JPH11317332A - Electric double layer capacitor - Google Patents
Electric double layer capacitorInfo
- Publication number
- JPH11317332A JPH11317332A JP11040372A JP4037299A JPH11317332A JP H11317332 A JPH11317332 A JP H11317332A JP 11040372 A JP11040372 A JP 11040372A JP 4037299 A JP4037299 A JP 4037299A JP H11317332 A JPH11317332 A JP H11317332A
- Authority
- JP
- Japan
- Prior art keywords
- electric double
- double layer
- layer capacitor
- separator
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電気二重層キャパシ
タ、特に高出力用途に適する電気二重層キャパシタに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor suitable for high-power applications.
【0002】[0002]
【従来の技術】電気二重層キャパシタは、分極性電極と
電解液との界面に形成される電気二重層に電荷を蓄積す
ることを原理としており、電池より大電流による急速充
放電ができることからエネルギ分野への応用が近年活発
に検討され、例えば特開平8−45793には大容量か
つ高出力のキャパシタが提案されている。具体的用途と
しては、電気自動車又はハイブリッド自動車への応用が
注目されている。これらの用途は、米国エネルギ省の目
標値として、近未来に500W/kg、最終的には15
00W/kgの高出力密度で作動する電源の開発が要求
されている(A.F.Burke et. al., Material Characteri
stics and the Performance of Electrochemical Capac
itors for Electric/hybrid Vehicle Applications, Ma
terials Research Society Spring Meeting, San Franc
isco, CA, 1995.4.17-21)。2. Description of the Related Art An electric double layer capacitor is based on the principle that electric charges are accumulated in an electric double layer formed at an interface between a polarizable electrode and an electrolytic solution. Application to the field has been actively studied in recent years. For example, Japanese Patent Application Laid-Open No. 8-45793 proposes a large-capacity and high-output capacitor. As a specific application, application to an electric vehicle or a hybrid vehicle has attracted attention. These applications will meet the US Department of Energy's target of 500 W / kg in the near future and ultimately 15 W / kg.
There is a need to develop a power supply that operates at a high power density of 00 W / kg (AFBurke et. Al., Material Characteri
stics and the Performance of Electrochemical Capac
itors for Electric / hybrid Vehicle Applications, Ma
terials Research Society Spring Meeting, San Franc
isco, CA, 1995.4.17-21).
【0003】電気二重層キャパシタセルの比重は、構造
やハウジングにも依存するが、不要な空間を除きかつハ
ウジング等を軽量化した場合約1.4〜1.8g/cm
3であるから、上記出力密度を体積あたりの出力に換算
すると500W/kgは約800W/L、1000W/
kgは約1600W/L、1500W/kgは約240
0W/Lに相当する。これまでに、このような高出力密
度で使用可能な電気二重層キャパシタの初期性能に関す
る報告は多い。しかし電気自動車等の用途では例えば大
電流で5万回以上の充放電サイクルに対する耐久性を要
するという充放電サイクル信頼性が必要とされるが、高
出力密度とともにそれほどの高信頼性を有する電気二重
層キャパシタは得られていない。The specific gravity of the electric double layer capacitor cell depends on the structure and the housing, but when the unnecessary space is removed and the housing or the like is reduced in weight, it is about 1.4 to 1.8 g / cm.
Because it is 3, in terms of the output per volume the power density 500 W / kg to about 800 W / L, 1000W /
kg is about 1600 W / L, 1500 W / kg is about 240
It corresponds to 0 W / L. There have been many reports on the initial performance of electric double layer capacitors that can be used at such a high power density. However, in applications such as electric vehicles, charge / discharge cycle reliability is required, for example, which requires durability for 50,000 or more charge / discharge cycles with a large current. No multilayer capacitor has been obtained.
【0004】電気二重層キャパシタの電解液としては有
機系電解液と水系電解液があるが、作動電圧が高く、充
電状態のエネルギ密度を大きくできることから、有機系
電解液を用いた電気二重層キャパシタが注目されてい
る。有機系電解液を用いる場合、電気二重層キャパシタ
の単位体積あたりの容量(以下、容量密度という)を向
上させるため、活性炭等の炭素材料が使用される。ま
た、電気二重層キャパシタセルの内部に水分が存在する
と水分の電気分解により性能が劣化するため、通常、電
極は減圧下で加熱処理して充分に脱水される。[0004] Electrolyte for an electric double layer capacitor includes an organic electrolytic solution and an aqueous electrolytic solution. However, since an operating voltage is high and the energy density in a charged state can be increased, an electric double layer capacitor using an organic electrolytic solution is used. Is attracting attention. When an organic electrolytic solution is used, a carbon material such as activated carbon is used to improve the capacity per unit volume of the electric double layer capacitor (hereinafter, referred to as capacity density). In addition, when water is present inside the electric double layer capacitor cell, the performance is deteriorated due to the electrolysis of the water. Therefore, usually, the electrode is subjected to a heat treatment under reduced pressure to be sufficiently dehydrated.
【0005】電極の作製方法としては、例えばカルボキ
シメチルセルロース等のバインダを溶媒に溶解させた溶
液に炭素微粉末を分散させてスラリとなし、これを集電
体に塗布し乾燥して集電体上に電極層を形成する方法が
ある。しかし、この方法では電極と集電体との接合強度
が弱い。またバインダの耐熱性が充分ではないため電極
内の水分等の不純分を充分に除去できるほど高温で電極
を熱処理できない。さらにこの方法では、例えば電極を
60μm以上の厚膜とする場合は均一にスラリの溶媒を
乾燥除去することが困難であり、高強度、低抵抗、高密
度、高容量の電極層を集電体上に生産性よく形成するこ
とが難しい。[0005] As a method of manufacturing an electrode, for example, a carbon fine powder is dispersed in a solution in which a binder such as carboxymethyl cellulose is dissolved in a solvent to form a slurry, which is coated on a current collector, dried and dried. There is a method of forming an electrode layer. However, in this method, the bonding strength between the electrode and the current collector is weak. In addition, since the heat resistance of the binder is not sufficient, the electrode cannot be heat-treated at such a high temperature that impurities such as moisture in the electrode can be sufficiently removed. Further, in this method, for example, when the electrode is formed into a thick film having a thickness of 60 μm or more, it is difficult to uniformly dry and remove the solvent of the slurry. It is difficult to form on top with good productivity.
【0006】また、活性炭等の炭素質材料とポリテトラ
フルオロエチレン(以下、PTFEという)等のバイン
ダと液状潤滑剤からなる混練物を予備成形した後、延伸
又は圧延してシート状に成形された電極を得る方法が提
案されている(特開昭63−107011、特開平2−
235320)。この方法によればPTFEが繊維化し
ているためイオン伝導を阻害しにくく、また炭素質材料
は高密度に充填される。電極と集電体との接合も、導電
性接着層を介して接合することにより、接合強度を高く
かつ電気的な接触抵抗を小さくできる。また、PTFE
は熱的にも電気化学的にも安定なため、高信頼性かつ高
容量かつ低抵抗の電気二重層キャパシタを構成できる。A kneaded product comprising a carbonaceous material such as activated carbon, a binder such as polytetrafluoroethylene (hereinafter referred to as PTFE), and a liquid lubricant is preformed and then stretched or rolled to form a sheet. A method for obtaining an electrode has been proposed (JP-A-63-107011, JP-A-2-107).
235320). According to this method, since PTFE is fibrous, ion conduction is hardly hindered, and the carbonaceous material is filled at a high density. By joining the electrode and the current collector via the conductive adhesive layer, the joining strength can be increased and the electrical contact resistance can be reduced. Also, PTFE
Is thermally and electrochemically stable, so that an electric double layer capacitor having high reliability, high capacity and low resistance can be formed.
【0007】しかし、大電流で充放電する必要のある用
途の場合はさらに電極の抵抗を低減する必要があり、そ
のためには電極の厚さを薄くすることが有効である。と
ころが上記電極は、PTFEが混練されることによりラ
ンダムに繊維化し、また繊維化部分と非繊維化部分が生
じるため、電極を例えば200μm以下の厚さのシート
に成形しようとすると表面に凹凸が生じやすく、穴が空
きやすい問題がある。したがって、電気二重層キャパシ
タの容量密度を大きくできず、また内部抵抗も充分には
低減できない。However, in applications where charging and discharging with a large current is required, it is necessary to further reduce the resistance of the electrode. For this purpose, it is effective to reduce the thickness of the electrode. However, since the above-mentioned electrode is randomly fiberized by kneading PTFE, and a fibrous portion and a non-fibrous portion are generated, when the electrode is formed into a sheet having a thickness of, for example, 200 μm or less, irregularities are generated on the surface. There is a problem that is easy to make holes. Therefore, the capacity density of the electric double layer capacitor cannot be increased, and the internal resistance cannot be sufficiently reduced.
【0008】上記問題点に対し、本発明者らは炭素質材
料とPTFEと加工助剤からなる混合物をスクリュー押
出し成形した後、圧延して、高強度かつ厚さ200μm
以下の多孔質電極シートを得る方法を提案している(特
願平10−19758)。この方法によれば、工業的に
連続的に生産性高く電極シートを得られる。In view of the above problems, the present inventors screw extruded a mixture comprising a carbonaceous material, PTFE, and a processing aid, and then rolled the mixture to obtain a high-strength and 200 μm thick material.
A method for obtaining the following porous electrode sheet has been proposed (Japanese Patent Application No. 10-19758). According to this method, an electrode sheet can be obtained continuously and industrially with high productivity.
【0009】[0009]
【発明が解決しようとする課題】本発明者等は、上記電
極製造方法により容易に高強度電極シートの厚さをコン
トロールできるようになった。本発明は、この技術を生
かしてパワー用途用の電気二重層キャパシタ、特に高出
力密度かつ高エネルギ密度であり、かつ充放電サイクル
耐久性に優れる電気二重層キャパシタを提供することを
目的とする。SUMMARY OF THE INVENTION The present inventors have made it possible to easily control the thickness of a high-strength electrode sheet by the above-described electrode manufacturing method. An object of the present invention is to provide an electric double layer capacitor for power use, particularly an electric double layer capacitor having a high output density and a high energy density and excellent in charge / discharge cycle durability by utilizing this technology.
【0010】[0010]
【課題を解決するための手段】本発明は炭素質粉末と含
フッ素重合体とを含む多孔質層をアルミニウム箔集電体
の少なくとも片面に形成してなる電極体を正極体及び負
極体とし、該正極体の多孔質層と該負極体の多孔質層と
をセパレータを介して対向させて素子を形成し、該素子
に非水系電解液を含浸させ密閉容器に収容してなる電気
二重層キャパシタにおいて、前記多孔質層の厚さが80
〜200μmであり、かつ前記アルミニウム箔集電体の
厚さが20〜80μmであり、かつ前記セパレータの厚
さが30〜170μmであり、かつ前記多孔質層の密度
が0.50〜0.80g/cm3であることを特徴とす
る電気二重層キャパシタを提供する。According to the present invention, an electrode body formed by forming a porous layer containing carbonaceous powder and a fluoropolymer on at least one surface of an aluminum foil current collector is used as a positive electrode body and a negative electrode body. An electric double layer capacitor in which a porous layer of the positive electrode body and a porous layer of the negative electrode body are opposed to each other via a separator to form an element, and the element is impregnated with a non-aqueous electrolyte and accommodated in a closed container. Wherein the thickness of the porous layer is 80
To 200 μm, the thickness of the aluminum foil current collector is 20 to 80 μm, the thickness of the separator is 30 to 170 μm, and the density of the porous layer is 0.50 to 0.80 g. / Cm 3 , provided in the electric double layer capacitor.
【0011】本明細書において、炭素質粉末と含フッ素
重合体とを含む多孔質層を電極層としてアルミニウム箔
集電体の片面又は両面に形成して集電体と一体化したも
のを電極体という。そして、この電極体を正極側に用い
る場合は正極体、負極側に用いる場合は負極体という。In the present specification, a porous layer containing a carbonaceous powder and a fluoropolymer is formed as an electrode layer on one or both sides of an aluminum foil current collector and integrated with the current collector. That. When this electrode body is used on the positive electrode side, it is called a positive electrode body, and when it is used on the negative electrode side, it is called a negative electrode body.
【0012】本発明における多孔質層は、炭素質粉末の
比表面積が700〜2500m2/gであることが好ま
しく、活性炭粉末を主成分とするのが好ましい。炭素質
粉末の比表面積が700m2/g未満であると電気二重
層キャパシタの静電容量が低下する。2500m2/g
を超えると電極を高密度に成形するのが難しくなり、電
極単位体積あたりの静電容量が低下する。特に好ましく
は1000〜1800m2/gである。また、活性炭粉
末以外に、カーボンブラック、ポリアセン等の大比表面
積の材料も好ましく使用できる。特に、高比表面積の活
性炭粉末と、導電材として高導電性のカーボンブラック
を混合して使用することが好ましい。この場合、カーボ
ンブラックは電極層中に5〜20重量%含まれることが
好ましい。The porous layer in the present invention preferably has a specific surface area of carbonaceous powder of 700 to 2500 m 2 / g, and preferably contains activated carbon powder as a main component. When the specific surface area of the carbonaceous powder is less than 700 m 2 / g, the capacitance of the electric double layer capacitor decreases. 2500 m 2 / g
If the ratio exceeds the above range, it becomes difficult to form the electrodes with high density, and the capacitance per unit volume of the electrodes decreases. Especially preferably, it is 1000-1800 m < 2 > / g. In addition to the activated carbon powder, a material having a large specific surface area such as carbon black and polyacene can be preferably used. In particular, it is preferable to use a mixture of activated carbon powder having a high specific surface area and highly conductive carbon black as a conductive material. In this case, it is preferable that carbon black is contained in the electrode layer in an amount of 5 to 20% by weight.
【0013】上記の多孔質層を電気的に接続するための
集電体は、導電性に優れかつ電気化学的に耐久性のある
材料であればよく、アルミニウム、チタン、タンタル等
のバルブ金属、ステンレス鋼等が使用できるが、なかで
もアルミニウムは比重が軽く、導電性に優れ、かつ電気
化学的に安定であるので好ましい。The current collector for electrically connecting the above-mentioned porous layers may be made of a material having excellent conductivity and being electrochemically durable, such as a valve metal such as aluminum, titanium and tantalum. Stainless steel or the like can be used, and among them, aluminum is preferred because it has a low specific gravity, has excellent conductivity, and is electrochemically stable.
【0014】集電体の形状は、箔状のものが価格が安価
であり好ましいが、多孔質層との接合性を高める必要の
ある場合は、パンチングメタル、エキスパンドメタル等
も適宜使用できる。また集電体箔にエッチング等の処理
を施し、表面を粗面化してから使用してもよい。The current collector is preferably in the form of a foil, which is inexpensive and inexpensive. However, if it is necessary to enhance the bonding property with the porous layer, a punching metal, an expanded metal or the like can be used as appropriate. Further, the collector foil may be subjected to a treatment such as etching to roughen the surface before use.
【0015】本発明において、アルミニウム箔集電体の
片面に接合される多孔質層の厚さは80〜200μmで
ある。80μm未満であると電気二重層キャパシタ素子
の単位体積あたりの炭素質粉末の含有量が少ないため、
容量密度が小さくなる。一方200μmを超えると多孔
質層の抵抗が高くなり、高出力充放電における損失が増
大してエネルギ密度が低下する。多孔質層の厚さは特に
好ましくは、100〜180μmである。In the present invention, the thickness of the porous layer bonded to one side of the aluminum foil current collector is 80 to 200 μm. When it is less than 80 μm, the content of the carbonaceous powder per unit volume of the electric double layer capacitor element is small,
The capacity density decreases. On the other hand, when the thickness exceeds 200 μm, the resistance of the porous layer increases, the loss in high-power charge / discharge increases, and the energy density decreases. The thickness of the porous layer is particularly preferably from 100 to 180 μm.
【0016】本発明において、アルミニウム箔集電体の
厚さは20〜80μmである。20μm未満であると集
電体の強度が低いため電極体の強度が低く、電気二重層
キャパシタ製造時の歩留まりが低下したり、電気二重層
キャパシタ使用時に外部振動等の応力による不良が起こ
りやすい。アルミニウム箔集電体の厚さが80μmを超
えると電気二重層キャパシタ素子の単位体積あたりのア
ルミニウム箔集電体含有量が増え、炭素質粉末の含有量
が相対的に低下するので容量密度が低下し、出力密度が
低下したりエネルギ密度が低下する。アルミニウム箔集
電体の厚さは好ましくは30〜60μmである。In the present invention, the thickness of the aluminum foil current collector is 20 to 80 μm. If the thickness is less than 20 μm, the strength of the current collector is low, so that the strength of the electrode body is low, the yield in manufacturing the electric double layer capacitor is reduced, and a failure due to stress such as external vibration easily occurs when the electric double layer capacitor is used. When the thickness of the aluminum foil current collector exceeds 80 μm, the content of the aluminum foil current collector per unit volume of the electric double layer capacitor element increases, and the content of the carbonaceous powder relatively decreases, so that the capacity density decreases. However, the output density or the energy density decreases. The thickness of the aluminum foil current collector is preferably 30 to 60 μm.
【0017】本発明において、セパレータの厚さは30
〜170μmである。30μm未満であるとセパレータ
にピンホールが存在しやすくなるため電極間にミクロ的
なショートが起こりやすくなり、漏れ電流が増大して電
圧保持性が低下する。セパレータの厚さが170μmを
超えると電圧保持性は比較的確保しやすいが、電気二重
層キャパシタ素子の単位体積あたりのセパレータ含有量
が増え、炭素質粉末の含有量が相対的に低下するので容
量密度が低下し、出力密度が低下したりエネルギ密度が
低下する。したがって、キャパシタの用途に対する出力
密度とエネルギ密度への要求に加えて、用途に応じた電
圧保持性への要求に応じてさらにセパレータの材質と厚
さを選ぶことが好ましい。In the present invention, the thickness of the separator is 30
170170 μm. If the thickness is less than 30 μm, pinholes are likely to be present in the separator, so that microscopic short-circuiting is likely to occur between the electrodes, the leakage current increases, and the voltage holding property decreases. When the thickness of the separator exceeds 170 μm, the voltage holding property is relatively easy to secure, but the separator content per unit volume of the electric double layer capacitor element increases, and the content of the carbonaceous powder relatively decreases, so that the capacity is reduced. Density decreases, power density and energy density decrease. Therefore, it is preferable that the material and thickness of the separator be further selected according to the demand for the voltage holding property according to the use in addition to the demand for the output density and the energy density for the use of the capacitor.
【0018】例えば、本発明の電気二重層キャパシタを
太陽電池との組み合わせ電源として使用するように毎日
充放電する場合は、セパレータは30〜80μmのシー
トであることが好ましく、その材質としては多孔質ポリ
プロピレン等の合成樹脂又はセルロースからなることが
好ましい。なかでもセルロース製シートは強度が高く安
価であり好ましい。特にレーヨン紙が低抵抗かつ高強度
であるので好ましい。また、20〜40μmのシートを
2枚以上重ねて例えば40〜80μmのセパレータとし
て用いると、効果的に漏れ電流を低減できるので好まし
い。For example, when the electric double layer capacitor of the present invention is charged and discharged daily so as to be used as a combined power supply with a solar cell, the separator is preferably a sheet of 30 to 80 μm, and the material thereof is porous. It is preferably made of synthetic resin such as polypropylene or cellulose. Above all, a sheet made of cellulose is preferable because it has high strength and is inexpensive. Particularly, rayon paper is preferable because of its low resistance and high strength. Further, it is preferable to use two or more sheets of 20 to 40 μm as a separator, for example, of 40 to 80 μm in order to effectively reduce leakage current.
【0019】また、数日以上、特に1ヶ月以上の長期間
のエネルギ貯蔵を要求される用途では、特に電圧保持性
が高い必要があるため、セパレータは60〜170μm
の厚さのシートであることが好ましく、ガラス繊維、セ
ルロース又は多孔質ポリプロピレンからなることが好ま
しい。なかでもガラス繊維マットは耐熱性、耐酸化性、
耐溶剤性に優れるため、特に電圧保持性を高くかつ大電
流充放電サイクル耐久性を高くできるので好ましい。For applications requiring long-term energy storage of several days or more, especially one month or more, the separator must have a high voltage holding property.
It is preferable that the sheet is made of glass fiber, cellulose or porous polypropylene. Among them, glass fiber mats have heat resistance, oxidation resistance,
Since the solvent resistance is excellent, the voltage holding property is particularly high, and the durability of a large current charge / discharge cycle can be increased.
【0020】上記ガラス繊維マットが、最大繊維径10
μm以下の繊維からなると、強度が高くなり好ましい。
しかし、それでもガラス繊維マットは強度が充分ではな
く、例えば厚さが140μm未満の薄膜には成形し難い
ので、耐熱性を有し電気化学的に安定なポリフッ化ビニ
リデン等のフッ素樹脂をガラス繊維の結合材として0.
2〜5重量%含ませてもよい。また、毎日充放電する場
合と同様に、厚さ20〜80μmのシートを2枚以上重
ねて60〜170μmの厚さに調節してセパレータとし
て用いると、効果的に漏れ電流を低減できるので好まし
い。The above glass fiber mat has a maximum fiber diameter of 10
It is preferable to use fibers having a size of not more than μm because the strength is increased.
However, the glass fiber mat still has insufficient strength, for example, it is difficult to form a thin film having a thickness of less than 140 μm, so that a fluororesin such as polyvinylidene fluoride, which has heat resistance and is electrochemically stable, is used for the glass fiber. 0.
You may contain 2-5 weight%. As in the case of daily charge and discharge, it is preferable to stack two or more sheets having a thickness of 20 to 80 μm and adjust the thickness to a thickness of 60 to 170 μm to use the separator as a separator because the leakage current can be effectively reduced.
【0021】本発明において、多孔質層の密度は0.5
0〜0.80g/cm3であることが好ましい。密度が
0.50g/cm3未満であると電極の静電容量が低く
なり、0.80g/cm3を超えると多孔質層へ電解液
が含浸しにくくなったり、抵抗が上昇するので好ましく
ない。特に、0.60〜0.70g/cm3であると好
ましい。In the present invention, the density of the porous layer is 0.5
It is preferably from 0 to 0.80 g / cm 3 . If the density is less than 0.50 g / cm 3 , the capacitance of the electrode will be low, and if it exceeds 0.80 g / cm 3 , it will be difficult to impregnate the porous layer with the electrolyte or the resistance will increase, which is not preferable . Particularly, it is preferably 0.60 to 0.70 g / cm 3 .
【0022】本発明において、多孔質層中の含フッ素重
合体の割合は5〜20重量%であることが好ましい。含
フッ素重合体が5重量%以上含まれることによって実用
性のある電極シート強度が得られる。しかし、あまり多
く含まれると多孔質層の抵抗が大きくなるので20重量
%以下とするのが好ましい。より好ましくは7〜15重
量%である。In the present invention, the proportion of the fluoropolymer in the porous layer is preferably from 5 to 20% by weight. By containing the fluoropolymer in an amount of 5% by weight or more, practical electrode sheet strength can be obtained. However, if the content is too large, the resistance of the porous layer increases, so that the content is preferably 20% by weight or less. More preferably, it is 7 to 15% by weight.
【0023】本発明における含フッ素重合体としてはP
TFEが好ましい。PTFEは、繊維化することにより
低抵抗かつ高強度の、連続的に微細な孔を有する多孔質
層を形成できる。そして、炭素質材料が含フッ素重合体
に担持されて多孔質層を形成していることが好ましい。
ただし、本発明におけるPTFEは、テトラフルオロエ
チレンの単独重合体だけでなく、テトラフルオロエチレ
ンに対して他の単量体を0.5モル%以下加えて共重合
させて得られる共重合体も含むものとする。他の単量体
に基づく重合単位が0.5モル%以下であれば、PTF
Eに溶融流動性が付与されず、テトラフルオロエチレン
単独重合体同様に繊維化して高強度かつ低抵抗の電極シ
ートを作製できる。In the present invention, the fluorine-containing polymer is P
TFE is preferred. PTFE can form a porous layer having low resistance and high strength and having continuously fine pores by fiberization. And it is preferable that the carbonaceous material is carried on the fluoropolymer to form the porous layer.
However, PTFE in the present invention includes not only a homopolymer of tetrafluoroethylene but also a copolymer obtained by adding 0.5 mol% or less of another monomer to tetrafluoroethylene and copolymerizing the same. Shall be considered. If the polymerization unit based on another monomer is 0.5 mol% or less, PTF
No melt fluidity is imparted to E, and it is possible to produce a high-strength and low-resistance electrode sheet by fibrillating similarly to tetrafluoroethylene homopolymer.
【0024】上記他の単量体としては、ヘキサフルオロ
プロピレン、クロロトリフルオロエチレン、パーフルオ
ロ(アルキルビニルエーテル)、トリフルオロエチレ
ン、(パーフルオロアルキル)エチレン等が例示され
る。Examples of the other monomer include hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), trifluoroethylene, and (perfluoroalkyl) ethylene.
【0025】本発明における多孔質層は、炭素質粉末と
PTFEと有機溶剤等の加工助剤からなる混合物をスク
リュー押出し成形した後、ロール圧延してシート状に成
形することにより得られることが好ましい。特にロール
圧延する方向をスクリュー押出しの方向と同じ方向に行
うと、PTFEが縦横に繊維化して3次元的網目構造が
形成されるので好ましい。上記方法により得られた電極
シートはPTFEが充分に繊維化していて強度が高いの
で、例えば厚さ70μm程度の薄い多孔質層からなるシ
ートでも工業的に連続的に高速度で製造できる。また得
られたシートを連続的にアルミニウム箔集電体に接合す
ることもできる。The porous layer in the present invention is preferably obtained by extruding a mixture comprising a carbonaceous powder, PTFE, and a processing aid such as an organic solvent by screw extrusion, followed by roll rolling to form a sheet. . In particular, it is preferable to perform the roll rolling in the same direction as the screw extrusion, since the PTFE fiberizes vertically and horizontally to form a three-dimensional network structure. Since the electrode sheet obtained by the above method is sufficiently fibrous with PTFE and has high strength, even a sheet composed of a thin porous layer having a thickness of, for example, about 70 μm can be industrially continuously manufactured at a high speed. Further, the obtained sheet can be continuously bonded to an aluminum foil current collector.
【0026】本発明における多孔質層は、含フッ素重合
体が繊維化して3次元的網目構造を形成し、炭素質粉末
は該網目構造に担持され相互に結合していることが好ま
しい。含フッ素重合体からなる繊維は、含フッ素重合体
と炭素質粉末を加工助剤とともに混練したり加工助剤と
ともに押出し成形する等の外部応力が含フッ素重合体に
加わるときに生成する。該繊維は、含フッ素重合体から
なる結節を結んで3次元的に広がっている。In the porous layer of the present invention, it is preferable that the fluorine-containing polymer is fiberized to form a three-dimensional network structure, and the carbonaceous powder is supported by the network structure and bonded to each other. Fibers made of a fluorinated polymer are generated when external stress is applied to the fluorinated polymer such as kneading the fluorinated polymer and the carbonaceous powder together with a processing aid or extruding with a processing aid. The fibers are three-dimensionally spread by connecting nodes made of a fluoropolymer.
【0027】上記繊維の径、2つの結節を結ぶ繊維の長
さ、密度等は成形条件に依存する。本発明では走査型電
子顕微鏡(以下、SEMという)で倍率1万倍で観察し
たときに、上記繊維が実質的に径0.1μm以下かつ長
さ2μm以上の繊維からなることが好ましい。さらには
径0.01〜0.05μmかつ長さ3〜20μmである
繊維が繊維全体の体積の50%以上、特には80%以上
であることが好ましい。また、繊維の密度は繊維の伸び
る方向に直角方向の幅10μmあたりに、2〜20本で
あることが好ましい。The diameter of the fiber, the length of the fiber connecting the two nodes, the density, and the like depend on the molding conditions. In the present invention, when observed with a scanning electron microscope (hereinafter, referred to as SEM) at a magnification of 10,000 times, it is preferable that the fiber is substantially a fiber having a diameter of 0.1 μm or less and a length of 2 μm or more. Further, the fiber having a diameter of 0.01 to 0.05 μm and a length of 3 to 20 μm preferably accounts for 50% or more, particularly preferably 80% or more of the volume of the entire fiber. Further, the density of the fibers is preferably 2 to 20 per 10 μm width in the direction perpendicular to the direction in which the fibers extend.
【0028】繊維の密度は高い方が、多孔質層の強度が
向上する点では好ましいが、電気二重層キャパシタの容
量を充分に高くできるほど充分な量の炭素質粉末を多孔
質層中に含ませる場合は、繊維の密度を高くする成形は
困難になりやすい。同様に多孔質層に充分な量の炭素質
粉末を含ませる場合、径が0.1μm超又は長さが2μ
m未満の繊維は生成しにくい。また、径が細すぎたり長
さが長すぎたりする繊維が多孔質層に含まれる繊維の大
半を占めると、強度が弱くなるおそれがある。A higher fiber density is preferable in that the strength of the porous layer is improved, but a sufficient amount of carbonaceous powder is contained in the porous layer so that the capacity of the electric double layer capacitor can be sufficiently increased. In such a case, molding to increase the fiber density tends to be difficult. Similarly, when the porous layer contains a sufficient amount of carbonaceous powder, the diameter is more than 0.1 μm or the length is 2 μm.
m is less likely to be produced. In addition, if fibers having too small a diameter or too long occupy most of the fibers contained in the porous layer, the strength may be reduced.
【0029】上述の多孔質層の断面のSEM写真の一例
を図2及び図3に示す。図2は倍率3千倍、図3は倍率
1万倍でそれぞれ観察した写真である。FIGS. 2 and 3 show examples of SEM photographs of the cross section of the above-mentioned porous layer. FIG. 2 is a photograph observed at 3,000 times magnification, and FIG. 3 is a photograph observed at 10,000 times magnification.
【0030】本発明において、多孔質層からなる電極シ
ートは導電性接着剤を介してアルミニウム集電体に接合
することが好ましい。導電性接着剤としては、カーボン
ブラック又は微粒黒鉛からなる導電材と熱硬化性樹脂バ
インダとからなる接着剤が、接合力が高く熱安定性も高
いので好ましい。熱硬化性樹脂バインダとしてはポリア
ミドイミド樹脂が特に耐熱性と接合力が優れているので
好ましい。In the present invention, the electrode sheet made of a porous layer is preferably bonded to an aluminum current collector via a conductive adhesive. As the conductive adhesive, an adhesive made of a conductive material made of carbon black or fine graphite and a thermosetting resin binder is preferable because of its high bonding strength and high thermal stability. As the thermosetting resin binder, a polyamide imide resin is preferable because it has particularly excellent heat resistance and bonding strength.
【0031】上記導電性接着剤を用いて得られる電極体
は、過酷な条件下でも電気化学的にも熱的にも変質、剥
離、膨潤等の変化を起こしにくい。したがって、該電極
体を有する電気二重層キャパシタは長期電圧印加耐久
性、充放電サイクル信頼性、及び耐冷熱サイクル信頼性
に優れる。The electrode body obtained by using the above-mentioned conductive adhesive hardly undergoes deterioration, peeling, swelling and the like under severe conditions electrochemically and thermally. Therefore, the electric double layer capacitor having the electrode body is excellent in long-term voltage application durability, charge / discharge cycle reliability, and cold / heat cycle reliability.
【0032】本発明では、セパレータの空隙率は60〜
95%であることが好ましい。空隙率が60%未満であ
ると電解液の吸液性、保液性が不充分となり、セパレー
タの抵抗が大きくなる。空隙率が95%を超えるとセパ
レータの機械的強度が不足し、電気二重層キャパシタセ
ル製造時に破損したり、内部ショートが起こりやすくな
る。特にパワー用途に対しては、セパレータの空隙率は
70〜90%が好ましい。In the present invention, the porosity of the separator is from 60 to
Preferably it is 95%. If the porosity is less than 60%, the liquid absorbing property and liquid retaining property of the electrolytic solution become insufficient, and the resistance of the separator increases. If the porosity exceeds 95%, the mechanical strength of the separator is insufficient, and the separator is liable to be damaged during the production of the electric double layer capacitor cell or to be easily short-circuited internally. Particularly for power applications, the porosity of the separator is preferably 70 to 90%.
【0033】本発明において、電解液を含浸させた状態
で、電極体の単位面積抵抗は3〜9Ω・cm2であるこ
とが好ましく、セパレータの単位面積抵抗は2Ω・cm
2以下であることが好ましい。電極体の単位面積抵抗が
9Ω・cm2を超えると、電気二重層キャパシタ素子の
抵抗が高くなり高出力密度のキャパシタが得にくい。電
極体の単位面積抵抗を3Ω・cm2未満とするには、多
孔質層の厚さを極度に薄くするか、多孔質層中の導電材
量を多くする必要がある。そのため、単位体積あたりの
電気二重層キャパシタ素子中に含まれる炭素質粉末の量
が少なくなり電気二重層キャパシタ素子の静電容量が低
下し、エネルギ密度が低下する。特には、電極体の単位
面積抵抗は3.5〜6Ω・cm2であるのが好ましい。[0033] In the present invention, in a state impregnated with the electrolytic solution, it is preferable that a unit area resistance of the electrode body is 3~9Ω · cm 2, unit area resistance of the separator is 2 [Omega · cm
It is preferably 2 or less. If the unit area resistance of the electrode body exceeds 9 Ω · cm 2 , the resistance of the electric double layer capacitor element increases, and it is difficult to obtain a capacitor having a high output density. In order to make the unit area resistance of the electrode body less than 3 Ω · cm 2 , it is necessary to make the thickness of the porous layer extremely thin or to increase the amount of the conductive material in the porous layer. Therefore, the amount of the carbonaceous powder contained in the electric double layer capacitor element per unit volume is reduced, the capacitance of the electric double layer capacitor element is reduced, and the energy density is reduced. In particular, the unit area resistance of the electrode body is preferably from 3.5 to 6 Ω · cm 2 .
【0034】セパレータの単位面積抵抗が2Ω・cm2
を超える場合も電気二重層キャパシタ素子の抵抗が高く
なり、高出力密度の電気二重層キャパシタが得られない
ので好ましくない。このような単位面積抵抗を達成する
には、セパレータの材質と構造、電極の組成と構造、電
解液組成等について最善の組み合わせを選ぶことが重要
である。The unit area resistance of the separator is 2 Ω · cm 2
Is also not preferable because the resistance of the electric double layer capacitor element becomes high and an electric double layer capacitor with a high output density cannot be obtained. In order to achieve such a unit area resistance, it is important to select the best combination of the material and structure of the separator, the composition and structure of the electrode, the composition of the electrolytic solution, and the like.
【0035】本発明における電極体及びセパレータの単
位面積抵抗の測定方法は、下記の方法による。同じ電極
体からなる正極体と負極体とをセパレータを介して対向
させ、電解液に含浸させて素子1を形成し、その放電抵
抗を測定する。次に素子1においてセパレータを構成す
るシートを2枚重ねたものをセパレータとした以外は素
子1と同様にして素子2を形成し、その放電抵抗を測定
する。(1)、(2)より電極体の抵抗とセパレータの
抵抗を算出し、それぞれの単位面積あたりの抵抗値を求
める。The method for measuring the unit area resistance of the electrode body and the separator in the present invention is as follows. A positive electrode body and a negative electrode body made of the same electrode body are opposed to each other with a separator interposed therebetween, and are impregnated with an electrolytic solution to form a device 1, and its discharge resistance is measured. Next, an element 2 is formed in the same manner as in the element 1 except that a separator is formed by stacking two sheets constituting the separator in the element 1, and the discharge resistance is measured. From (1) and (2), the resistance of the electrode body and the resistance of the separator are calculated, and the resistance value per unit area is calculated.
【0036】上記では2種類の素子を用いたが、さらに
セパレータを構成するシートを3枚以上重ねた素子を形
成し、3種類以上の素子の抵抗から電極体及びセパレー
タの抵抗値を算出してもよい。Although two types of elements are used in the above, an element is formed by further stacking three or more sheets constituting the separator, and the resistances of the electrode body and the separator are calculated from the resistances of the three or more types of elements. Is also good.
【0037】本発明の電気二重層キャパシタに使用され
る非水系電解液は特に限定されず、公知の有機溶媒にイ
オン解離性の塩類を含む電解液を使用できる。なかでも
R1R2R3R4N+、R1R2R3R4P+(ただし、R1、
R2、R3、R4は炭素数1〜6のアルキル基で、それぞ
れ同じでも異なっていてもよい)で表される第4級オニ
ウムカチオンと、BF4 -、PF6 -、ClO4 -、CF3S
O3 -等のアニオンとからなる塩を有機溶媒に溶解させた
有機電解液を使用するのが好ましい。The non-aqueous electrolyte used for the electric double layer capacitor of the present invention is not particularly limited, and any known organic solvent containing an ion-dissociable salt can be used. Among them, R 1 R 2 R 3 R 4 N + , R 1 R 2 R 3 R 4 P + (where R 1 ,
R 2 , R 3 and R 4 are alkyl groups having 1 to 6 carbon atoms, which may be the same or different), and BF 4 − , PF 6 − , and ClO 4 − , CF 3 S
O 3 - is preferable to use salts of organic electrolyte dissolved in an organic solvent consisting of an anion such as.
【0038】上記有機溶媒としては、プロピレンカーボ
ネート、ブチレンカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネート等のカーボネート類、γ
−ブチロラクトン等のラクトン類、スルホラン、アセト
ニトリル等を単独で又は2種以上の混合溶媒として好ま
しく使用できる。パワー用途においては、電気伝導度が
高く、イオン濃度を高くできるように、主溶媒をプロピ
レンカーボネートとし、1.0〜2.0mol/Lの
(C2H5)3(CH3)NPF6又は1.0〜2.0mo
l/Lの(C2H5)3(CH3)NBF4を溶解した溶液
が特に好ましい。Examples of the organic solvent include carbonates such as propylene carbonate, butylene carbonate, diethyl carbonate, and ethyl methyl carbonate;
-Lactones such as butyrolactone, sulfolane, acetonitrile and the like can be preferably used alone or as a mixed solvent of two or more. In power applications, propylene carbonate is used as the main solvent and 1.0 to 2.0 mol / L of (C 2 H 5 ) 3 (CH 3 ) NPF 6 or 1.0-2.0mo
A solution in which 1 / L of (C 2 H 5 ) 3 (CH 3 ) NBF 4 is dissolved is particularly preferred.
【0039】本発明の電気二重層キャパシタの構造は特
に限定されないが、容量を大きくできるように、集電体
の両面に電極層を形成した一対の帯状電極体を間にセパ
レータを介して巻回し、電解液を含浸させて有底円筒型
容器収容し密閉してなる円筒型、及び集電体の両面に電
極層を形成した矩形の電極体を正極体及び負極体とし、
セパレータを介して複数交互に積層し電解液を含浸させ
て有底角型容器に収容し、密閉してなる積層型が特に好
ましい。The structure of the electric double layer capacitor of the present invention is not particularly limited. However, in order to increase the capacity, a pair of strip-shaped electrode bodies each having an electrode layer formed on both sides of a current collector are wound with a separator interposed therebetween. A cylindrical electrode body impregnated with an electrolytic solution and closed and accommodated in a closed-bottomed cylindrical container, and a rectangular electrode body having an electrode layer formed on both surfaces of a current collector as a positive electrode body and a negative electrode body,
A laminated type in which a plurality of layers are alternately laminated via a separator, impregnated with an electrolytic solution, housed in a bottomed rectangular container, and hermetically sealed is particularly preferable.
【0040】[0040]
【実施例】[例1(実施例)]比表面積1500m2/
g、平均粒径10μmの高純度活性炭粉末80重量%、
カーボンブラック10重量%、PTFE(本例ではテト
ラフルオロエチレン単独重合体を指す)粉末10重量%
からなる混合物に、プロピレングリコールを加え混合し
た。この混合物を一軸押出機にて、スクリュー押出しを
行った後ロール圧延し、熱風乾燥してプロピレングリコ
ールを除去して厚さ120μm、密度0.64g/cm
3の電極シートを作製した。EXAMPLES Example 1 (Example) Specific surface area of 1500 m 2 /
g, high-purity activated carbon powder 80% by weight having an average particle size of 10 μm,
10% by weight of carbon black and 10% by weight of PTFE (in this example, tetrafluoroethylene homopolymer) powder
Was mixed with propylene glycol. This mixture was extruded by a screw with a single screw extruder, roll-rolled, dried with hot air to remove propylene glycol, and had a thickness of 120 μm and a density of 0.64 g / cm.
The electrode sheet of No. 3 was produced.
【0041】この電極シートの表面をSEMで倍率1万
倍で観察したところ、PTFE繊維が占める体積の80
%以上のPTFE繊維が長さ5〜15μmかつ繊維径
0.03〜0.05μmであり、幅10μmあたりに約
10本の繊維が存在した。この電極シートから面積4c
m×6cmの電極を切り出した。When the surface of this electrode sheet was observed with a SEM at a magnification of 10,000 times, the volume of the PTFE fiber was 80%.
% Or more of the PTFE fibers had a length of 5 to 15 µm and a fiber diameter of 0.03 to 0.05 µm, and about 10 fibers existed per 10 µm in width. Area 4c from this electrode sheet
An mx 6 cm electrode was cut out.
【0042】リード端子を有する幅4cm、長さ6c
m、厚さ50μmの矩形の純アルミニウム箔の片面に、
ポリアミドイミド樹脂をバインダとする導電性接着剤を
介して上記電極を接合し、加熱して接着剤を熱硬化させ
て電極体を形成した。この電極体を2枚作製し、2枚の
電極体の電極面を対向させ、セルロース繊維製セパレー
タ(密度0.40g/cm3、空隙率74%、厚さ40
μm)を挟んで厚さ2mmの2枚のガラス製挟持板で挟
持し、素子を形成した。2枚の電極体とセパレータとの
合計の厚さは0.39mmであった。4 cm wide and 6 c long with lead terminals
m, on one side of a rectangular pure aluminum foil with a thickness of 50 μm,
The electrodes were joined via a conductive adhesive having a polyamideimide resin as a binder, and heated to cure the adhesive by heat to form an electrode body. Two electrode bodies were prepared, and the electrode surfaces of the two electrode bodies were opposed to each other, and a cellulose fiber separator (density: 0.40 g / cm 3 , porosity: 74%, thickness: 40)
μm) was sandwiched between two glass sandwiching plates having a thickness of 2 mm to form an element. The total thickness of the two electrode bodies and the separator was 0.39 mm.
【0043】電解液としてはプロピレンカーボネートに
1.5mol/lの(C2H5)3(CH3)NBF4を溶
解した溶液を用いた。上記素子を200℃で3時間真空
加熱することにより素子の不純分を除去し、電解液を真
空含浸させてポリプロピレン製の角型有底筒状容器に収
容し、密封して電気二重層キャパシタを作製した。As an electrolytic solution, a solution obtained by dissolving 1.5 mol / l of (C 2 H 5 ) 3 (CH 3 ) NBF 4 in propylene carbonate was used. The above element was vacuum-heated at 200 ° C. for 3 hours to remove impurities from the element, vacuum impregnated with an electrolytic solution, housed in a rectangular bottomed cylindrical container made of polypropylene, and sealed to form an electric double layer capacitor. Produced.
【0044】素子の体積を測定した後、電流密度20m
A/cm2で素子の直流抵抗と容量を測定し、容量密度
と単位面積抵抗を算出した。結果を表1に示す。単位面
積抵抗は、2枚の電極体の抵抗とセパレータ部分の抵抗
との和であるため、セパレータの枚数を5枚としたキャ
パシタ素子の直流抵抗とセパレータ1枚のキャパシタ素
子の直流抵抗との関係から2枚の電極体の抵抗の和とセ
パレータ1枚の抵抗を求めた。2枚の電極体の抵抗の和
を表1に示す。After measuring the volume of the device, the current density was 20 m
The DC resistance and capacitance of the device were measured at A / cm 2 , and the capacitance density and unit area resistance were calculated. Table 1 shows the results. Since the unit area resistance is the sum of the resistance of the two electrode bodies and the resistance of the separator part, the relationship between the DC resistance of the capacitor element having five separators and the DC resistance of one capacitor element is given. From the sum of the resistances of the two electrode bodies and the resistance of one separator. Table 1 shows the sum of the resistances of the two electrode bodies.
【0045】さらに、放電開始電圧2.5V、放電終止
電圧1.25Vの場合について、出力密度1600W/
Lにおけるエネルギ密度を求め、表1に示した。ただ
し、体積あたりの出力密度と体積あたりのエネルギ密度
はキャパシタ素子体積を基準として求めており、端子や
ハウジングに要する体積は考慮しなかった。Further, when the discharge start voltage is 2.5 V and the discharge end voltage is 1.25 V, the output density is 1600 W /
The energy density at L was determined and is shown in Table 1. However, the output density per volume and the energy density per volume were determined based on the volume of the capacitor element, and did not consider the volume required for the terminals and the housing.
【0046】表1において、電極厚さ、素子体積、素子
容量、素子抵抗、素子面積抵抗、電極体面積抵抗、容量
密度、及びエネルギ密度の単位は、それぞれμm、c
c、F、Ω、Ω・cm2、Ω・cm2、F/cc、Wh/
Lである。In Table 1, the units of the electrode thickness, element volume, element capacitance, element resistance, element area resistance, electrode body area resistance, capacitance density, and energy density are μm, c, respectively.
c, F, Ω, Ω · cm 2 , Ω · cm 2 , F / cc, Wh /
L.
【0047】[例2〜例6(実施例)及び例7〜例10
(比較例)]電極シートの成形条件を変更して電極シー
トの厚さを表1に示すとおりとした以外は例1と同様に
して電気二重層キャパシタを作製し、例1と同様の評価
を行った。結果を例1とともに表1に示す。[Examples 2 to 6 (Example) and Examples 7 to 10]
(Comparative Example) An electric double layer capacitor was manufactured in the same manner as in Example 1 except that the forming conditions of the electrode sheet were changed and the thickness of the electrode sheet was as shown in Table 1, and the same evaluation as in Example 1 was performed. went. The results are shown in Table 1 together with Example 1.
【0048】また、例1〜例10から得られた、電極シ
ートの厚さとエネルギ密度(出力密度1600W/L)
との関係を図1に示す。Further, the thickness and energy density of the electrode sheet (output density: 1600 W / L) obtained from Examples 1 to 10
1 is shown in FIG.
【0049】[例11(実施例)]高純度活性炭粉末と
して比表面積1800m2/g、平均粒径10μmのも
のを用いた以外は例1と同様にして厚さ130μm、密
度0.67g/cm3の電極シートを作製した。これを
厚さ40μmのアルミニウム箔集電体の両面に、ポリア
ミドイミド樹脂をバインダとする導電性接着剤を用いて
接合し、導電性接着剤を熱硬化させて電極シートと集電
体を一体化させたシートを得た後、このシートから有効
電極面積6.3cm×12.3cmの34枚の電極体を
得た。このうち17枚を正極体、残りの17枚を負極体
とし、ガラス繊維マット製のセパレータ(最大繊維径1
0μm以下のガラス繊維からなり、厚さ160μm、空
隙率92%)を介して交互に積層して素子を形成した。Example 11 (Example) A high-purity activated carbon powder having a specific surface area of 1800 m 2 / g and an average particle size of 10 μm was used in the same manner as in Example 1 except that the thickness was 130 μm and the density was 0.67 g / cm. The electrode sheet of No. 3 was produced. This is bonded to both sides of a 40-μm-thick aluminum foil current collector using a conductive adhesive with polyamideimide resin as a binder, and the conductive adhesive is thermally cured to integrate the electrode sheet and the current collector. After obtaining the sheet thus obtained, 34 electrode bodies having an effective electrode area of 6.3 cm × 12.3 cm were obtained from this sheet. Of these, 17 sheets were used as a positive electrode body and the remaining 17 sheets were used as a negative electrode body.
The device was formed by alternately laminating glass fibers of 0 μm or less through a thickness of 160 μm and a porosity of 92%.
【0050】上記積層体素子を高さ15cm、幅7c
m、厚さ2.2cmの有底角型アルミニウムケースに収
容し、正極端子と負極端子を備えたアルミニウム上蓋を
用いてレーザー溶接封口し、注液口を開けた状態で20
0℃で5時間真空乾燥して不純物を除去した。The above laminated body element is 15 cm in height and 7 c in width.
m, 2.2 cm thick in a bottomed square aluminum case, sealed by laser welding using an aluminum top lid equipped with a positive electrode terminal and a negative electrode terminal,
Vacuum drying was performed at 0 ° C. for 5 hours to remove impurities.
【0051】次いで、1.5mol/lの(C2H5)3
(CH3)NPF6のプロピレンカーボネート溶液を電解
液として素子に真空含浸させた後、注液口に安全弁を配
置して幅7cm、高さ15cm、厚さ2.2cm、重量
380gの角型電気二重層キャパシタとした。Then, 1.5 mol / l of (C 2 H 5 ) 3
After the element was vacuum impregnated with a propylene carbonate solution of (CH 3 ) NPF 6 as an electrolytic solution, a safety valve was arranged at an injection port, and a square electric having a width of 7 cm, a height of 15 cm, a thickness of 2.2 cm, and a weight of 380 g was provided. This was a double layer capacitor.
【0052】得られた電気二重層キャパシタの初期の放
電容量は1400F、内部抵抗は2.8mΩであった。
2.5Vで100時間充電した後の漏れ電流は1mAで
あった。2.5Vで100時間充電した後、25℃で開
路状態とし、7日間放置した後のキャパシタの保持電圧
は2.3Vであった。放電開始電圧2.5V、放電終止
電圧1.25Vで、500W/kgでの定出力放電にお
ける出力エネルギ密度は1.7Wh/kgであった。放
電時の平均電流は112Aであった。The initial electric discharge capacity of the obtained electric double layer capacitor was 1400 F, and the internal resistance was 2.8 mΩ.
The leakage current after charging at 2.5 V for 100 hours was 1 mA. After the battery was charged at 2.5 V for 100 hours, the circuit was opened at 25 ° C., and the capacitor was left to stand for 7 days. With a discharge start voltage of 2.5 V and a discharge end voltage of 1.25 V, the output energy density in constant output discharge at 500 W / kg was 1.7 Wh / kg. The average current at the time of discharging was 112A.
【0053】次いで、45℃の恒温槽中で0〜2.5V
の間で50Aの定電流による充放電サイクルを5万回繰
り返し、5万サイクル後の放電容量及び内部抵抗を測定
し、初期特性と比較して電気二重層キャパシタの長期的
な作動信頼性を加速的に評価した。サイクル試験後の容
量は1370F、内部抵抗は2.9mΩであり、大電流
での充放電信頼性が高かった。Then, in a 45 ° C. constant temperature bath, 0-2.5 V
Repeat 50,000 charge / discharge cycles with a constant current of 50A between 50,000 times, measure the discharge capacity and internal resistance after 50,000 cycles, and accelerate the long-term operation reliability of the electric double layer capacitor compared to the initial characteristics Was evaluated. The capacity after the cycle test was 1370 F, the internal resistance was 2.9 mΩ, and the charge / discharge reliability under a large current was high.
【0054】また、上記電極シートを上記集電体の片面
のみに接合した以外は上記のとおり作製したシートから
有効電極面積4cm×6cmの電極体を2枚切り出し、
上記セパレータ(ガラス繊維マット)を挟んで例1と同
様にして素子を作製し、さらに電解液として上記電解液
を用いた以外は例1と同様にして電気二重層キャパシタ
を作製した。例1と同様にして直流抵抗を測定したとこ
ろ、この電気二重層キャパシタのセパレータ部分の抵抗
は、1.2Ω・cm2、2枚の電極体による抵抗は、
4.3Ω・cm2であった。Also, two electrode bodies having an effective electrode area of 4 cm × 6 cm were cut out from the sheet prepared as described above except that the above-mentioned electrode sheet was bonded only to one side of the above-mentioned current collector.
An element was produced in the same manner as in Example 1 with the separator (glass fiber mat) interposed therebetween, and an electric double layer capacitor was produced in the same manner as in Example 1 except that the above electrolytic solution was used as the electrolytic solution. When the DC resistance was measured in the same manner as in Example 1, the resistance of the separator portion of this electric double layer capacitor was 1.2 Ω · cm 2 , and the resistance of the two electrode bodies was:
It was 4.3 Ω · cm 2 .
【0055】[0055]
【表1】 [Table 1]
【0056】[0056]
【発明の効果】図1に示すとおり、多孔質層である電極
シートの厚さによりエネルギ密度は異なる。これは、エ
ネルギ密度が素子の容量密度と素子の抵抗とにより決定
されるためである。本発明によればエネルギ密度が高
く、自己放電が少なく、充放電サイクル耐久性に優れる
電気二重層キャパシタが得られる。As shown in FIG. 1, the energy density varies depending on the thickness of the electrode sheet which is a porous layer. This is because the energy density is determined by the capacitance density of the element and the resistance of the element. According to the present invention, an electric double layer capacitor having high energy density, low self-discharge, and excellent charge / discharge cycle durability can be obtained.
【0057】本発明の電気二重層キャパシタは、低抵抗
かつ高容量密度であるため、特に正極体と負極体とをセ
パレータを介して複数交互に積層したり、帯状の正極体
と負極体とをセパレータを介して巻回する等の構造とす
ることにより、100F以上、さらには1000F以上
のパワー用キャパシタとして有効に使用できる。Since the electric double layer capacitor of the present invention has a low resistance and a high capacity density, in particular, a plurality of positive and negative electrode bodies are alternately laminated with a separator interposed therebetween, or a strip-shaped positive and negative electrode bodies are formed. By using a structure such as winding around a separator, the capacitor can be effectively used as a power capacitor of 100F or more, and more preferably 1000F or more.
【図1】本発明の実施例及び比較例における多孔質層の
厚さとエネルギ密度との関係を示す図。FIG. 1 is a diagram showing the relationship between the thickness of a porous layer and the energy density in Examples and Comparative Examples of the present invention.
【図2】本発明における多孔質層断面の倍率3千倍のS
EM写真。FIG. 2 is a view showing the S of the porous layer cross section of the present invention at a magnification of 3,000 times.
EM photograph.
【図3】本発明における多孔質層断面の倍率1万倍のS
EM写真。FIG. 3 is a cross-sectional view of a porous layer having a magnification of 10,000 times in the present invention.
EM photograph.
Claims (7)
質層をアルミニウム箔集電体の少なくとも片面に形成し
てなる電極体を正極体及び負極体とし、該正極体の多孔
質層と該負極体の多孔質層とをセパレータを介して対向
させて素子を形成し、該素子に非水系電解液を含浸させ
密閉容器に収容してなる電気二重層キャパシタにおい
て、前記多孔質層の厚さが80〜200μmであり、か
つ前記アルミニウム箔集電体の厚さが20〜80μmで
あり、かつ前記セパレータの厚さが30〜170μmで
あることを特徴とする電気二重層キャパシタ。An electrode body comprising a porous layer containing a carbonaceous powder and a fluoropolymer formed on at least one surface of an aluminum foil current collector is used as a positive electrode body and a negative electrode body. And a porous layer of the negative electrode body are opposed to each other with a separator therebetween to form an element. In an electric double layer capacitor in which the element is impregnated with a non-aqueous electrolyte and housed in a closed container, An electric double layer capacitor, wherein the thickness is 80 to 200 μm, the thickness of the aluminum foil current collector is 20 to 80 μm, and the thickness of the separator is 30 to 170 μm.
g/cm3である請求項1に記載の電気二重層キャパシ
タ。2. The porous layer has a density of 0.50 to 0.80.
g / cm 3 an electric double layer capacitor according to claim 1.
請求項1又は2に記載の電気二重層キャパシタ。3. The electric double layer capacitor according to claim 1, wherein the porosity of the separator is 60 to 95%.
であり、セパレータの単位面積抵抗が2Ω・cm2以下
である請求項1、2又は3記載の電気二重層キャパシ
タ。4. An electrode body having a unit area resistance of 3 to 9 Ω · cm 2.
4. The electric double layer capacitor according to claim 1, wherein the unit area resistance of the separator is 2 Ω · cm 2 or less.
下かつ長さ2μm以上の含フッ素重合体からなる繊維が
形成する網目構造に炭素質粉末が担持されてなる請求項
1、2、3又は4記載の電気二重層キャパシタ。5. The porous layer has a carbonaceous powder supported on a network formed by fibers of a fluoropolymer having a diameter of 0.1 μm or less and a length of 2 μm or more. 5. The electric double layer capacitor according to 2, 3 or 4.
合体と加工助剤との混合物をスクリュー押出し成形した
後ロール圧延して成形されたシートからなる請求項1、
2、3、4又は5記載の電気二重層キャパシタ。6. The sheet according to claim 1, wherein said porous layer is formed by screw-extruding a mixture of a carbonaceous powder, a fluoropolymer and a processing aid, followed by roll rolling.
The electric double layer capacitor according to 2, 3, 4 or 5.
m2/gであり、含フッ素重合体がポリテトラフルオロ
エチレンからなりかつ前記多孔質層中に5〜20重量%
含まれる請求項1、2、3、4、5又は6記載の電気二
重層キャパシタ。7. The carbonaceous powder has a specific surface area of 700 to 2500.
m 2 / g, and the fluoropolymer is composed of polytetrafluoroethylene and is 5 to 20% by weight in the porous layer.
The electric double layer capacitor according to claim 1, 2, 3, 4, 5, or 6, which is included.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11040372A JPH11317332A (en) | 1998-02-20 | 1999-02-18 | Electric double layer capacitor |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP10-39310 | 1998-02-20 | ||
| JP3931098 | 1998-02-20 | ||
| JP11040372A JPH11317332A (en) | 1998-02-20 | 1999-02-18 | Electric double layer capacitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11317332A true JPH11317332A (en) | 1999-11-16 |
Family
ID=26378659
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11040372A Pending JPH11317332A (en) | 1998-02-20 | 1999-02-18 | Electric double layer capacitor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11317332A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002289481A (en) * | 2001-03-28 | 2002-10-04 | Kyocera Corp | Activated carbonaceous structure and electric double layer capacitor using the same |
| WO2004051680A1 (en) * | 2002-11-29 | 2004-06-17 | Honda Motor Co., Ltd. | Polarizable electrode for electric double-layer capacitor, process for producing the polarizable electrode and process for producing the electric double-layer capacitor |
| JP2005191423A (en) * | 2003-12-26 | 2005-07-14 | Tdk Corp | Electrode for capacitor |
| JP2006024611A (en) * | 2004-07-06 | 2006-01-26 | Nisshinbo Ind Inc | Electric double layer capacitor |
| US7236349B2 (en) | 2003-11-20 | 2007-06-26 | Tdk Corporation | Electrode for electrochemical capacitor and method for manufacturing the same, electrochemical capacitor and method for manufacturing the same |
| KR100744965B1 (en) | 2003-12-26 | 2007-08-02 | 티디케이가부시기가이샤 | Fabrication method of electrode for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor and method for fabricating thereof |
| JP2008060199A (en) * | 2006-08-30 | 2008-03-13 | Meidensha Corp | Electric double layer capacitor |
| US7623339B2 (en) | 2004-12-28 | 2009-11-24 | Tdk Corporation | Electrochemical device |
| JP2010219323A (en) * | 2009-03-17 | 2010-09-30 | National Univ Corp Shizuoka Univ | Electrode for electric double layer capacitor |
-
1999
- 1999-02-18 JP JP11040372A patent/JPH11317332A/en active Pending
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002289481A (en) * | 2001-03-28 | 2002-10-04 | Kyocera Corp | Activated carbonaceous structure and electric double layer capacitor using the same |
| WO2004051680A1 (en) * | 2002-11-29 | 2004-06-17 | Honda Motor Co., Ltd. | Polarizable electrode for electric double-layer capacitor, process for producing the polarizable electrode and process for producing the electric double-layer capacitor |
| US7057879B2 (en) | 2002-11-29 | 2006-06-06 | Honda Motor Co., Ltd. | Polarizable electrode for electric double-layer capacitor, process for producing the polarizable electrode and process for producing the electric double-layer capacitor |
| CN100446138C (en) * | 2002-11-29 | 2008-12-24 | 本田技研工业株式会社 | Polarizable electrode for electric double layer capacitor, method for producing same, and method for producing electric double layer capacitor |
| US7236349B2 (en) | 2003-11-20 | 2007-06-26 | Tdk Corporation | Electrode for electrochemical capacitor and method for manufacturing the same, electrochemical capacitor and method for manufacturing the same |
| KR100752942B1 (en) | 2003-11-20 | 2007-08-30 | 티디케이가부시기가이샤 | Electrode for electrochemical capacitor, fabricating method of the electrode, and electrochemical capacitor, fabricating method of the capacitor |
| JP2005191423A (en) * | 2003-12-26 | 2005-07-14 | Tdk Corp | Electrode for capacitor |
| KR100744965B1 (en) | 2003-12-26 | 2007-08-02 | 티디케이가부시기가이샤 | Fabrication method of electrode for electrochemical capacitor, electrode for electrochemical capacitor, and electrochemical capacitor and method for fabricating thereof |
| JP2006024611A (en) * | 2004-07-06 | 2006-01-26 | Nisshinbo Ind Inc | Electric double layer capacitor |
| US7623339B2 (en) | 2004-12-28 | 2009-11-24 | Tdk Corporation | Electrochemical device |
| JP2008060199A (en) * | 2006-08-30 | 2008-03-13 | Meidensha Corp | Electric double layer capacitor |
| JP2010219323A (en) * | 2009-03-17 | 2010-09-30 | National Univ Corp Shizuoka Univ | Electrode for electric double layer capacitor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6349027B1 (en) | Electric double layer capacitor | |
| US6195251B1 (en) | Electrode assembly and electric double layer capacitor having the electrode assembly | |
| KR100460570B1 (en) | Supercapacitor structure and method of making same | |
| US9209464B2 (en) | Current collectors having textured coating | |
| CN1866430B (en) | Electrochemical capacitor electrode production method | |
| US6198623B1 (en) | Carbon fabric supercapacitor structure | |
| JPH11307403A (en) | Electrode for electric double layer capacitor and electric double layer capacitor having the electrode | |
| JP2004186273A (en) | Electrode sheet for electric double layer capacitor, method for producing the same, polarizable electrode and electric double layer capacitor using polarizable electrode | |
| EP2545567A1 (en) | Electrical energy storage device containing an electroactive separator | |
| US6638385B2 (en) | Process for producing an electrode assembly for an electronic double layer capacitor | |
| JP4800232B2 (en) | Electric double layer capacitor | |
| JP3591055B2 (en) | Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor | |
| JP4694737B2 (en) | Method for manufacturing electrode body for electric double layer capacitor | |
| JPH11317332A (en) | Electric double layer capacitor | |
| KR101331966B1 (en) | Electrochemical capacitor | |
| KR20060119818A (en) | METHOD FOR MANUFACTURING ELECTROCHEMICAL CAPACITOR ELECTRODE | |
| EP0938109A2 (en) | Electric double layer capacitor | |
| JP2005044821A (en) | Electric double layer capacitor | |
| TWI292163B (en) | ||
| KR20080072112A (en) | Electrode assembly with improved output characteristics and secondary battery comprising the same | |
| JP2004186275A (en) | Electrode sheet for electric double layer capacitor, method for producing the same, polarizable electrode and electric double layer capacitor using polarizable electrode | |
| JPH11283871A (en) | Current collector for electric double layer capacitor and electric double layer capacitor having the current collector | |
| JP4026226B2 (en) | Electrode for electric double layer capacitor and electric double layer capacitor having the electrode | |
| JP3692735B2 (en) | Current collector for electric double layer capacitor and electric double layer capacitor | |
| JPH11274012A (en) | Electric double layer capacitor and method of manufacturing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050404 |
|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060602 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060703 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060703 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070913 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071002 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080408 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081007 |