
低圧放電灯Laを構成したとする。この低圧放電灯La
の定格点灯時に大電極1のみが用いられるとすれば、定
格電流は0.6Aであって定格電流の30%の電流は
0.2Aになる。そこで、ランプ電流が0.2A以上に
なると発光ダイオードLD2が点灯し、ランプ電流が
0.6A以上になると発光ダイオードLD3が点灯する
ように抵抗R2〜R4を設定する。Based on such findings, the filament and the tube diameter of the current 30 W fluorescent lamp (core wire diameter of about 9
It is assumed that a low-pressure discharge lamp La using a current 10 W fluorescent lamp filament (having a core wire diameter of about 50 μm) as the small electrode 2 is configured. This low-pressure discharge lamp La
If only the large electrode 1 is used at the time of rated lighting, the rated current is 0.6 A, and 30% of the rated current is 0.2 A. Therefore, the resistors R2 to R4 are set so that the light emitting diode LD2 is turned on when the lamp current becomes 0.2A or more, and the light emitting diode LD3 is turned on when the lamp current becomes 0.6A or more.
【0036】この設定例で動作を説明する。上述したよ
うに、電源投入から起動期間は発光ダイオードLD1〜
LD3がいずれも点灯せず、起動期間の経過後からは発
光ダイオードLD1が点灯する。以後はランプ電流Il
aとスイッチ要素S1、S2のオンオフとの関係は以下
の関係になる。The operation will be described with this setting example. As described above, the light emitting diodes LD1 to LD1 are activated from the power-on to the startup period.
None of the LDs 3 is turned on, and the light emitting diode LD1 is turned on after the elapse of the activation period. Thereafter, the lamp current Il
The relationship between a and the on / off of the switch elements S1 and S2 is as follows.
【0037】 Ila≦0.2A S1=オン S2=オフ 0.2A<Ila≦0.6A S1=オフ S2=オン 0.6A<Ila S1=オフ S2=オフ 以上のようなスイッチ要素S1,S2の動作によって、
ランプ電流が0.2A以下では小電極2にのみ電流が流
れ、ランプ電流が0.2〜0.6Aでは大電極1にのみ
電流が流れ、ランプ電流が0.6Aを越えると大電極1
と小電極2との直列回路に電流が流れることになる。す
なわち、電源投入直後には小電極2に輝点が形成されて
始動を容易にすることができ、その後、ランプ電流が増
加すれば大電極1を用いて定常点灯に移行させることに
なる。また、調光時にはランプ電流が0.6A以下で
0.2A以上の範囲(定常出力領域)では大電極1のみ
を用い、ランプ電流が0.2A以下の範囲(低出力領
域)では小電極2のみを用いて調光を行なうことにな
る。これにより、大電極1のみでは定格電流の0.5%
程度までしか安定に調光することができなかったのに対
して、0.1%付近まで安定に調光することが可能にな
る。ここで、大電極1と小電極2との定格電流の比率は
100:30に限定されないが、この比率は望ましい値
である。Ila ≦ 0.2A S1 = ON S2 = OFF 0.2A <Ila ≦ 0.6A S1 = OFF S2 = ON 0.6A <Ila S1 = OFF S2 = OFF The above switch elements S1 and S2 By action
When the lamp current is 0.2 A or less, current flows only to the small electrode 2. When the lamp current is 0.2 to 0.6 A, current flows only to the large electrode 1. When the lamp current exceeds 0.6 A, the large electrode 1 flows.
A current flows through a series circuit of the electrode and the small electrode 2. That is, immediately after the power is turned on, a bright spot is formed on the small electrode 2 to facilitate start-up. After that, when the lamp current increases, the operation is shifted to steady lighting using the large electrode 1. Further, at the time of dimming, only the large electrode 1 is used in a range where the lamp current is 0.6 A or less and 0.2 A or more (steady output region), and a small electrode 2 is used in a range where the lamp current is 0.2 A or less (low output region). Dimming is performed using only the light. As a result, only the large electrode 1 is 0.5% of the rated current.
Although the dimming can be stably performed only to the extent, the dimming can be stably performed to about 0.1%. Here, the ratio of the rated current between the large electrode 1 and the small electrode 2 is not limited to 100: 30, but this ratio is a desirable value.
【0038】ところで、ランプ電流が定格電流を越え、
所定の高出力領域に達したときには低圧放電灯Laの各
電極の両端間に電極加熱周波数の加熱電圧を印加し、か
つ両電極間に点灯周波数のランプ電圧を印加する。点灯
周波数と電極加熱周波数とは互いに異なるように設定さ
れる。ここで、点灯周波数と電極加熱周波数とはどちら
が高い周波数でもよいが、以下では点灯周波数が電極加
熱周波数よりも高い場合について説明する。ここに、大
電極1と小電極2とに上述のものを用いる場合には高出
力領域は望ましくは定格電流の130%になる。By the way, when the lamp current exceeds the rated current,
When a predetermined high output area is reached, a heating voltage of the electrode heating frequency is applied across both electrodes of the low-pressure discharge lamp La, and a lamp voltage of the lighting frequency is applied between both electrodes. The lighting frequency and the electrode heating frequency are set to be different from each other. Here, either the lighting frequency or the electrode heating frequency may be higher, but the case where the lighting frequency is higher than the electrode heating frequency will be described below. Here, when the above-mentioned ones are used for the large electrode 1 and the small electrode 2, the high output region is desirably 130% of the rated current.
【0039】ここで、一般に電極の動作には、陽極サイ
クルと陰極サイクルとがあり、陽極サイクルでは電子が
電極に流れ込むから、この期間には基本的に輝点は不用
である。ただし、実際にはもっとも流れやすい個所に電
子が流れ込むから、電極は局所的に高温になる。そこ
で、補助陽極6を設けているのであって、陽極サイクル
では補助電極6に電子が流れ込むようにして電極の局所
的な過熱を防止し、電極の寿命を延ばすことができるの
である。つまり、補助電極6を設けているから、輝点に
ついては陰極サイクルのみを考慮すればよい。このよう
に実用的には陰極サイクルを考慮するだけで問題は生じ
ないから、陰極サイクルでの輝点についてのみ説明す
る。Here, in general, the operation of the electrode includes an anode cycle and a cathode cycle. In the anode cycle, electrons flow into the electrode. Therefore, during this period, a bright spot is basically unnecessary. However, in practice, the electrons flow into the location where the flow is most likely to occur, so that the temperature of the electrode is locally high. Therefore, the auxiliary anode 6 is provided. In the anode cycle, electrons flow into the auxiliary electrode 6 to prevent local overheating of the electrode and extend the life of the electrode. That is, since the auxiliary electrode 6 is provided, only the cathode cycle needs to be considered for the bright spot. As described above, since no problem occurs in practical use only by considering the cathode cycle, only the bright spot in the cathode cycle will be described.
【0040】いま、図3に矢印で示す極性でランプ電圧
Vlaが各電極7の電源側端a1,a2に印加され、ラ
ンプ電流Ilaが矢印で示す向きに流れるものとする。
点灯周波数を電極加熱周波数の2倍に設定したとする
と、ランプ電圧Vlaと各電極7の両端間(a1−b1
間、a2−b2間)に印加される加熱電圧Vf1,Vf
2との関係を4つの場合A〜Dに分けることができる
(図4参照)。要するに、加熱電圧Vf1,Vf2が正
極性であってランプ電圧Vlaが正極性の場合がA、加
熱電圧Vf1,Vf2が正極性であってランプ電圧Vl
aが負極性の場合がB、加熱電圧Vf1,Vf2が負極
性であってランプ電圧Vlaが正極性の場合がC、加熱
電圧Vf1,Vf2が負極性であってランプ電圧Vla
が負極性の場合がDになる。しかして、陰極サイクルの
みを考慮して輝点の位置を考えると、A〜Dの各場合に
対応する輝点の位置は、A→a1、B→a2、C→b
1、D→b2になる。Now, it is assumed that the lamp voltage Vla having the polarity shown by the arrow in FIG. 3 is applied to the power supply side ends a1 and a2 of the respective electrodes 7, and the lamp current Ila flows in the direction shown by the arrow.
Assuming that the lighting frequency is set to be twice the electrode heating frequency, the lamp voltage Vla is applied between both ends of each electrode 7 (a1-b1
Heating voltage Vf1, Vf applied between
The relationship with 2 can be divided into four cases A to D (see FIG. 4). In short, the case where the heating voltages Vf1 and Vf2 are positive and the lamp voltage Vla is positive is A, and the heating voltages Vf1 and Vf2 are positive and the lamp voltage Vl
B when a is negative, C when the heating voltages Vf1 and Vf2 are negative and the lamp voltage Vla is positive, and C when the heating voltages Vf1 and Vf2 are negative and the lamp voltage Vla.
Is D when the polarity is negative. Considering the positions of the bright spots in consideration of only the cathode cycle, the positions of the bright spots corresponding to each of the cases A to D are A → a1, B → a2, C → b
1, D → b2.
【0041】上述のように、ランプ電圧Vlaを規定す
る点灯周波数と、加熱電圧Vf1,Vf2を規定する電
極加熱周波数との2周波数を制御することにより、輝点
が生じる時間を制御することができ、結果的に電極7の
両端部に電流を流す割合も制御することが可能になる。
図4の例では電極7の端部a1,a2と端部b1,b2
とに50%ずつ輝点が生じる。As described above, by controlling the two frequencies of the lighting frequency that defines the lamp voltage Vla and the electrode heating frequency that defines the heating voltages Vf1 and Vf2, the time during which a bright spot occurs can be controlled. As a result, it is possible to control the ratio of the current flowing to both ends of the electrode 7.
In the example of FIG. 4, the ends a1, a2 and the ends b1, b2 of the electrode 7
And 50% of bright spots are generated.
【0042】また、図5に示すように、ランプ電圧Vl
aに対応する点灯周波数を加熱電圧Vf1,Vf2に対
応する電極加熱周波数の3倍に設定し、加熱電圧Vf
1,Vf2を互いに逆位相に設定すると、図5に示す6
つの場合A〜Fに分けることができる。A〜Fの各場合
に対応する輝点の位置は、A→a1、B→b2、C→a
1、D→a2、E→b1、F→a2になる。このよう
に、輝点の位置および時間を制御することができるので
ある。As shown in FIG. 5, the lamp voltage Vl
The lighting frequency corresponding to a is set to three times the electrode heating frequency corresponding to the heating voltages Vf1 and Vf2, and the heating voltage Vf
When Vf1 and Vf2 are set to mutually opposite phases, 6 shown in FIG.
Cases can be divided into AF. The positions of the bright spots corresponding to each of the cases A to F are A → a1, B → b2, C → a
1, D → a2, E → b1, F → a2. Thus, the position and time of the luminescent spot can be controlled.
【0043】上述の説明は基本的な動作を説明するため
に1つのフィラメントで構成された電極7を用いたが、
本実施形態では大電極1と小電極2とを直列接続した電
極を用いているから、電極加熱周波数については大電極
1と小電極2との定格値に合わせるように制御すること
になる。しかして、上述のように大電極1に流れる電流
を100%として小電極2に30%の電流を流すように
点灯周波数と電極加熱周波数とを設定しようとすれば、
電極加熱周波数を変調する必要がある。In the above description, the electrode 7 composed of one filament is used to explain the basic operation.
In the present embodiment, an electrode in which the large electrode 1 and the small electrode 2 are connected in series is used. Therefore, the electrode heating frequency is controlled to match the rated values of the large electrode 1 and the small electrode 2. However, as described above, if the lighting frequency and the electrode heating frequency are set so that the current flowing through the large electrode 1 is set to 100% and the current of 30% flows through the small electrode 2,
It is necessary to modulate the electrode heating frequency.
【0044】たとえば、ランプ電圧Vlaを、図6に示
すように2周波数が1波長ずつ交互に入れ替わるように
設定すると、図6に斜線部で示す部分で小電極2から電
子が放出されることになる。また、他の個所では大電極
1から電子が放出される。なお、ランプ電圧Vlaおよ
び電極加熱電圧Vf1,Vf2の極性は、図3に示す極
性とする。For example, when the lamp voltage Vla is set so that two frequencies are alternately changed by one wavelength as shown in FIG. 6, electrons are emitted from the small electrode 2 in the shaded portion in FIG. Become. At other locations, the large electrode 1 emits electrons. Note that the polarities of the lamp voltage Vla and the electrode heating voltages Vf1 and Vf2 are the polarities shown in FIG.
【0045】ランプ電圧Vlaに含まれる2つの周波数
成分がωtとωt/n(ただし、nは整数)とであると
すれば、大電極1と小電極2とに流れる電流の実行値の
比は、以下のようになる。 (小電極2の電流の2乗):(大電極1の電流の2乗)
=1:(1+n) つまり、小電極2に流れる電流を大電極1に流れる電流
の約30%にするには、n=10に設定すればよいこと
がわかる。このように周波数比が1:10になる2周波
数の電圧を交互に印加することによって、小電極2には
大電極1の約30%の電流を流すことが可能になるので
ある。このような制御により、高出力領域で大電極1と
小電極2とに流す電流比を適正に配分することができ、
高出力ながらも大電極1と小電極2との点灯寿命を損な
うことがないのである。Assuming that the two frequency components included in the lamp voltage Vla are ωt and ωt / n (where n is an integer), the ratio of the effective values of the currents flowing through the large electrode 1 and the small electrode 2 is , As follows. (Square of current of small electrode 2): (square of current of large electrode 1)
= 1: (1 + n) In other words, it can be seen that n = 10 should be set in order to make the current flowing through the small electrode 2 approximately 30% of the current flowing through the large electrode 1. By alternately applying two frequency voltages having a frequency ratio of 1:10 in this manner, a current of about 30% of that of the large electrode 1 can flow through the small electrode 2. By such control, the current ratio flowing between the large electrode 1 and the small electrode 2 in the high output region can be appropriately distributed,
Although the output is high, the lighting life of the large electrode 1 and the small electrode 2 is not impaired.
【0046】(実施形態2)実施形態1はランプ電圧V
laの周波数を時間変化させること(つまりFM変調)
により大電極1と小電極2とに流れる電流の比率を調節
するものであったが、本実施形態は、図7に示すよう
に、ランプ電圧Vlaの周波数は一定で振幅を時間変化
させること(つまりAM変調)により大電極1と小電極
2とに流れる電流の比率を調節するものである。(Embodiment 2) In Embodiment 1, the lamp voltage V
Changing the frequency of la over time (that is, FM modulation)
In this embodiment, the frequency of the lamp voltage Vla is constant and the amplitude is changed with time, as shown in FIG. That is, the ratio of the current flowing through the large electrode 1 and the small electrode 2 is adjusted by AM modulation.
【0047】つまり、図7に示すランプ電圧Vla波形
では、斜線部において小電極2から電子が放出され、そ
の他の個所で大電極1から電子が放出される。そこで、
周波数を変化させずに、ランプ電圧Vlaのピーク値を
I0,I1と変化させるとすれば、以下の関係が成立す
る。 (小電極2の電流の2乗):(大電極1の電流の2乗)
=I02:(I02+I12) このことから、小電極2に流れる電流を大電極1に流れ
る電流の約30%とするには、I0:I1=1:3に設
定すればよいことがわかる。このように、ランプ電圧V
laをAM変調することによって大電極1と小電極2と
にそれぞれ流れる電流比を調節することができるのであ
り、高出力領域でこのような制御を行なえば、電極に流
れる電流を適正に配分することができるから、高出力な
がらも大電極1と小電極2とに電流を適正に配分するこ
とができ、点灯寿命を損なうことがないのである。他の
構成および動作は実施形態1と同様である。 (実施形態3)実施形態1ではランプ電流に応じてスイ
ッチ要素S1,S2のオンオフを選択していたが、本実
施形態は、電極の温度に応じてスイッチ要素S1,S2
のオンオフを選択するものである。すなわち、電極温度
が高すぎるときには電極が担持している電子放出物質が
蒸発して寿命が短くなり、また電極温度が低すぎるとイ
オン衝撃により電子放出物質が飛散して寿命が短くなる
から、電極温度は適正に保つ必要がある。That is, in the ramp voltage Vla waveform shown in FIG. 7, electrons are emitted from the small electrode 2 in the hatched portion, and electrons are emitted from the large electrode 1 in other places. Therefore,
Assuming that the peak value of the lamp voltage Vla is changed to I0 and I1 without changing the frequency, the following relationship is established. (Square of current of small electrode 2): (square of current of large electrode 1)
= I0 2 : (I0 2 + I1 2 ) From this, in order to make the current flowing through the small electrode 2 about 30% of the current flowing through the large electrode 1, it is necessary to set I0: I1 = 1: 3. Recognize. Thus, the lamp voltage V
The current ratio flowing to the large electrode 1 and the small electrode 2 can be adjusted by AM-modulating la. If such control is performed in the high-power region, the current flowing to the electrodes is appropriately distributed. Therefore, the current can be appropriately distributed to the large electrode 1 and the small electrode 2 while the output is high, and the lighting life is not impaired. Other configurations and operations are the same as those of the first embodiment. (Embodiment 3) In the first embodiment, the on / off of the switch elements S1 and S2 is selected according to the lamp current. However, in the present embodiment, the switch elements S1 and S2 are selected according to the electrode temperature.
On and off. That is, when the electrode temperature is too high, the electron-emitting substance carried by the electrode evaporates and the life is shortened. When the electrode temperature is too low, the electron-emitting substance is scattered by ion bombardment and the life is shortened. The temperature needs to be maintained properly.
【0048】しかして、本実施形態は、電極の温度を検
知して、スイッチ要素S1,S2のオンオフを制御する
ものである。つまり、スイッチ要素S1をオンにしスイ
ッチ要素S2をオフにしている期間には小電極2の温度
が第1の規定値を超えるとスイッチ要素S2をオンにし
スイッチ要素S1をオフにして大電極1を用いるように
切り換え、逆にスイッチ要素S2をオンにしスイッチ要
素S1をオフにして大電極1を用いているときには大電
極1の温度が第2の規定値以下になるとスイッチ要素S
1をオンにしスイッチ要素S2をオフにして小電極2を
用いるのである。この構成によっても安定に調光するこ
とが可能になる。ここに電極の温度は800〜1200
℃に保つのが望ましい。In this embodiment, the on / off of the switch elements S1 and S2 is controlled by detecting the temperature of the electrodes. That is, while the switch element S1 is turned on and the switch element S2 is turned off, when the temperature of the small electrode 2 exceeds the first specified value, the switch element S2 is turned on, the switch element S1 is turned off, and the large electrode 1 is turned off. When the large electrode 1 is used with the switch element S2 turned on and the switch element S1 turned off, when the temperature of the large electrode 1 becomes equal to or lower than the second specified value, the switch element S is switched.
1 is turned on, the switch element S2 is turned off, and the small electrode 2 is used. Even with this configuration, it is possible to stably control light. Here, the temperature of the electrode is 800-1200.
It is desirable to keep it at ° C.
【0049】ところで、電極の温度を検出するには、電
極が高温になると電極の両端にエンドグローが発生して
エンドグローを流れる電流が急に増加することと、電極
が低温になると輝点が不安定に移動し始めて電極の両端
電圧が不安定になることとを利用している。つまり、電
流および電圧の検出により電極の温度を推定することが
できる。また、電極の温度と抵抗値との関係に基づいて
電極の端子電圧を検出することにより電極の温度を推定
するようにしてもよい。他の構成および動作は実施形態
1と同様である。By the way, in order to detect the temperature of the electrode, when the temperature of the electrode becomes high, an end glow is generated at both ends of the electrode, and the current flowing through the end glow suddenly increases. This is based on the fact that the voltage between both ends of the electrode becomes unstable due to the start of unstable movement. That is, the temperature of the electrode can be estimated by detecting the current and the voltage. Further, the temperature of the electrode may be estimated by detecting the terminal voltage of the electrode based on the relationship between the temperature of the electrode and the resistance value. Other configurations and operations are the same as those of the first embodiment.
【0050】上述のようなトランスT1を用いる代わり
に、図8に示すように、小電極2の一端間にコンデンサ
C2を設けた回路構成を採用することも可能である。Instead of using the transformer T1 as described above, it is possible to adopt a circuit configuration in which a capacitor C2 is provided between one ends of the small electrodes 2 as shown in FIG.
【0051】また、上述した各実施形態では、大電極1
と小電極2とを直列接続していたが、図9のように大電
極1と小電極2とを並列接続し、大電極1を陽光柱側に
配置した構成を採用してもよい。この構成の低圧放電灯
Laは特公昭39−20120号公報に記載されたもの
と同様の構成であるが、図9に示す構成の低圧放電灯点
灯装置を適用することにより、ランプ電圧と加熱電圧と
を印加して本発明の目的を達成することが可能である。In each of the above-described embodiments, the large electrode 1
And the small electrode 2 are connected in series, but a configuration in which the large electrode 1 and the small electrode 2 are connected in parallel as shown in FIG. 9 and the large electrode 1 is arranged on the positive column side may be adopted. The low-pressure discharge lamp La having this configuration has the same configuration as that described in Japanese Patent Publication No. 39-20120, but by applying a low-pressure discharge lamp lighting device having the configuration shown in FIG. To achieve the object of the present invention.
【0052】大電極1と小電極2との各陰極降下電圧を
それぞれVlc,Vscとする。小電極2は大電極1よ
りも熱容量が小さいから、Vlc>Vscになり、小電
極2から放電が開始される。この時点でのランプ電圧V
la1は、大電極1と小電極との間の電圧をVd,大電
極1間の電圧をVDとして、次式で表される。 Vla1=Vsc+2×Vd+VD その後、大電極1が加熱されるから、Vlc<Vsc+
2×Vdになると、両大電極1の間で放電が開始され
る。つまり、ランプ電圧Vla2は、次式で表される。 Vla2=Vlc+VD この状態から放電電流を小さくすると、Vlcが上昇
し、Vlc>Vsc+2Vdになると、放電は両小電極
2の間で行なわれるようになる。このように、ランプ電
流に応じて大電極1と小電極2とが自動的に選択される
から、電極加熱電圧を大きく変化させることなく寿命を
維持することができる。The cathode drop voltages of the large electrode 1 and the small electrode 2 are Vlc and Vsc, respectively. Since the small electrode 2 has a smaller heat capacity than the large electrode 1, Vlc> Vsc, and the small electrode 2 starts discharging. The lamp voltage V at this time
la1 is represented by the following equation, where Vd is the voltage between the large electrode 1 and the small electrode, and VD is the voltage between the large electrodes 1. Vla1 = Vsc + 2 × Vd + VD Then, since the large electrode 1 is heated, Vlc <Vsc +
When the voltage becomes 2 × Vd, discharge starts between the two large electrodes 1. That is, the lamp voltage Vla2 is represented by the following equation. Vla2 = Vlc + VD When the discharge current is reduced from this state, Vlc rises, and when Vlc> Vsc + 2Vd, discharge is performed between both small electrodes 2. As described above, since the large electrode 1 and the small electrode 2 are automatically selected according to the lamp current, the life can be maintained without largely changing the electrode heating voltage.
【0053】[0053]
【発明の効果】請求項1の発明は、熱容量の異なる2つ
のフィラメントである大電極と小電極とを1つの電極に
備える低圧放電灯に電力を供給する調光用電子バラスト
を備え、始動時には小電極から放電を開始させるととも
に、ランプ電流が規定値以下の低出力領域では小電極を
用いて点灯させるものであり、低出力領域において小電
極を用いて調光点灯させるから、光出力が小さい領域ま
で安定に点灯させることができる。According to the first aspect of the present invention, there is provided a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, in one electrode. The discharge is started from the small electrode, and the lamp is lit using the small electrode in a low output region where the lamp current is equal to or less than a specified value. Since the dimming is performed using the small electrode in the low output region, the light output is small. It is possible to stably light up to the area.
【0054】請求項2の発明は、熱容量の異なる2つの
フィラメントである大電極と小電極とを1つの電極に備
える低圧放電灯に電力を供給する調光用電子バラストを
備え、始動時には小電極から放電を開始させるととも
に、ランプ電流が規定値以上で定格以下である定常出力
領域では大電極を用いて点灯させるものであり、定常出
力領域では大電極を用いるから、定常出力領域では小電
極に不用な電流が流れず、小電極の寿命を保つことがで
きる。According to a second aspect of the present invention, there is provided a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, on one electrode. In addition to starting discharge from the lamp, the lamp is lit using the large electrode in the steady output region where the lamp current is equal to or higher than the specified value and equal to or lower than the rating.In the steady output region, the large electrode is used. Unnecessary current does not flow, and the life of the small electrode can be maintained.
【0055】請求項3の発明は、熱容量の異なる2つの
フィラメントである大電極と小電極とを1つの電極に備
える低圧放電灯に電力を供給する調光用電子バラストを
備え、始動時には小電極から放電を開始させるととも
に、定格出力を超える高出力領域では大電極と小電極と
を用いて点灯させるものであり、大電極の定格出力を超
える領域では大電極と小電極との両方を用いるから、寿
命に影響与えずに大電極の定格を越える高出力を得るこ
とが可能になる。According to a third aspect of the present invention, there is provided a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, on one electrode. In addition to starting discharge from the high power region exceeding the rated output, the lighting is performed using the large electrode and the small electrode, and in the region exceeding the rated output of the large electrode, both the large electrode and the small electrode are used. It is possible to obtain a high output exceeding the rating of the large electrode without affecting the life.
【0056】請求項4の発明は、請求項3の発明におい
て、高出力領域では、低圧放電灯の電極間に印加するラ
ンプ電圧の点灯周波数と、大電極と小電極との直列回路
の両端間に印加する加熱電圧の電極加熱周波数とを互い
に異ならせるものであり、電極加熱周波数と点灯周波数
とを適宜に設定すると、高出力時に大電極と小電極との
電力を適切に配分することが可能になり、結果的に大電
極と小電極とを適正な寿命で使用することができる。し
かも周波数の制御により大電極と小電極との供給電力を
配分することができるから、制御が比較的容易である。According to a fourth aspect of the present invention, in the third aspect of the invention, in the high output region, the lighting frequency of the lamp voltage applied between the electrodes of the low-pressure discharge lamp and the voltage between both ends of the series circuit of the large electrode and the small electrode. When the electrode heating frequency and the lighting frequency are set appropriately, the power between the large electrode and the small electrode can be appropriately distributed at the time of high output. As a result, the large electrode and the small electrode can be used with an appropriate life. In addition, since the power supplied to the large electrode and the small electrode can be distributed by controlling the frequency, the control is relatively easy.
【0057】請求項8の発明は、熱容量の異なる2つの
フィラメントである大電極と小電極とを1つの電極に備
える低圧放電灯に電力を供給する調光用電子バラストを
備え、始動時には小電極から放電を開始させるととも
に、調光点灯時に電極温度を所定範囲内に保つように大
電極に通電する状態と小電極に通電する状態とを選択す
る手段を設けたものであり、大電極と小電極との温度管
理によって寿命を維持することができる。The invention according to claim 8 is provided with a dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, in one electrode. And a means for selecting between a state in which the large electrode is energized and a state in which the small electrode is energized so as to maintain the electrode temperature within a predetermined range during dimming lighting. The life can be maintained by controlling the temperature with the electrodes.
【図1】本発明の実施形態1を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
【図2】同上の要部回路図である。FIG. 2 is a main part circuit diagram of the same.
【図3】同上の動作説明図である。FIG. 3 is an operation explanatory diagram of the above.
【図4】同上の動作説明図である。FIG. 4 is an operation explanatory view of the above.
【図5】同上の動作説明図である。FIG. 5 is an operation explanatory view of the above.
【図6】同上の動作説明図である。FIG. 6 is an operation explanatory view of the above.
【図7】本発明の実施形態2の動作説明図である。FIG. 7 is an operation explanatory diagram of Embodiment 2 of the present invention.
【図8】他の構成例を示す回路図である。FIG. 8 is a circuit diagram showing another configuration example.
【図9】さらに他の構成例を示す回路図である。FIG. 9 is a circuit diagram showing still another configuration example.
【図10】従来例を示す要部斜視図である。FIG. 10 is a perspective view of a main part showing a conventional example.
【図11】同上の動作説明図である。FIG. 11 is an operation explanatory diagram of the above.
【図12】他の従来例を示す要部斜視図である。FIG. 12 is a perspective view of a main part showing another conventional example.
1 大電極 2 小電極 INV インバータ装置 La 低圧放電灯 R 抵抗 S1,S2 スイッチ要素 SN 検知回路 Vs 交流電源 1 Large electrode 2 Small electrode INV Inverter device La Low pressure discharge lamp R Resistance S1, S2 Switch element SN detection circuit Vs AC power supply
Claims (13)
る大電極と小電極とを1つの電極に備える低圧放電灯に
電力を供給する調光用電子バラストを備え、始動時には
小電極から放電を開始させるとともに、ランプ電流が規
定値以下の低出力領域では小電極を用いて点灯させるこ
とを特徴とする低圧放電灯点灯装置。1. A dimming electronic ballast for supplying electric power to a low-pressure discharge lamp having a large electrode and a small electrode which are two filaments having different heat capacities on one electrode, and starting discharge from the small electrode at the time of starting. A low-pressure discharge lamp lighting device characterized in that a small electrode is used for lighting in a low output region where the lamp current is equal to or less than a specified value.
る大電極と小電極とを1つの電極に備える低圧放電灯に
電力を供給する調光用電子バラストを備え、始動時には
小電極から放電を開始させるとともに、ランプ電流が規
定値以上で定格以下である定常出力領域では大電極を用
いて点灯させることを特徴とする低圧放電灯点灯装置。2. A dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, on one electrode. A low-pressure discharge lamp lighting device characterized in that the lamp is lit using a large electrode in a steady output region where the lamp current is equal to or more than a specified value and equal to or less than a rating.
る大電極と小電極とを1つの電極に備える低圧放電灯に
電力を供給する調光用電子バラストを備え、始動時には
小電極から放電を開始させるとともに、定格出力を超え
る高出力領域では大電極と小電極とを用いて点灯させる
ことを特徴とする低圧放電灯点灯装置。3. A dimming electronic ballast for supplying power to a low-pressure discharge lamp having two electrodes, a large electrode and a small electrode having different heat capacities, on one electrode, and starting discharge from the small electrode at start-up. A low-pressure discharge lamp lighting device characterized in that a large electrode and a small electrode are used for lighting in a high output region exceeding a rated output.
印加するランプ電圧の点灯周波数と、大電極と小電極と
の直列回路の両端間に印加する加熱電圧の電極加熱周波
数とを互いに異ならせることを特徴とする請求項3記載
の低圧放電灯点灯装置。4. In the high-power region, the operating frequency of the lamp voltage applied between the electrodes of the low-pressure discharge lamp and the electrode heating frequency of the heating voltage applied across the series circuit of the large electrode and the small electrode are mutually different. 4. The lighting device for a low-pressure discharge lamp according to claim 3, wherein the lighting device is different.
定格電流の30%以下の領域であることを特徴とする請
求項1記載の低圧放電灯点灯装置。5. The low pressure discharge lamp lighting device according to claim 1, wherein the low output region is a region where the lamp current is 30% or less of the rated current of the large electrode.
の定格電流の30〜100%の領域であることを特徴と
する請求項2記載の低圧放電灯点灯装置。6. The low pressure discharge lamp lighting device according to claim 2, wherein the steady output region is a region where the lamp current is 30 to 100% of the rated current of the large electrode.
定格電流の100%以上であることを特徴とする請求項
3記載の低圧放電灯点灯装置。7. The low-pressure discharge lamp lighting device according to claim 3, wherein a lamp current in the high output region is 100% or more of a rated current of the large electrode.
る大電極と小電極とを1つの電極に備える低圧放電灯に
電力を供給する調光用電子バラストを備え、始動時には
小電極から放電を開始させるとともに、調光点灯時に電
極温度を所定範囲内に保つように大電極に通電する状態
と小電極に通電する状態とを選択する手段を設けたこと
を特徴とする低圧放電灯点灯装置。8. A dimming electronic ballast for supplying power to a low-pressure discharge lamp having a large electrode and a small electrode, which are two filaments having different heat capacities, in one electrode. And a means for selecting between a state in which the large electrode is energized and a state in which the small electrode is energized so that the electrode temperature is kept within a predetermined range during the dimming operation.
じる状態を上限とし、輝点が不安定に移動する状態を下
限とすることを特徴とする請求項8記載の低圧放電灯点
灯装置。9. The low pressure discharge lamp lighting device according to claim 8, wherein the upper limit of the temperature range is a state in which an end glow occurs in the electrode, and the lower limit is a state in which the luminescent spot moves in an unstable manner.
0℃に保つことを特徴とうする請求項8記載の低圧放電
灯点灯装置。10. The method according to claim 1, wherein the temperature of the electrode is from 800 to 120.
9. The low-pressure discharge lamp lighting device according to claim 8, wherein the temperature is maintained at 0 ° C.
ることを特徴とする請求項1ないし請求項10のいずれ
かに記載の低圧放電灯点灯装置。11. The lighting device for a low-pressure discharge lamp according to claim 1, wherein the large electrode and the small electrode are connected in series.
ることを特徴とする請求項1ないし請求項10のいずれ
かに記載の低圧放電灯点灯装置。12. The low-pressure discharge lamp lighting device according to claim 1, wherein the large electrode and the small electrode are connected in parallel.
と130%であることを特徴とする請求項1ないし請求
項12のいずれかに記載の低圧放電灯点灯装置。13. The light control range is 0.1% to 100% of the rated value.
13. The low-pressure discharge lamp lighting device according to claim 1, wherein the ratio is 130%.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11375098A JPH11307296A (en) | 1998-04-23 | 1998-04-23 | Low-pressure discharge lamp lighting device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11375098A JPH11307296A (en) | 1998-04-23 | 1998-04-23 | Low-pressure discharge lamp lighting device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11307296A true JPH11307296A (en) | 1999-11-05 |
Family
ID=14620185
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11375098A Withdrawn JPH11307296A (en) | 1998-04-23 | 1998-04-23 | Low-pressure discharge lamp lighting device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11307296A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004068532A3 (en) * | 2003-01-30 | 2004-09-16 | Koninkl Philips Electronics Nv | Fluorescent lamp with a second ballast for dimmed lighting mode |
-
1998
- 1998-04-23 JP JP11375098A patent/JPH11307296A/en not_active Withdrawn
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004068532A3 (en) * | 2003-01-30 | 2004-09-16 | Koninkl Philips Electronics Nv | Fluorescent lamp with a second ballast for dimmed lighting mode |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5751120A (en) | DC operated electronic ballast for fluorescent light | |
| US6784626B2 (en) | Electronic ballast and lighting fixture | |
| US4352045A (en) | Energy conservation system using current control | |
| JPH07220880A (en) | Stable circuit of cathode heating type gas discharge lamp | |
| US7728528B2 (en) | Electronic ballast with preheating and dimming control | |
| JP4548940B2 (en) | Circuit equipment | |
| US8115405B2 (en) | High pressure discharge lamp lighting device and luminaire using same | |
| US20100244716A1 (en) | High pressure discharge lamp ballast with adaptive filament heating control based on lamp age | |
| JPS5871594A (en) | Illuminator | |
| JP2008103091A (en) | High pressure discharge lamp lighting device | |
| JP3278429B2 (en) | Fluorescent lamp | |
| JP4241358B2 (en) | Discharge lamp lighting device, lighting fixture and lighting system | |
| JPH11307296A (en) | Low-pressure discharge lamp lighting device | |
| JP5460065B2 (en) | Discharge lamp lighting circuit | |
| JPH0765970A (en) | Discharge lamp lighting device | |
| JP4754575B2 (en) | Fluorescent lamp driving method and ballast stabilizer circuit for carrying out the method | |
| Ahmed et al. | Electronic ballast circuit configurations for fluorescent lamps | |
| JP2002299089A (en) | Discharge lamp lighting device and lighting equipment | |
| JP3387294B2 (en) | Low pressure discharge lamp | |
| JP2002352990A (en) | Lighting equipment for electric discharger lamp | |
| JP2009140862A (en) | High pressure discharge lamp lighting device, light source device and control method thereof | |
| JP4077989B2 (en) | Lighting circuit for inverter type fluorescent lamp | |
| JPH07254492A (en) | Discharge lamp lighting control system | |
| JP3234241B2 (en) | High pressure discharge lamp lighting device | |
| KR200241268Y1 (en) | Electronic Fluorescent Ballast with Preheating Light Circuit |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |