JPH11312243A - Facial region detector - Google Patents
Facial region detectorInfo
- Publication number
- JPH11312243A JPH11312243A JP13468898A JP13468898A JPH11312243A JP H11312243 A JPH11312243 A JP H11312243A JP 13468898 A JP13468898 A JP 13468898A JP 13468898 A JP13468898 A JP 13468898A JP H11312243 A JPH11312243 A JP H11312243A
- Authority
- JP
- Japan
- Prior art keywords
- correlation
- image
- face
- mosaic
- face image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000001815 facial effect Effects 0.000 title abstract 2
- 238000001514 detection method Methods 0.000 claims description 13
- 230000002596 correlated effect Effects 0.000 abstract 5
- 230000000875 corresponding effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 7
- 230000008921 facial expression Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
- Collating Specific Patterns (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、顔画像を用いて個
人の同定を行う装置の前処理に係るもので、画像中から
顔画像を検出する顔領域検出装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to preprocessing of an apparatus for identifying an individual using a face image, and more particularly to a face area detecting apparatus for detecting a face image from an image.
【0002】[0002]
【従来の技術】コンピュータと人間とのより自然なイン
ターフェイスを構築するために、コンピュータによる人
間の識別や表情の認識の研究が行われている。人間の識
別や表情の認識をするためには、顔画像を画像中から検
出することが必要である。2. Description of the Related Art In order to construct a more natural interface between a computer and a human, research has been conducted on human identification and facial expression recognition by a computer. In order to identify humans and recognize facial expressions, it is necessary to detect a face image from an image.
【0003】図2は従来の顔画像検出装置を示すシステ
ム構成図である。図2に示すように、従来の顔画像検出
装置は、画像入力部11を介して入力される画像をモザ
イク化してモザイク画像P0を出力するモザイク化部1
2と、標準顔画像のテンプレートT0をあらかじめ記憶
してなる標準顔画像データベース13と、モザイク画像
P0のあらかじめ設定された大きさの領域を順次走査し
て、その領域と標準顔画像データベース13に蓄えられ
た顔画像のテンプレートT0との相関を求める相関演算
部14と、相関が最も高い領域を画像中から検出する最
大相関領域検出部15と、最も高い相関値があらかじめ
設定された閾値より大きい場合に顔領域として判断する
相関判断部16とを備えている。FIG. 2 is a system configuration diagram showing a conventional face image detecting device. As shown in FIG. 2, the conventional face image detection device mosaicizes an image input via an image input unit 11 and outputs a mosaic image P0.
2, a standard face image database 13 in which a standard face image template T0 is stored in advance, and an area of a preset size of the mosaic image P0 are sequentially scanned and stored in the area and the standard face image database 13. A correlation calculation unit 14 for obtaining a correlation with the template T0 of the obtained face image, a maximum correlation region detection unit 15 for detecting a region with the highest correlation from the image, and a case where the highest correlation value is larger than a preset threshold value And a correlation determining unit 16 for determining a face area.
【0004】すなわち、従来の顔画像検出装置において
は、図3に示すごとく、まず、画像入力部11を介して
入力される原画像の入力画像を、モザイク化部12によ
り、m×n画素(N1<n<N2,M1<m<M2で、
n,mは整数)の領域の信号の平均値を1画素とするモ
ザイク処理をして、解像度を落としたモザイク画像P0
を生成する。そして、図4に示すごとく、モザイク画像
のM3×N3画素のあらかじめ設定した大きさの領域を
順次走査して、相関演算部14により、その領域と標準
顔画像データベース13に蓄えられているあらかじめ記
憶された図5に示すごとく標準顔画像のテンプレートT
0との相関を求めて、最大相関領域検出部15により相
関が最も高い領域を画像中から検出する。相関が高いほ
ど相関値が大きくなると仮定すると、最も高い相関値が
あらかじめ設定した閾値より大きかったら、相関判断部
16によりその領域を顔領域として出力する。That is, in the conventional face image detecting apparatus, first, as shown in FIG. 3, an input image of an original image input through an image input unit 11 is converted into m × n pixels ( N1 <n <N2, M1 <m <M2,
(n, m are integers) mosaic image P0 having a reduced resolution by performing a mosaic process with the average value of the signals in the region as one pixel.
Generate Then, as shown in FIG. 4, a region of a mosaic image having a predetermined size of M3 × N3 pixels is sequentially scanned, and the correlation operation unit 14 stores the region and the previously stored region stored in the standard face image database 13. The template T of the standard face image as shown in FIG.
A correlation with 0 is obtained, and a region having the highest correlation is detected from the image by the maximum correlation region detection unit 15. Assuming that the higher the correlation is, the larger the correlation value is. If the highest correlation value is larger than a preset threshold, the correlation determination unit 16 outputs the area as a face area.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、前述し
た従来の顔画像検出装置においては、モザイク処理で高
い周波数成分が失われるため、顔以外の領域を顔と誤認
識しやすいという問題があった。However, in the above-described conventional face image detecting apparatus, since high frequency components are lost in the mosaic processing, there is a problem that an area other than the face is easily erroneously recognized as a face.
【0006】本発明は上述した従来例に係る問題点を解
消するためになされたもので、画像中から顔を検出する
のに、顔以外の領域を顔と誤認識することがなく的確に
検出することができる顔領域検出装置を提供することを
目的とする。SUMMARY OF THE INVENTION The present invention has been made in order to solve the above-described problems of the conventional example. In order to detect a face from an image, an area other than the face is accurately detected without being erroneously recognized as a face. It is an object of the present invention to provide a face region detecting device capable of performing the following.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するため
に、本発明に係る顔領域検出装置は、少なくとも顔画像
を含んだ入力画像をモザイク化する第1のモザイク手段
と、前記入力画像の高周波成分の絶対値を求めるフィル
タ手段と、前記フィルタ手段を介した画像をモザイク化
する第2のモザイク手段と、標準顔画像の低周波成分と
高周波成分のテンプレートをあらかじめ記憶する標準顔
画像データベースと、前記第1のモザイク手段によりモ
ザイク化された画像を所定の大きさに分割したあらかじ
め定められた領域毎に順次走査して前記標準顔画像デー
タベースに記憶された標準顔画像の低周波成分のテンプ
レートとの相関を求める第1の相関演算手段と、前記第
2のモザイク手段によりモザイク化された画像を所定の
大きさに分割したあらかじめ定められた領域毎に順次走
査して前記標準顔画像データベースに記憶された標準顔
画像の高周波成分のテンプレートとの相関を求める第2
の相関演算手段と、前記第1と第2の相関演算手段から
出力される対応する相関値同士を所定の重み係数を掛け
て加算する相関値加算手段と、前記相関値加算手段から
出力される相関値から最も大きい相関値とその領域を求
める最大相関検出手段と、前記最大相関検出手段で求め
た最大相関値があらかじめ定めた閾値より大きい場合に
顔の領域として判断する相関判断手段とを備えたもので
ある。In order to achieve the above object, a face area detecting apparatus according to the present invention comprises: a first mosaic means for mosaicizing an input image including at least a face image; Filter means for determining the absolute value of the high-frequency component, second mosaic means for mosaicizing the image via the filter means, and a standard face image database for storing templates of low-frequency and high-frequency components of the standard face image in advance. A template of a low-frequency component of a standard face image stored in the standard face image database by sequentially scanning the image mosaiced by the first mosaic unit into predetermined regions each having a predetermined size; The first mosaic means for calculating the correlation with the image and the image mosaiced by the second mosaic means are divided into a predetermined size. Second sequentially scanned to every defined Luo beforehand region correlating with the template of the high-frequency components of the standard face image stored in the standard face image database
Correlation calculation means, correlation value addition means for adding corresponding correlation values output from the first and second correlation calculation means by multiplying them by a predetermined weighting factor, and output from the correlation value addition means Maximum correlation detection means for obtaining the largest correlation value and its area from the correlation value, and correlation determination means for determining the area as a face when the maximum correlation value obtained by the maximum correlation detection means is larger than a predetermined threshold. It is a thing.
【0008】[0008]
【発明の実施の形態】図1は本発明の実施の形態に係る
顔画像検出装置を示すシステム構成図である。図1に示
すように、本実施の形態に係る顔画像検出装置は、画像
入力部1を介して入力される輝度信号でなる入力画像Y
0をモザイク化する第1のモザイク化部2と、入力画像
Y0の高周波成分の絶対値を求めるフィルタ部3と、フ
ィルタ部3を介した画像をモザイク化する第2のモザイ
ク化部4と、標準顔画像の低周波成分と高周波成分のテ
ンプレートをあらかじめ記憶する標準顔画像データベー
ス5と、第1のモザイク化部2によりモザイク化された
画像を所定の大きさに分割したあらかじめ定められた領
域毎に順次走査して標準顔画像データベース5に記憶さ
れた標準顔画像の低周波成分のテンプレートとの相関を
求める第1の相関演算部6と、第2のモザイク化部4に
よりモザイク化された画像を所定の大きさに分割したあ
らかじめ定められた領域毎に順次走査して標準顔画像デ
ータベース5に記憶された標準顔画像の高周波成分のテ
ンプレートとの相関を求める第2の相関演算部7と、第
1と第2の相関演算部6と7から出力される対応する相
関値同士を所定の重み係数を掛けて加算する相関値加算
部8と、相関値加算部8から出力される相関値から最も
大きい相関値とその領域を求める最大相関検出部9と、
最大相関検出部9で求めた最大相関値があらかじめ定め
た閾値より大きい場合に顔の領域として判断する相関判
断部10とを備えている。FIG. 1 is a system configuration diagram showing a face image detecting apparatus according to an embodiment of the present invention. As shown in FIG. 1, the face image detection device according to the present embodiment has an input image Y including a luminance signal input via the image input unit 1.
A first mosaic unit 2 for mosaicizing 0, a filter unit 3 for obtaining the absolute value of the high-frequency component of the input image Y0, a second mosaic unit 4 for mosaicizing the image via the filter unit 3, A standard face image database 5 in which templates of low frequency components and high frequency components of the standard face image are stored in advance, and a predetermined area obtained by dividing the image mosaiced by the first mosaic unit 2 into a predetermined size. , A first correlation calculator 6 for calculating the correlation between the low frequency component of the standard face image stored in the standard face image database 5 and the template, and an image mosaiced by the second mosaicizer 4. Is sequentially scanned for each of predetermined regions obtained by dividing the standard face image into a predetermined size. A correlation calculation unit 7 for calculating the correlation value; a correlation value addition unit 8 for multiplying the corresponding correlation values output from the first and second correlation calculation units 6 and 7 by a predetermined weighting coefficient; A maximum correlation detector 9 for determining the largest correlation value and its area from the correlation values output from the value adder 8,
A correlation judging unit for judging as a face area when the maximum correlation value obtained by the maximum correlation detecting unit is larger than a predetermined threshold.
【0009】すなわち、図1に示す顔画像検出装置にお
いては、画像入力部1から輝度信号からなる画像Y0が
出力され、モザイク化部2では、図3に示すごとくm×
n画素の領域の信号の平均値を新たに1画素の値とする
モザイク画像P0,P1,P2,・・・を作成する。こ
こで、m,nはM1<m<M2,N1<n<N2の範囲
の値をすべて取る整数で、いろいろな解像度のモザイク
画像P0,P1,P2,・・・を作成する。これによ
り、顔の大きさの変化に対応できる。That is, in the face image detecting device shown in FIG. 1, an image Y0 composed of a luminance signal is output from the image input unit 1, and the mosaic unit 2 outputs m × M as shown in FIG.
A mosaic image P0, P1, P2,... is newly created in which the average value of the signals in the area of n pixels is newly set to the value of one pixel. Here, m and n are integers taking all values in the range of M1 <m <M2, N1 <n <N2, and mosaic images P0, P1, P2,... Thereby, it is possible to cope with a change in the size of the face.
【0010】相関演算部6では、M3×N3画素のあら
かじめ設定した大きさの領域モザイク画像P0,P1,
P2,・・・を順次走査して、その領域と標準顔画像デ
ータベース5に蓄えられているあらかじめ記憶した図5
に示すごとくM3×N3画素の大きさの標準顔画像の低
周波成分のテンプレートT1との相関を求める。ここ
で、例えば、画像P0の領域の左上の座標が図4の
(a)に示す(xn,yn)である領域に対応する図4
の(b)に示す相関値をrn(xn,yn)と表現す
る。[0010] In the correlation calculating section 6, the area mosaic images P0, P1, P1 of M3 × N3 pixels having a predetermined size are set.
P2,... Are sequentially scanned, and the area and the previously stored FIG.
As shown in the figure, the correlation between the low-frequency component of the standard face image having the size of M3 × N3 pixels and the template T1 is obtained. Here, for example, FIG. 4 corresponding to the area where the upper left coordinate of the area of the image P0 is (xn, yn) shown in FIG.
(B) is expressed as rn (xn, yn).
【0011】一方、フィルタ部3では、画像入力部1か
らの入力画像Y0を、例えば下式で示される特性を有す
る帯域制限フィルタを通した後、信号の絶対値を取る。
なお、下式において、rは原点からの距離、pは周波数
帯域に関するパラメータ、G(r)はガウシァン分布の
関数であり、フィルタの通過帯域に関係するパラメータ
pはモザイク領域の大きさm,nの関数とする。On the other hand, the filter section 3 takes the absolute value of the signal after passing the input image Y0 from the image input section 1 through, for example, a band-limiting filter having the following characteristic.
In the following equation, r is the distance from the origin, p is a parameter related to the frequency band, G (r) is a function of the Gaussian distribution, and the parameter p related to the pass band of the filter is the size m, n of the mosaic area. Function.
【0012】[0012]
【数1】 (Equation 1)
【0013】したがって、フィルタ部3からはモザイク
の解像度の種類と同じ数の画像F0,F1,F2,・・
・を出力する。モザイク化部4は、モザイク化部2と同
様の処理を入力画像F0,F1,F2,・・・に対して
行う。この時、フィルタ部3の特性に対応した領域の大
きさでモザイク化処理を行い、モザイク画像Q0,Q
1,Q2,・・・を出力する。Therefore, the number of images F0, F1, F2,...
-Is output. The mosaic unit 4 performs the same processing as the mosaic unit 2 on the input images F0, F1, F2,. At this time, the mosaic processing is performed with the size of the area corresponding to the characteristics of the filter unit 3, and the mosaic images Q0, Q
1, Q2,... Are output.
【0014】相関演算部7では、図4に示すごとく、相
関演算部6と同様にモザイク画像Q0,Q1,Q2,・
・・のM3×N3画素のあらかじめ設定した大きさの領
域を順次画像中を走査して、その領域と標準顔画像デー
タベース5に蓄えられているあらかじめ記憶した図5に
示すごとく標準顔画像の高周波成分のテンプレートT2
との相関を求める。ここで、例えば、図4の(a)に示
す画像Qnの領域の左上の座標が(xn,yn)である
領域に対応する図4の(b)に示す相関値をsn(x
n,yn)と表現する。As shown in FIG. 4, the correlation operation unit 7 includes mosaic images Q0, Q1, Q2,.
A region of a predetermined size of M3 × N3 pixels is sequentially scanned in the image, and the region and the high frequency of the standard face image stored in the standard face image database 5 as shown in FIG. Component template T2
Find the correlation with Here, for example, the correlation value shown in FIG. 4B corresponding to the region where the upper left coordinates of the region of the image Qn shown in FIG. 4A is (xn, yn) is represented by sn (x
n, yn).
【0015】相関値加算部8では、同じ解像度のモザイ
ク画像Pn,Qnにおいて同じ位置の領域に対する相関
値同士(rn(xn,yn)とsn(xn,yn))を
ある重み係数を掛けて足しあわせる。最大相関検出部9
は、相関が高いほど相関値が大きくなると仮定すると、
相関値加算部8の出力である相関値から最も大きい相関
値とそれに対応する領域を求める。相関判断部10で
は、最大相関検出部9で求めた最大相関値があらかじめ
設定された閾値より大きい場合その領域を顔の領域と
し、小さい場合は顔領域は画像中に存在しないとする。The correlation value adder 8 multiplies the correlation values (rn (xn, yn) and sn (xn, yn)) of the mosaic images Pn and Qn of the same resolution with respect to the area at the same position by multiplying them by a certain weighting coefficient. Fit together. Maximum correlation detector 9
Assumes that the higher the correlation, the greater the correlation value.
The largest correlation value and a region corresponding to the largest correlation value are obtained from the correlation value output from the correlation value adding unit 8. When the maximum correlation value obtained by the maximum correlation detection unit 9 is larger than a preset threshold value, the correlation determination unit 10 determines that the region is a face region, and when the maximum correlation value is smaller, the face region does not exist in the image.
【0016】したがって、本実施の形態によれば、次の
効果を奏する。 (1)低い周波数成分だけでなくフィルタ部3を介した
高い周波数成分も用いているため、顔以外を顔と誤認識
する確率が小さい。 (2)高い周波数成分からなる画像をモザイク化して用
いているので、顔の個人差の影響をあまり受けることが
ないため、顔を顔以外と誤認識することが少ない。Therefore, according to the present embodiment, the following effects can be obtained. (1) Since not only low frequency components but also high frequency components via the filter unit 3 are used, the probability of erroneously recognizing a face other than a face as a face is small. (2) Since an image composed of high frequency components is used in a mosaic form, it is hardly affected by individual differences of the face, so that the face is rarely erroneously recognized as a non-face.
【0017】[0017]
【発明の効果】上述したように、本発明によれば、顔画
像を用いて個人の同定などを行うための前処理として、
画像中から顔領域を検出する装置に関し、画像を低周波
成分と高周波成分とに分けて、それぞれの画像をモザイ
ク化して、標準顔画像のテンプレートと相関を求め、そ
れらを適当な重みを掛けて加算して、それを用いて顔領
域の検出を行うことにより、顔以外の領域を顔と誤認識
することがなく、ロバスト性の高い検出を行うことがで
きる。As described above, according to the present invention, as pre-processing for identifying an individual using a face image,
Regarding a device for detecting a face region from an image, the image is divided into low-frequency components and high-frequency components, each image is mosaiced, a correlation is obtained with a template of a standard face image, and these are multiplied by appropriate weights. By performing addition and detecting a face area using the addition, it is possible to perform detection with high robustness without erroneously recognizing an area other than the face as a face.
【図1】本発明の実施の形態に係る顔領域検出装置を示
すシステム構成図である。FIG. 1 is a system configuration diagram showing a face area detection device according to an embodiment of the present invention.
【図2】従来例に係る顔領域検出装置を示すシステム構
成図である。FIG. 2 is a system configuration diagram showing a face area detection device according to a conventional example.
【図3】モザイク化処理の説明図である。FIG. 3 is an explanatory diagram of a mosaic processing.
【図4】相関を求める領域の走査と対応する相関値との
説明図である。FIG. 4 is an explanatory diagram of scanning of a region for which a correlation is to be obtained and a corresponding correlation value.
【図5】標準顔画像データベース5、13に蓄えられて
いる顔画像のテンプレートの例を示す説明図である。FIG. 5 is an explanatory diagram showing an example of a face image template stored in standard face image databases 5 and 13;
1 画像入力部 2 モザイク化部(第1のモザイク手段) 3 フィルタ部(フィルタ手段) 4 モザイク化部(第2のモザイク手段) 5 標準顔画像データベース 6 相関演算部(第1の相関演算手段) 7 相関演算部(第2の相関演算手段) 8 相関値加算部(相関値加算手段) 9 最大相関検出部(最大相関検出手段) 10 相関判断部(相関判断手段) Reference Signs List 1 image input unit 2 mosaic unit (first mosaic unit) 3 filter unit (filter unit) 4 mosaic unit (second mosaic unit) 5 standard face image database 6 correlation operation unit (first correlation operation unit) 7 correlation operation unit (second correlation operation unit) 8 correlation value addition unit (correlation value addition unit) 9 maximum correlation detection unit (maximum correlation detection unit) 10 correlation judgment unit (correlation judgment unit)
Claims (1)
ザイク化する第1のモザイク手段と、 前記入力画像の高周波成分の絶対値を求めるフィルタ手
段と、 前記フィルタ手段を介した画像をモザイク化する第2の
モザイク手段と、 標準顔画像の低周波成分と高周波成分のテンプレートを
あらかじめ記憶する標準顔画像データベースと、 前記第1のモザイク手段によりモザイク化された画像を
所定の大きさに分割したあらかじめ定められた領域毎に
順次走査して前記標準顔画像データベースに記憶された
標準顔画像の低周波成分のテンプレートとの相関を求め
る第1の相関演算手段と、 前記第2のモザイク手段によりモザイク化された画像を
所定の大きさに分割したあらかじめ定められた領域毎に
順次走査して前記標準顔画像データベースに記憶された
標準顔画像の高周波成分のテンプレートとの相関を求め
る第2の相関演算手段と、 前記第1と第2の相関演算手段から出力される対応する
相関値同士を所定の重み係数を掛けて加算する相関値加
算手段と、 前記相関値加算手段から出力される相関値から最も大き
い相関値とその領域を求める最大相関検出手段と、 前記最大相関検出手段で求めた最大相関値があらかじめ
定めた閾値より大きい場合に顔の領域として判断する相
関判断手段とを、 備えた顔領域検出装置。A first mosaic unit configured to mosaic an input image including at least a face image; a filter unit configured to determine an absolute value of a high-frequency component of the input image; and an image mosaiced through the filter unit A second mosaic unit, a standard face image database in which templates of low-frequency components and high-frequency components of the standard face image are stored in advance, and a pre-divided image obtained by dividing the image mosaiced by the first mosaic unit into a predetermined size. A first correlation calculating means for sequentially scanning every predetermined area to obtain a correlation with a template of a low-frequency component of the standard face image stored in the standard face image database; and a mosaic by the second mosaic means The scanned image is sequentially scanned for each predetermined area divided into a predetermined size and stored in the standard face image database. Second correlation calculating means for calculating a correlation between the stored high-frequency component template of the standard face image and a corresponding correlation value output from the first and second correlation calculating means by a predetermined weighting factor Correlation value adding means for calculating the largest correlation value and its area from the correlation value output from the correlation value adding means, and a maximum correlation value obtained by the maximum correlation detection means. And a correlation judging means for judging as a face area when the threshold value is larger than the threshold value.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13468898A JPH11312243A (en) | 1998-04-28 | 1998-04-28 | Facial region detector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13468898A JPH11312243A (en) | 1998-04-28 | 1998-04-28 | Facial region detector |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11312243A true JPH11312243A (en) | 1999-11-09 |
Family
ID=15134264
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13468898A Withdrawn JPH11312243A (en) | 1998-04-28 | 1998-04-28 | Facial region detector |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11312243A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002190024A (en) * | 2000-12-19 | 2002-07-05 | Namco Ltd | Image recognition method, image recognition system using the same, command interface, and recording medium |
| KR100361699B1 (en) * | 2000-06-27 | 2002-11-23 | 이성환 | System for protecting the right of portrait on the picture of the broadcasting and controlling method therefore |
| KR100445800B1 (en) * | 2001-01-05 | 2004-08-25 | 학교법인 인하학원 | Face-image recognition method of similarity measure using correlation |
| KR100480783B1 (en) * | 2002-03-04 | 2005-04-06 | 삼성전자주식회사 | Method of recognizing face using component-based 2nd order ICA/PCA and apparatus thereof |
| KR100601957B1 (en) | 2004-07-07 | 2006-07-14 | 삼성전자주식회사 | Method and device for determining image correspondence for face recognition, Image correction method and device for achieving this |
| JP2009104244A (en) * | 2007-10-19 | 2009-05-14 | Sony Corp | Information processor and method, and program |
| JP2009104245A (en) * | 2007-10-19 | 2009-05-14 | Sony Corp | Information processor and method, and program |
| WO2010024265A1 (en) * | 2008-08-26 | 2010-03-04 | ソニー株式会社 | Image processing device and method, and learning device, method, and program |
| US8254690B2 (en) | 2007-10-19 | 2012-08-28 | Sony Corporation | Information processing apparatus, information processing method, and program |
| CN109701203A (en) * | 2018-07-29 | 2019-05-03 | 张亮 | Cloud-based adult detection platform |
| CN110772803A (en) * | 2018-07-29 | 2020-02-11 | 张亮 | Adult detection method based on cloud processing |
-
1998
- 1998-04-28 JP JP13468898A patent/JPH11312243A/en not_active Withdrawn
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100361699B1 (en) * | 2000-06-27 | 2002-11-23 | 이성환 | System for protecting the right of portrait on the picture of the broadcasting and controlling method therefore |
| JP2002190024A (en) * | 2000-12-19 | 2002-07-05 | Namco Ltd | Image recognition method, image recognition system using the same, command interface, and recording medium |
| KR100445800B1 (en) * | 2001-01-05 | 2004-08-25 | 학교법인 인하학원 | Face-image recognition method of similarity measure using correlation |
| KR100480783B1 (en) * | 2002-03-04 | 2005-04-06 | 삼성전자주식회사 | Method of recognizing face using component-based 2nd order ICA/PCA and apparatus thereof |
| KR100601957B1 (en) | 2004-07-07 | 2006-07-14 | 삼성전자주식회사 | Method and device for determining image correspondence for face recognition, Image correction method and device for achieving this |
| JP2009104245A (en) * | 2007-10-19 | 2009-05-14 | Sony Corp | Information processor and method, and program |
| JP2009104244A (en) * | 2007-10-19 | 2009-05-14 | Sony Corp | Information processor and method, and program |
| US8254690B2 (en) | 2007-10-19 | 2012-08-28 | Sony Corporation | Information processing apparatus, information processing method, and program |
| WO2010024265A1 (en) * | 2008-08-26 | 2010-03-04 | ソニー株式会社 | Image processing device and method, and learning device, method, and program |
| JP2010055194A (en) * | 2008-08-26 | 2010-03-11 | Sony Corp | Image processing device and method, learning device and method, and program |
| US8494256B2 (en) | 2008-08-26 | 2013-07-23 | Sony Corporation | Image processing apparatus and method, learning apparatus and method, and program |
| CN109701203A (en) * | 2018-07-29 | 2019-05-03 | 张亮 | Cloud-based adult detection platform |
| CN110772803A (en) * | 2018-07-29 | 2020-02-11 | 张亮 | Adult detection method based on cloud processing |
| CN109701203B (en) * | 2018-07-29 | 2020-09-15 | 安徽省徽腾智能交通科技有限公司泗县分公司 | Adult detection platform based on cloud processing |
| CN110772803B (en) * | 2018-07-29 | 2021-01-29 | 南师大科技园栖霞管理(南京)有限公司 | Adult detection method based on cloud processing |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8184915B2 (en) | Device and method for fast computation of region based image features | |
| US20150193649A1 (en) | Enhanced face detection using depth information | |
| US20060110029A1 (en) | Pattern recognizing method and apparatus | |
| CN101727580B (en) | Image processing apparatus, image processing unit, and image processing method | |
| US9076067B2 (en) | Information processing apparatus and method for classifier-based object detection | |
| CN111160291B (en) | Human eye detection method based on depth information and CNN | |
| CN110782390B (en) | Image correction processing method and device, and electronic equipment | |
| CN111444555B (en) | Temperature measurement information display method and device and terminal equipment | |
| CN111898610A (en) | Card unfilled corner detection method and device, computer equipment and storage medium | |
| CN109388926A (en) | Handle the method for biometric image and the electronic equipment including this method | |
| JPH11312243A (en) | Facial region detector | |
| JP2019149119A (en) | Image processing device, image processing method, and program | |
| CN113989336A (en) | A kind of visible light image and infrared image registration method and device | |
| CN117745552A (en) | Self-adaptive image enhancement method and device and electronic equipment | |
| CN112464753B (en) | Method and device for detecting key points in image and terminal equipment | |
| CN118430046A (en) | Face recognition data processing method and system before payment | |
| JP5217917B2 (en) | Object detection and tracking device, object detection and tracking method, and object detection and tracking program | |
| WO2020175085A1 (en) | Image processing apparatus and image processing method | |
| CN111242047A (en) | Image processing method and apparatus, electronic device and computer-readable storage medium | |
| JP3230509B2 (en) | Moving image processing device | |
| US20060204091A1 (en) | System and method for analyzing and processing two-dimensional images | |
| EP1865443A2 (en) | Facial feature detection method and device | |
| JP2004240909A (en) | Image processing apparatus and image processing method | |
| JP2007026308A (en) | Image processing method and image processing apparatus | |
| JP2000194861A (en) | Image recognition method and apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |