JPH1137306A - Flow control valve - Google Patents
Flow control valveInfo
- Publication number
- JPH1137306A JPH1137306A JP20019997A JP20019997A JPH1137306A JP H1137306 A JPH1137306 A JP H1137306A JP 20019997 A JP20019997 A JP 20019997A JP 20019997 A JP20019997 A JP 20019997A JP H1137306 A JPH1137306 A JP H1137306A
- Authority
- JP
- Japan
- Prior art keywords
- valve
- fluid passage
- flow control
- fluid
- passage hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Lift Valve (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、流量制御弁に係
り、特に、ヒートポンプ式空調機等の冷凍サイクルに膨
張弁として組み込まれて、流体(冷媒)の通過時におけ
る騒音の低減化に好適な流量制御弁に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control valve, and more particularly to a flow control valve which is incorporated as an expansion valve in a refrigeration cycle of a heat pump type air conditioner or the like, and is suitable for reducing noise during passage of a fluid (refrigerant). It relates to a flow control valve.
【0002】[0002]
【従来の技術】この種の流量制御弁としては、図5に部
分的に示されている如き流量制御弁の要部が既に提案さ
れている。図示例の流量制御弁1' は、ヒートポンプ式
空調機の冷凍サイクルに膨張弁として組み込まれて使用
されるもので、基本的には、図示していないステッピン
グモータと、弁本体20と、弁軸30と、を具備してお
り、前記弁軸30を前記ステッピングモータによりねじ
送りで昇降させて、該弁軸30により前記弁本体20に
形成された流体通路孔23を開閉する(開口面積を変化
させる)ことにより流量を制御するようになっている。2. Description of the Related Art As a flow control valve of this type, a main part of a flow control valve as partially shown in FIG. 5 has already been proposed. The illustrated flow control valve 1 ′ is used by being incorporated as an expansion valve in a refrigeration cycle of a heat pump type air conditioner, and basically includes a stepping motor (not shown), a valve body 20, and a valve shaft. The valve shaft 30 is moved up and down by screw feed by the stepping motor, and the valve shaft 30 opens and closes the fluid passage hole 23 formed in the valve body 20 (the opening area is changed). To control the flow rate.
【0003】以下、前記流量制御弁1’の前記要部を詳
しく述べると、前記弁本体20は、減圧機構部となる弁
室21を有し、この弁室21の左側部に導管64が接続
される流体入出口22が設けられ、その底面部に導管6
5が接続されるとともに、前記弁軸30により開閉され
る流体通路孔23の上端に形成された弁座24を備えて
いる。Hereinafter, the main part of the flow control valve 1 'will be described in detail. The valve body 20 has a valve chamber 21 serving as a pressure reducing mechanism, and a conduit 64 is connected to the left side of the valve chamber 21. A fluid inlet / outlet 22 is provided, and a conduit 6 is provided on a bottom surface thereof.
5 and a valve seat 24 formed at the upper end of the fluid passage hole 23 opened and closed by the valve shaft 30.
【0004】前記流体通路孔23は、上から順に、上向
きに拡開する短い逆円錐台状の円錐受座面を構成する弁
座24、円柱面ないし円錐面状の中間部23b、及び、
下向きに拡開する比較的長い円錐台状の整流用円錐口2
3cからなっている。The fluid passage hole 23 includes, in order from the top, a valve seat 24 forming a short inverted truncated cone-shaped conical receiving surface that expands upward, a cylindrical or conical intermediate portion 23b, and
A relatively long truncated conical rectifying conical port 2 that expands downward
3c.
【0005】前記流体通路孔23を開閉する弁軸30の
下端部は、前記弁座24に着座して前記流体通路孔23
を閉じる比較的短い先細り逆円錐台状の円錐着座面部3
0aとその下側に連なり前記中間部23b及び整流用円
錐口23cに遊挿される比較的長い先細り円錐台状の円
錐面部30bとが形成されている。一方、前記弁本体2
0の弁室21上方には、内周部に雌ねじ部27が形成さ
れたガイドブッシュ26が固定されている。The lower end of the valve shaft 30 for opening and closing the fluid passage hole 23 is seated on the valve seat 24 and the fluid passage hole 23 is closed.
A relatively short tapered inverted frustoconical conical seating surface part 3
0a and a relatively long tapered frusto-conical conical surface portion 30b connected to the intermediate portion 23b and the rectifying conical port 23c are formed below the lower portion 0a. On the other hand, the valve body 2
A guide bush 26 having a female screw portion 27 formed on the inner peripheral portion is fixed above the valve chamber 21 of the “0”.
【0006】前記ガイドブッシュ26の雌ねじ部27に
は、弁軸ホルダ28の外周に形成された雄ねじ部29が
螺合せしめられ、この弁軸ホルダ28の内周下部に前記
弁軸30が摺動可能に嵌挿され、また、前記弁軸ホルダ
28の下部には前記弁軸30の上部フランジを受けるカ
ラー34が圧入固定されていて、前記弁軸30は、前記
弁軸ホルダ28内に縮装されたコイルスプリング32に
より常時下方に付勢されている。A male screw portion 29 formed on the outer periphery of the valve shaft holder 28 is screwed into the female screw portion 27 of the guide bush 26, and the valve shaft 30 slides on the lower inner periphery of the valve shaft holder 28. A collar 34 is press-fitted and fixed to the lower part of the valve shaft holder 28 to receive the upper flange of the valve shaft 30, and the valve shaft 30 is shrunk in the valve shaft holder 28. The coil spring 32 is constantly urged downward.
【0007】前記弁軸ホルダ28の上部には、図示して
いない昇降軸がそれと一体的に回転移動できるように内
嵌固定されており、前記弁軸ホルダ28の上部外周に
は、凸状の可動側ストッパ45が下向きに突設された合
成樹脂製のスリーブ40が一体的に回転移動できるよう
に成形されている。An elevating shaft (not shown) is fixedly fitted on the upper portion of the valve shaft holder 28 so as to be rotatable integrally therewith. A synthetic resin sleeve 40 having a movable stopper 45 protruding downward is formed so as to be integrally rotatable.
【0008】また、前記ガイドブッシュ26の上部外周
には、前記可動側ストッパ45が衝接せしめられる凸状
の固定側ストッパ55が上向きに突設された合成樹脂製
の固定受け座50が成形されている。On the outer periphery of the upper part of the guide bush 26, a fixed receiving seat 50 made of synthetic resin is formed, in which a convex fixed side stopper 55 to which the movable side stopper 45 abuts is projected upward. ing.
【0009】このような構成の流量制御弁1’におい
て、前記モータを一方向に回転(正転)させると、スリ
ーブ40、弁軸ホルダ28等が一体的に回転し、前記雌
ねじ部27と雄ねじ部29との螺合によるねじ送りによ
り前記弁軸30が下降せしめられてその円錐着座面部3
0aが前記弁座24に形成された流体通路孔23の円錐
受座面部23aに着座し、前記流体通路孔23が閉じら
れる。In the flow control valve 1 'having such a structure, when the motor is rotated in one direction (forward rotation), the sleeve 40, the valve shaft holder 28 and the like rotate integrally, and the female screw portion 27 and the male screw portion are rotated. The valve shaft 30 is lowered by screw feed by screwing with the portion 29, and the conical seating surface portion 3
Oa is seated on the conical receiving surface portion 23a of the fluid passage hole 23 formed in the valve seat 24, and the fluid passage hole 23 is closed.
【0010】前記流体通路孔23が閉じられた時点で
は、前記可動側ストッパ45が固定側ストッパ55に未
だ衝接しておらず、前記弁軸30が前記流体通路孔23
を閉じたまま、前記弁軸ホルダ28等はさらに回転下降
せしめられる。このときの前記弁軸30に対する前記弁
軸ホルダ28の下降量は、前記コイルスプリング32が
圧縮されることにより吸収される。When the fluid passage hole 23 is closed, the movable stopper 45 has not yet come into contact with the fixed stopper 55, and the valve shaft 30 is connected to the fluid passage hole 23.
Is closed, the valve shaft holder 28 and the like are further rotated down. The amount of downward movement of the valve shaft holder 28 with respect to the valve shaft 30 at this time is absorbed by the compression of the coil spring 32.
【0011】その後さらに、前記弁軸ホルダ28等が回
転下降せしめられると、前記可動側ストッパ45が固定
側ストッパ55に衝接し、これにより、前記ロータ39
への通電励磁が続行されていても、前記スリーブ40、
弁軸ホルダ28等の回転下降運動が強制的に停止せしめ
られる。一方、前記モータを逆方向に回転させると、前
記弁軸30の円錐着座面部30aが前記円錐受座面部2
3aから離れ、前記流体通路孔23が開かれる。Thereafter, when the valve shaft holder 28 and the like are further rotated down, the movable side stopper 45 abuts against the fixed side stopper 55, whereby the rotor 39 is rotated.
The sleeve 40,
The rotational lowering movement of the valve shaft holder 28 and the like is forcibly stopped. On the other hand, when the motor is rotated in the reverse direction, the conical seating surface 30a of the valve shaft 30 is
3a, the fluid passage hole 23 is opened.
【0012】そして、前記流量制御弁1’を、空調機の
冷凍サイクルに膨張弁として組み込んだ場合、前記空調
機の暖房運転時には、前記弁軸30が上昇せしめられて
前記流体通路孔23が所定開度に開かれ、冷媒が図の破
線矢印で示される如くに、室内熱交換機(室内コンデン
サ)から導管64を介して弁室21に導入され、弁室2
1から前記流体通路孔23を介して導管65側に導出さ
れ、導管65を介して室外熱交換機に導かれる。When the flow control valve 1 'is incorporated as an expansion valve in a refrigeration cycle of an air conditioner, during the heating operation of the air conditioner, the valve shaft 30 is raised so that the fluid passage hole 23 is in a predetermined position. The valve is opened to the opening degree, and the refrigerant is introduced from the indoor heat exchanger (indoor condenser) into the valve chamber 21 via the conduit 64 as shown by the dashed arrow in the figure, and the valve chamber 2
1 through the fluid passage hole 23 to the conduit 65 side and through the conduit 65 to the outdoor heat exchanger.
【0013】また、前記空調機の冷房運転時には、前記
弁軸30が上昇せしめられて前記流体通路孔23が所定
開度に開かれ、冷媒が図の実線矢印で示される如くに、
前記暖房運転時とは逆に、室外熱交換機から導管65及
び流体通路孔23を介して弁室21に導入されてそこで
膨張減圧され、弁室21から導管64を介して室内交換
機(室内エバポレータ)に導かれる。During the cooling operation of the air conditioner, the valve shaft 30 is raised to open the fluid passage hole 23 to a predetermined opening degree, and the refrigerant flows as shown by a solid arrow in the drawing.
Contrary to the heating operation, the indoor heat exchanger is introduced from the outdoor heat exchanger through the conduit 65 and the fluid passage hole 23 into the valve chamber 21, where the pressure is expanded and decompressed, and then the indoor exchanger (indoor evaporator) from the valve chamber 21 via the conduit 64. It is led to.
【0014】[0014]
【発明が解決しようとする課題】ところで、前記の如き
流量制御弁1’においては、該流量制御弁1’の開状態
での冷媒流通時に、高周波の耳障りな騒音が発生するす
ることがあり、問題となっている。In the flow control valve 1 'as described above, high-frequency harsh noise may be generated when the refrigerant flows while the flow control valve 1' is open. It is a problem.
【0015】前記流量制御弁1’の暖房運転時には、導
管64側から冷媒が流入して流体入出口22から前記弁
室21に入り、該弁室21から前記流体通路孔23を経
て前記導管65に流れるものであり、前記流体通路孔2
3の冷媒出口側に整流用円錐口23cが形成されている
関係もあって、さほど問題となるような騒音は生じない
が、冷媒が暖房運転時とは逆方向に流れる冷房運転時に
は、前記の如き耳障りな騒音が発生する場合がある。During the heating operation of the flow control valve 1 ', refrigerant flows in from the conduit 64 side, enters the valve chamber 21 from the fluid inlet / outlet 22, and passes from the valve chamber 21 through the fluid passage hole 23 to the conduit 65. Flow through the fluid passage hole 2
There is also a relationship that the rectifying conical port 23c is formed on the refrigerant outlet side of No. 3 and there is no such a significant noise, but during the cooling operation in which the refrigerant flows in the opposite direction to the heating operation, the above-mentioned condition is obtained. Such unpleasant noise may occur.
【0016】即ち、本出願の発明者等の研究によれば、
前記騒音の発生は、前記冷媒が、前記流量制御弁を通過
する間の容積変化、即ち、前記冷媒が通過する、導管6
5、流体通路孔23、弁室21、流体入出口22、及
び、導管64の各断面積の変化に起因して発生する流れ
の乱れが騒音発生の一要因となることが確認された。ま
た、前記冷媒の流通経路での容積変化部分での流通抵抗
も前記騒音の一要因となることが明かになった。That is, according to the study by the inventors of the present application,
The generation of the noise is caused by a change in volume while the refrigerant passes through the flow control valve, that is, the conduit 6 through which the refrigerant passes.
5. It was confirmed that the turbulence of the flow generated due to the change in the cross-sectional area of each of the fluid passage hole 23, the valve chamber 21, the fluid inlet / outlet 22, and the conduit 64 was one of the causes of noise generation. Further, it has been clarified that the flow resistance in the volume change portion of the flow path of the refrigerant also contributes to the noise.
【0017】本発明は、このような問題に鑑みてなされ
たもので、その目的とするところは、冷媒等の流体の弁
体部の通過時の通過各断面の変化に起因する耳障りな騒
音を効果的に低減することのできる流量制御弁を提供す
ることにある。The present invention has been made in view of such a problem, and an object of the present invention is to reduce harsh noise caused by a change in each cross section of a fluid such as a refrigerant passing through a valve body. An object of the present invention is to provide a flow control valve that can be effectively reduced.
【0018】[0018]
【課題を解決するための手段】前記の目的を達成すべ
く、本発明に係る流量制御弁は、空調機の冷凍サイクル
に冷媒膨張弁として好適なものであって、基本的には、
弁室を有する弁本体と該弁室内を軸方向に移動可能な弁
軸とを備え、前記弁本体が弁座付きの流体通路孔と流体
入出口とを有し、前記流体入出口の流体流通断面積を、
前記弁室と前記弁棒との間の環状空間の流体流通断面積
と略同じくしたことを特徴としている。In order to achieve the above object, a flow control valve according to the present invention is suitable as a refrigerant expansion valve for a refrigeration cycle of an air conditioner.
A valve body having a valve chamber and a valve shaft movable axially in the valve chamber; the valve body having a fluid passage hole with a valve seat and a fluid inlet / outlet; Area
The fluid flow cross section of the annular space between the valve chamber and the valve stem is substantially the same.
【0019】更に、本発明に係る流量制御弁は、前記流
体通路孔の流体流通断面積を、前記弁室と前記弁棒との
間の環状空間の流体流通断面積の略0.3倍としたこと
を特徴としている。Further, in the flow control valve according to the present invention, the fluid flow cross-sectional area of the fluid passage hole may be approximately 0.3 times the fluid flow cross-sectional area of the annular space between the valve chamber and the valve rod. It is characterized by doing.
【0020】また、本発明の流量制御弁の好ましい具体
的な態様としては、前記流体通路孔が、その下端開口部
をR状に面取りし、更に、前記弁体の下部先端が、前記
流体通路孔の孔内に配置されていることを特徴としてい
る。このような構成とされた本発明の流量制御弁におい
ては、冷房運転時に、室外機から導管を介して流入した
冷媒等の流体が、その流通通路が絞られた断面積の小さ
い流体通路孔に流入し、該流体通路孔から断面積の拡大
した前記弁室の環状空間内に膨張噴出され、更に該環状
空間と略等しい断面積の流体入出口を介して該流体入出
口の断面積よりも断面積の大きい導管に入り、該導管を
介して室内熱交換機(室内エバポレータ)へと導かれ
る。In a preferred specific embodiment of the flow control valve according to the present invention, the fluid passage hole has an R-shaped chamfered lower end opening, and the lower end of the valve body is provided with the fluid passage. It is characterized in that it is arranged in the hole of the hole. In the flow control valve of the present invention having such a configuration, during the cooling operation, the fluid such as the refrigerant that has flowed in from the outdoor unit via the conduit flows into the fluid passage hole having a small cross-sectional area whose flow passage is narrowed. Flows into the annular space of the valve chamber having an enlarged cross-sectional area from the fluid passage hole, and is further expanded through the fluid inlet and outlet having a cross-sectional area substantially equal to that of the annular space. It enters a conduit having a large cross-sectional area and is led to an indoor heat exchanger (indoor evaporator) via the conduit.
【0021】さらに、本発明の流量制御弁は、前記流体
通路孔の断面積と弁室の環状空間の断面積との比を略
0.3倍として、流体入出口の断面積と前記弁室の断面
積との比を略同じにしたので、流体通路孔からの膨張後
の冷媒が弁室内で拡散される割合が抑制されると共に、
該弁室から流体入出口への流入においても、ほぼその容
積変更がない状態としたので、その流通過程で不必要な
冷媒の移動運動が抑制されることとなり、乱流等による
渦の発生が抑えられて剥離による圧力変動が生じ難くさ
なされ、その結果として、高周波の耳障りな騒音が低減
される。Further, in the flow control valve according to the present invention, the ratio of the cross-sectional area of the fluid passage hole to the cross-sectional area of the annular space of the valve chamber is set to approximately 0.3 times, and the cross-sectional area of the fluid inlet / outlet and the valve chamber are adjusted. Since the ratio with the cross-sectional area is substantially the same, the rate at which the refrigerant expanded from the fluid passage hole is diffused in the valve chamber is suppressed, and
Even when the fluid flows from the valve chamber to the fluid inlet / outlet, the volume does not substantially change, so that unnecessary movement of the refrigerant in the flow process is suppressed, and vortex generation due to turbulence and the like is suppressed. It is suppressed and pressure fluctuation due to peeling is less likely to occur, and as a result, high-frequency harsh noise is reduced.
【0022】また、前記流体通路孔の下端部をR状に面
取りしたので、冷房運転時に前記導管から流量制御弁内
に流入する冷媒が、前記流体通路孔の下端部部分、及
び、前記弁体の先端で、その流れを乱されることがな
く、層流状に流入されることで、前記騒音の発生原因と
なる渦・乱流を生じ難くしている。Also, since the lower end of the fluid passage hole is chamfered in an R shape, the refrigerant flowing into the flow control valve from the conduit during the cooling operation is supplied to the lower end portion of the fluid passage hole and the valve body. At the tip of the nozzle, the flow is not disturbed, but flows in a laminar flow, so that eddies and turbulent flows which cause the noise are hardly generated.
【0023】更にまた、前記弁体の先端を、前記流体通
路孔の孔の内部に位置するように配置したので、前記流
体通路孔内に冷媒が導かれた後に、該冷媒が前記弁体の
先端に接触することになり、該先端が前記流体通路孔の
下端よりも更に下方に延びて突出状になっているものに
比べて、該先端部分での冷媒の渦・乱流等の発生を減少
させることができる。Furthermore, since the distal end of the valve body is disposed so as to be located inside the hole of the fluid passage hole, after the refrigerant is guided into the fluid passage hole, the refrigerant is removed from the valve body. As a result, the vortex, turbulence, etc. of the refrigerant at the front end portion are reduced, as compared with a case in which the front end extends further below the lower end of the fluid passage hole and projects. Can be reduced.
【0024】[0024]
【発明の実施の形態】以下、本発明の流量制御弁の一実
施形態を、図面を参照しながら詳細に説明する。該実施
形態を説明するに当たって、前記従来例と同一機能を奏
するものは、同じ符号を付して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the flow control valve of the present invention will be described below in detail with reference to the drawings. In describing the embodiment, components having the same functions as those of the conventional example will be denoted by the same reference numerals.
【0025】図1は、本発明に係る流量制御弁1の一実
施形態を示している。図示実施形態の流量制御弁1は、
ヒートポンプ式空調機の冷凍サイクルに膨張弁として組
み込まれて使用されるもので、基本的には、ステッピン
グモータ10と、弁本体20と、昇降軸35及び弁軸3
0と、を具備しており、前記昇降軸35を前記ステッピ
ングモータ10により回転駆動してねじ送りにより昇降
させ、それに伴って昇降する弁軸30で前記弁本体20
に形成された流体通路孔(オリフィス)23を開閉する
(開口面積を変化させる)ことにより流量を制御する。FIG. 1 shows an embodiment of a flow control valve 1 according to the present invention. The flow control valve 1 of the illustrated embodiment includes:
It is used by being incorporated as an expansion valve in a refrigeration cycle of a heat pump type air conditioner, and basically includes a stepping motor 10, a valve body 20, an elevating shaft 35 and a valve shaft 3
And the lift shaft 35 is rotated by the stepping motor 10 to be moved up and down by screw feed, and the valve shaft 20 is moved up and down with the valve shaft 20 to move up and down.
The flow rate is controlled by opening and closing (changing the opening area) the fluid passage hole (orifice) 23 formed in the hole.
【0026】これを詳しく述べるに、前記ステッピング
モータ10は、前記弁本体20に蓋状部材18を介して
連結された逆立有底円筒状のキャン11の外周部に嵌装
されたステータヨーク13と、ボビン14と、このボビ
ン14に巻装され、外部から通電される巻線15と、前
記ステータヨーク13、ボビン14及び巻線15の外周
を鋳包むモーターモールド12と、前記キャン11の内
部に配置され、後述するスリーブ40に固定されたボン
ド磁石よりなるロータ39と、を備えて構成されてい
る。More specifically, the stepping motor 10 includes a stator yoke 13 fitted on an outer peripheral portion of an inverted bottomed cylindrical can 11 connected to the valve body 20 via a lid 18. , A bobbin 14, a winding 15 wound around the bobbin 14 and energized from the outside, a motor mold 12 for casting the outer circumference of the stator yoke 13, the bobbin 14 and the winding 15, and an inside of the can 11. And a rotor 39 composed of a bonded magnet fixed to a sleeve 40 described later.
【0027】前記モータモールド12、ステータヨーク
13、ボビン14及び巻線15は、キャン11の外周に
一体的に嵌装され、それらは、モータモールド12にビ
ス16で取り付けられた押圧係止具17の球冠状の係止
凸部17aを前記キャン11の外周に例えば90度間隔
で4箇所設けられた凹部19のいずれかに嵌合させるこ
とにより位置決め及び抜止め行うようになっている。The motor mold 12, the stator yoke 13, the bobbin 14, and the winding 15 are integrally fitted around the outer periphery of the can 11, and they are pressed and fixed to the motor mold 12 by screws 16. By fitting the spherical crown-shaped locking projection 17a into one of four recesses 19 provided on the outer periphery of the can 11 at, for example, 90-degree intervals, positioning and retaining are performed.
【0028】前記弁本体20は、減圧機構部となる弁室
21を有し、該弁室21の左側部に導管64が接続され
る流体入出口22が設けられ、その底面部に導管65が
接続されるとともに、前記弁軸30により開閉される流
体通路孔23には、弁座24が形成されている。一方、
前記弁本体20の弁室21の上方には、内周部に雌ねじ
部27が形成されたガイドブッシュ26が固定されてい
る。The valve body 20 has a valve chamber 21 serving as a pressure reducing mechanism. A fluid inlet / outlet 22 to which a conduit 64 is connected is provided on the left side of the valve chamber 21, and a conduit 65 is provided on the bottom of the valve chamber 21. A valve seat 24 is formed in the fluid passage hole 23 that is connected and opened and closed by the valve shaft 30. on the other hand,
Above the valve chamber 21 of the valve body 20, a guide bush 26 having an internal thread 27 formed on the inner periphery is fixed.
【0029】前記ガイドブッシュ26の雌ねじ部27に
は、弁軸ホルダ28の外周に形成された雄ねじ部29が
螺合せしめられ、この弁軸ホルダ28の内周下部に前記
弁軸30が摺動可能に嵌挿され、また、前記弁軸ホルダ
28の下部には前記弁軸30の上部フランジを受けるカ
ラー34が圧入固定されていて、前記弁軸30は、前記
弁軸ホルダ28内に縮装されたコイルスプリング32に
より常時下方に付勢されている。A male screw portion 29 formed on the outer periphery of the valve shaft holder 28 is screwed into the female screw portion 27 of the guide bush 26, and the valve shaft 30 slides on the lower inner peripheral portion of the valve shaft holder 28. A collar 34 is press-fitted and fixed to the lower part of the valve shaft holder 28 to receive the upper flange of the valve shaft 30, and the valve shaft 30 is shrunk in the valve shaft holder 28. The coil spring 32 is constantly urged downward.
【0030】前記弁軸ホルダ28の上部には、昇降軸3
5がそれと一体的に回転移動できるように内嵌固定され
ており、前記弁軸ホルダ28の上部外周には、凸状の可
動側ストッパ45が下向きに突設された合成樹脂製のス
リーブ40が一体的に回転移動できるように成形されて
いる。前記昇降軸35の上部には、コイルスプリング3
6が装填されている。該コイルスプリング36は、ロー
タ39が回転(逆転)せしめられて昇降軸35やスリー
ブ40等が前記雌ねじ部27と雄ねじ部29との螺合に
よるねじ送りにより上昇せしめられて、前記ねじ部2
7,29の螺合が外れた場合に、前記弁軸ホルダ28を
ガイドブッシュ26側に押圧して再螺合し易くするため
のものである。An elevating shaft 3 is provided above the valve shaft holder 28.
5 is fixed inside so as to be rotatable integrally therewith, and a synthetic resin sleeve 40 having a convex movable-side stopper 45 protruding downward is provided on the outer periphery of the upper part of the valve shaft holder 28. It is formed so as to be able to rotate integrally. A coil spring 3 is provided above the elevating shaft 35.
6 are loaded. When the rotor 39 is rotated (reversely rotated), the elevating shaft 35, the sleeve 40, and the like are raised by screwing the female screw portion 27 and the male screw portion 29 into the coil spring 36.
When the screws 7 and 29 are disengaged, the valve shaft holder 28 is pressed toward the guide bush 26 to facilitate re-engaging.
【0031】前記ガイドブッシュ26の上部外周には、
前記可動側ストッパ45が衝接せしめられる凸状の固定
側ストッパ55が上向きに突設された合成樹脂製の固定
受け座50が成形されている。図2と図3に詳細に示さ
れているように、前記流体通路孔23は、同一内径とさ
れ、上部の前記弁室21に面して弁座24を備えると共
に、下部端の周囲がR状面取り部23aとされている。On the outer periphery of the upper part of the guide bush 26,
A fixed receiving seat 50 made of a synthetic resin and having a convex fixed-side stopper 55 to which the movable-side stopper 45 abuts is formed to project upward. As shown in detail in FIGS. 2 and 3, the fluid passage hole 23 has the same inner diameter, is provided with a valve seat 24 facing the upper valve chamber 21, and has a lower end around R. A chamfer 23a is provided.
【0032】また、前記流体通路孔23を開閉する弁軸
30の下端部の弁体31は、前記弁座24に着座して前
記流体通路孔23を閉じる比較的短い先細り逆円錐台状
の円錐着座面部31aとその下側に連なり比較的長い先
細り円錐台状の円錐面部31bとが形成されている。The valve body 31 at the lower end of the valve shaft 30 for opening and closing the fluid passage hole 23 is a relatively short tapered inverted frustoconical cone seated on the valve seat 24 and closing the fluid passage hole 23. A seat surface 31a and a relatively long tapered frustoconical conical surface portion 31b connected to the lower side thereof are formed.
【0033】そして、図3(a)に示されているよう
に、弁本体20に形成されている流体入出口22の直径
をD1、流体通路孔23の直径をD2、弁室21の直径を
D3とし、弁棒30の直径をD4とすると、図3(b)に
示されているように、前記流体入出口の断面積A1は、
A1=πD1 2/4、流体通路孔23の断面積A2は、A2
=πD2 2/4、弁室21の断面積から弁棒30の断面積
を引いた前記弁室21の環状空間21aの断面積A
3は、A3=π/4・(D3 2−D4 2)となる。As shown in FIG. 3A, the diameter of the fluid inlet / outlet 22 formed in the valve body 20 is D 1 , the diameter of the fluid passage hole 23 is D 2 , and the valve chamber 21 has a diameter of D 2 . Assuming that the diameter is D 3 and the diameter of the valve stem 30 is D 4 , as shown in FIG. 3B, the cross-sectional area A 1 of the fluid inlet / outlet is:
A 1 = πD 1 2/4 , the cross-sectional area A 2 of the fluid passage hole 23, A 2
= ΠD 2 2/4, the cross-sectional area of the annular space 21a of the valve chamber 21 minus the cross-sectional area of the valve stem 30 from the cross-sectional area of the valve chamber 21 A
3 is a A 3 = π / 4 · ( D 3 2 -D 4 2).
【0034】また、導管64の断面積をA4とし、導管
65の断面積をA5とし、本実施形態の流量制御弁1の
冷媒等の流体が通過する前記各部の断面積A1〜A5の相
対的な大きさの比を概念的に表すと、図4(a)のよう
になる。即ち、二つの導管64、65は一番断面積が大
きく、流体通路孔23は一番断面積が小さい。流体流出
口30の断面積A1と弁室21の環状空間21aの断面
積A3とは、略等しく(A1≒A3)し、流体通路孔23
の断面積A2を前記環状空間の断面積A3の略三割(A2
≒0.3A3)としている。The cross-sectional area of the conduit 64 is A 4 , the cross-sectional area of the conduit 65 is A 5, and the cross-sectional areas A 1 -A of the respective parts through which the fluid such as the refrigerant of the flow control valve 1 of the present embodiment passes. FIG. 4A conceptually shows the relative size ratio of 5 . That is, the two conduits 64 and 65 have the largest sectional area, and the fluid passage hole 23 has the smallest sectional area. The sectional area A 1 of the fluid outlet 30 and the sectional area A 3 of the annular space 21 a of the valve chamber 21 are substantially equal (A 1 ≒ A 3 ), and the fluid passage hole 23
Approximately 30 percent of the cross-sectional area of the cross-sectional area A 2 the annular space A 3 (A 2
≒ 0.3A 3 ).
【0035】このような構成の流量制御弁1において、
前記巻線15を一方向に通電励磁すると、ロータ39、
スリーブ40、昇降軸35、弁軸ホルダ28等が一体的
に回転(モータ10が右回りに正転)、前記雌ねじ部2
7と雄ねじ部29との螺合によるねじ送りにより前記弁
軸30が下降せしめられて、前記流体通路孔23の弁座
24に圧接着座し、前記流体通路孔23が閉じられる。In the flow control valve 1 having such a configuration,
When the winding 15 is energized in one direction, the rotor 39,
The sleeve 40, the elevating shaft 35, the valve shaft holder 28, etc. rotate integrally (the motor 10 rotates clockwise forward) integrally,
The valve shaft 30 is lowered by screw feed by screwing the male thread portion 7 with the male thread portion 29, and the valve shaft 30 is pressed and seated on the valve seat 24 of the fluid passage hole 23, and the fluid passage hole 23 is closed.
【0036】前記流体通路孔23が閉じられた時点で
は、前記可動側ストッパ45が固定側ストッパ55に未
だ衝接しておらず、前記弁軸30が前記流体通路孔23
を閉じたまま、前記弁軸ホルダ28等はさらに回転下降
せしめられる。このときの前記弁軸30に対する前記弁
軸ホルダ28の下降量は、前記コイルスプリング32が
圧縮されることにより吸収される。When the fluid passage hole 23 is closed, the movable stopper 45 has not yet come into contact with the fixed stopper 55, and the valve shaft 30 is connected to the fluid passage hole 23.
Is closed, the valve shaft holder 28 and the like are further rotated down. The amount of downward movement of the valve shaft holder 28 with respect to the valve shaft 30 at this time is absorbed by the compression of the coil spring 32.
【0037】その後さらに、前記弁軸ホルダ28等が回
転下降せしめられると、前記可動側ストッパ45が固定
側ストッパ55に衝接し、これにより、前記ロータ39
への通電励磁が続行されていても、前記スリーブ40、
昇降軸35、弁軸ホルダ28等の回転下降運動が強制的
に停止せしめられる。Thereafter, when the valve shaft holder 28 and the like are further rotated down, the movable side stopper 45 abuts against the fixed side stopper 55, whereby the rotor 39 is rotated.
The sleeve 40,
The rotational lowering movement of the elevating shaft 35, the valve shaft holder 28, and the like is forcibly stopped.
【0038】一方、前記巻線15を逆方向に通電励磁す
ると、前記モータ10が逆転向に回転し、前記弁軸30
の円錐着座面部30aが前記円錐受座面部23aから離
れ、前記流体通路孔23が開かれる。On the other hand, when the winding 15 is energized in the reverse direction, the motor 10 rotates in the reverse direction and the valve shaft 30
Is separated from the cone receiving surface portion 23a, and the fluid passage hole 23 is opened.
【0039】ところで、前記した如くの構成の流量制御
弁1を、空調機の冷凍サイクルに膨張弁として組み込ん
だ場合、前記空調機の暖房運転時には、前記弁軸30が
上昇せしめられて前記流体通路孔23が所定開度に開か
れ、冷媒が図の破線矢印で示される如くに、室内熱交換
機(室内コンデンサ)から導管64と流体入出口22と
を介して弁室21の環状空間21aに導入され、該弁室
21から前記流体通路孔23を介して導管65側に導出
され、導管65を介して室外熱交換機に導かれる。When the flow control valve 1 having the above-described structure is incorporated as an expansion valve in a refrigeration cycle of an air conditioner, when the air conditioner is in a heating operation, the valve shaft 30 is raised and the fluid passage is moved. The hole 23 is opened to a predetermined opening, and the refrigerant is introduced into the annular space 21a of the valve chamber 21 from the indoor heat exchanger (indoor condenser) via the conduit 64 and the fluid inlet / outlet 22, as indicated by the dashed arrow in the drawing. Then, it is led out from the valve chamber 21 through the fluid passage hole 23 to the conduit 65 side, and is guided to the outdoor heat exchanger via the conduit 65.
【0040】また、前記空調機の冷房運転時には、前記
弁軸30が上昇せしめられて前記流体通路孔23が所定
開度に開かれ、冷媒が図の実線矢印で示される如くに、
前記暖房運転時とは逆に、室外熱交換機から導管65及
び流体通路孔23を介して弁室21の環状空間21aに
導入されてそこで膨張減圧され、該弁室21から前記流
体入出口22と導管64とを介して室内熱交換機(室内
エバポレータ)に導かれる。During the cooling operation of the air conditioner, the valve shaft 30 is raised to open the fluid passage hole 23 to a predetermined opening degree, and the refrigerant flows as shown by a solid arrow in the drawing.
Contrary to the heating operation, the air is introduced from the outdoor heat exchanger into the annular space 21a of the valve chamber 21 through the conduit 65 and the fluid passage hole 23, where the pressure is expanded and reduced. It is led to the indoor heat exchanger (indoor evaporator) via the conduit 64.
【0041】図4(a)に示されているように、本実施
形態の流量制御弁1は、その冷房運転時には、導管65
から流入した冷媒が、その流通通路を絞られて断面積の
小さい流体通路孔23に流入し、該流体通路孔23から
断面積の拡大した前記弁室21の環状空間21a内に膨
張減圧され、該環状空間21aと略等しい断面積の流体
入出口22を介して該流体入出口22の断面積よりも断
面積の大きい導管64に導かれる。As shown in FIG. 4 (a), the flow control valve 1 of the present embodiment has a conduit 65 during the cooling operation.
Refrigerant flows from the fluid passage hole 23 having a small cross-sectional area by narrowing the flow passage thereof, and is expanded and decompressed into the annular space 21a of the valve chamber 21 having an enlarged cross-sectional area from the fluid passage hole 23, Through the fluid inlet / outlet 22 having a sectional area substantially equal to that of the annular space 21a, the fluid is guided to a conduit 64 having a larger sectional area than the fluid inlet / outlet 22.
【0042】本実施形態の前記流量制御弁1を前記冷媒
が通過する各部分の断面積を、図4(b)に示されてい
る従来の流量制御弁の断面積と比較してみれば理解され
るように、本実施形態の流量制御弁1は、流体通路孔2
3の断面積A2と前記弁室21の環状空間21aの断面
積A3との比をA2≒0.3A3として、従来の流量制御
弁の流体通路孔23の断面積A2と前記弁室21の環状
空間21aの断面積A3との比よりも小さくすると共
に、本実施形態の流量制御弁1は、前記流体入出口22
の断面積A1と前記弁室21の環状空間21aの断面積
A3との比をA1≒A3として、従来の流量制御弁が流体
入出口22と弁室21の環状空間との断面積の比をA1
<A3として弁室21から流体入出口22への冷媒の流
れを絞ったのに比べてその絞りを無くしている。The cross-sectional area of each part through which the refrigerant passes through the flow control valve 1 of the present embodiment can be understood by comparing with the cross-sectional area of the conventional flow control valve shown in FIG. As described above, the flow control valve 1 according to the present embodiment includes a fluid passage hole 2
3 the cross-sectional area A 2 the ratio of the sectional area of the annular space 21a A 3 of the valve chamber 21 as A 2 ≒ 0.3 A 3, the cross-sectional area A 2 of the fluid passage hole 23 of a conventional flow control valve wherein The flow rate control valve 1 of the present embodiment is smaller than the cross-sectional area A 3 of the annular space 21 a of the valve chamber 21.
Cross sectional area A 1 and the ratio of the cross-sectional area A 3 of the annular space 21a of the valve chamber 21 as A 1 ≒ A 3, a conventional annular space of the flow control valve is the fluid inlet and outlet 22 and the valve chamber 21 The area ratio is A 1
<Thereby eliminating the diaphragm as compared to focused flow of the refrigerant from the valve chamber 21 as A 3 to the fluid inlet and outlet 22.
【0043】このため、本実施形態の流量制御弁1は、
従来の流量制御弁に比べて、膨張後の冷媒の弁室21内
での減圧拡散が抑制されると共に、該弁室21から流体
入出口22への流入においても、その容積変更がほとん
どない状態としたので、その流通過程での乱流等の不必
要な冷媒の移動運動が抑制され、該抑制作用により、乱
流等による渦の発生が抑えられて剥離による圧力変動が
生じ難くさなされ、その結果として、高周波の耳障りな
騒音が低減される。Therefore, the flow control valve 1 of the present embodiment is
Compared with the conventional flow control valve, the refrigerant after expansion is suppressed from being decompressed and diffused in the valve chamber 21 and the volume of the refrigerant is hardly changed even when flowing from the valve chamber 21 to the fluid inlet / outlet 22. Therefore, unnecessary movement of the refrigerant such as turbulence in the flow process is suppressed, and the suppression action suppresses the generation of vortices due to turbulence and the like, so that pressure fluctuation due to separation is less likely to occur, As a result, high-frequency harsh noise is reduced.
【0044】また、本実施形態の流量制御弁1は、前記
流体通路孔23の下端部23aをR状に面取りしてある
ので、冷房運転時に前記導管65から流量制御弁1内に
流入する冷媒が、前記流体通路孔23の下端部23a部
分、その流れを乱されることがなく、層流状に流入され
ることで、前記騒音の発生原因となる渦・乱流を生じ難
くしている。Further, in the flow control valve 1 of the present embodiment, since the lower end 23a of the fluid passage hole 23 is chamfered in an R shape, the refrigerant flowing into the flow control valve 1 from the conduit 65 during the cooling operation. Is flowed in a laminar manner without disturbing the flow of the lower end portion 23a of the fluid passage hole 23, so that eddies and turbulent flows which cause the noise are hardly generated. .
【0045】更に、前記弁体31の先端31cを、前記
流体通路孔23の孔の内部に位置するように配置したの
で、前記流体通路孔23内に冷媒が導かれた後に、該冷
媒が前記弁体31の先端31cに接触することになり、
該先端31cが前記流体通路孔23の下端よりも更に下
方に延びて突出状になっているものに比べて、該先端3
1c部分での冷媒の渦・乱流等の発生を減少させること
ができる。Further, since the distal end 31c of the valve element 31 is disposed so as to be located inside the fluid passage hole 23, after the coolant is introduced into the fluid passage hole 23, the coolant is discharged from the fluid passage hole 23. It comes into contact with the tip 31c of the valve body 31,
The distal end 31c extends further below the lower end of the fluid passage hole 23 and is protruded, as compared with the distal end 31c.
The generation of vortex, turbulence and the like of the refrigerant in the portion 1c can be reduced.
【0046】なお、上述の実施形態では、流量制御弁1
を空調機の冷凍サイクルに組み込まれる膨張弁として使
用した場合を説明したが、本発明の流量制御弁は膨張弁
としてだけではなく、他の弁として使用する場合にも同
様に騒音の低減化を図ることができる。In the above embodiment, the flow control valve 1
Was described as an expansion valve incorporated in a refrigeration cycle of an air conditioner.However, the flow control valve of the present invention is not only used as an expansion valve but also reduces noise when used as another valve. Can be planned.
【0047】また、前記実施形態においては、弁軸がモ
ータによりネジ送りで昇降せしめられるようになってい
るが、それに限られる訳ではなく、弁軸を軸方向に移動
させて流体通路孔を開閉するようにしたものであれば、
同様な作用効果が得られる。In the above embodiment, the valve shaft is moved up and down by screw feed by a motor. However, the present invention is not limited to this. The valve shaft is moved in the axial direction to open and close the fluid passage hole. If you choose to do
Similar effects can be obtained.
【0048】更に、前記実施形態においては、従来の流
量制御弁に比べて弁室21の容積を小さくするために、
弁本体20の肉厚を厚くすることで、対処しているが、
従来の流量制御弁の弁室内に別体のカラー状の弁室容積
調整体を挿入配置することで対処することもできる。Further, in the above embodiment, in order to reduce the volume of the valve chamber 21 as compared with the conventional flow control valve,
This is addressed by increasing the wall thickness of the valve body 20,
It can also be dealt with by inserting and disposing a separate collar-shaped valve chamber volume adjuster in the valve chamber of the conventional flow control valve.
【0049】[0049]
【発明の効果】以上の説明から理解されるように、本発
明の流量制御弁は、冷媒の流通過程において、断面積の
変化を少なくしたので、冷媒等の流体の乱流等による渦
の発生を抑え、冷媒の剥離等に基づく圧力変動を生じ難
くして、冷房時に起こる高周波の耳障りな騒音を低減す
ることができる。As will be understood from the above description, the flow control valve of the present invention has a reduced cross-sectional area change in the course of the flow of the refrigerant, so that the vortex is generated due to the turbulent flow of the fluid such as the refrigerant. , And pressure fluctuations due to the separation of the refrigerant are less likely to occur, and high-frequency harsh noise generated during cooling can be reduced.
【図1】本発明に係る流量制御弁の一実施形態を示す縦
断面図。FIG. 1 is a longitudinal sectional view showing an embodiment of a flow control valve according to the present invention.
【図2】図1に示される流量制御弁の弁本体と弁軸部の
拡大断面図。FIG. 2 is an enlarged sectional view of a valve body and a valve shaft of the flow control valve shown in FIG. 1;
【図3】図2に示される流量制御弁の弁本体と弁軸部の
斜視概念図。FIG. 3 is a perspective conceptual view of a valve body and a valve shaft of the flow control valve shown in FIG. 2;
【図4】流量制御弁の弁本体の流体流通部分の断面積の
概念図であって、(a)は、本実施形態の流量制御弁の
断面積の概念図であり、図(b)は、従来の流量制御弁
の断面積の概念図。FIG. 4 is a conceptual diagram of a cross-sectional area of a fluid flow portion of a valve body of the flow control valve, where (a) is a conceptual diagram of a cross-sectional area of the flow control valve of the present embodiment, and FIG. FIG. 1 is a conceptual diagram of a cross-sectional area of a conventional flow control valve.
【図5】従来の流量制御弁の弁本体と弁軸部の拡大断面
図。FIG. 5 is an enlarged sectional view of a valve body and a valve shaft of a conventional flow control valve.
1…流量制御弁、10…ステッピングモータ、20…弁
本体、21…弁室、21a…環状空間、22…流体入出
口、23…流体通路孔、24…弁座、30…弁軸、31
…弁体 31c…弁体先端、64…導管、65…導管DESCRIPTION OF SYMBOLS 1 ... Flow control valve, 10 ... Stepping motor, 20 ... Valve body, 21 ... Valve chamber, 21a ... Annular space, 22 ... Fluid inlet / outlet, 23 ... Fluid passage hole, 24 ... Valve seat, 30 ... Valve shaft, 31
... Valve element 31c ... Valve element tip, 64 ... Conduit, 65 ... Conduit
Claims (6)
に移動可能な弁軸とを備え、前記弁本体が弁座付きの流
体通路孔と流体入出口とを有する流量制御弁において、 前記流体入出口の流体流通断面積は、前記弁室と前記弁
棒との間の環状空間の流体流通断面積と略同じくしたこ
とを特徴とする流量制御弁。1. A flow control valve comprising: a valve body having a valve chamber; and a valve shaft movable axially in the valve chamber, wherein the valve body has a fluid passage hole with a valve seat and a fluid inlet / outlet. The flow control valve according to claim 1, wherein a fluid flow cross-sectional area of the fluid inlet / outlet is substantially equal to a fluid flow cross-sectional area of an annular space between the valve chamber and the valve rod.
に移動可能な弁軸とを備え、前記弁本体が弁座付きの流
体通路孔と流体入出口とを有する流量制御弁において、 前記流体通路孔の流体流通断面積は、前記弁室と前記弁
棒との間の環状空間の流体流通断面積の略0.3倍とし
たことを特徴とする流量制御弁。2. A flow control valve comprising: a valve body having a valve chamber; and a valve shaft movable axially in the valve chamber, wherein the valve body has a fluid passage hole with a valve seat and a fluid inlet / outlet. The flow control valve according to claim 1, wherein a fluid flow cross-sectional area of the fluid passage hole is approximately 0.3 times a fluid flow cross-sectional area of an annular space between the valve chamber and the valve rod.
記弁室と前記弁棒との間の環状空間の流体流通断面積と
略同じくしたことを特徴とする請求項2に記載の流量制
御弁。3. The flow rate according to claim 2, wherein a fluid flow cross-sectional area of the fluid inlet / outlet is substantially equal to a fluid flow cross-sectional area of an annular space between the valve chamber and the valve stem. Control valve.
状に面取りしたことを特徴とする請求項1乃至3のいず
れか一項に記載の流量制御弁。4. The fluid passage hole has an opening at the lower end of the fluid passage hole.
The flow control valve according to any one of claims 1 to 3, wherein the flow control valve is chamfered in a shape.
の孔内に配置されていることを特徴とする請求項1乃至
4のいずれか一項に記載の流量制御弁。5. The flow control valve according to claim 1, wherein a lower end of the valve body is disposed in a hole of the fluid passage hole.
して組み込まれていることを特徴とする請求項1乃至5
のいずれか一項に記載の流量制御弁。6. A refrigerant cycle expansion valve incorporated in a refrigeration cycle of an air conditioner.
The flow control valve according to any one of the above.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20019997A JP4043076B2 (en) | 1997-07-25 | 1997-07-25 | Flow control valve |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20019997A JP4043076B2 (en) | 1997-07-25 | 1997-07-25 | Flow control valve |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH1137306A true JPH1137306A (en) | 1999-02-12 |
| JP4043076B2 JP4043076B2 (en) | 2008-02-06 |
Family
ID=16420456
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP20019997A Expired - Lifetime JP4043076B2 (en) | 1997-07-25 | 1997-07-25 | Flow control valve |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4043076B2 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6729158B2 (en) | 2002-02-07 | 2004-05-04 | Denso Corporation | Ejector decompression device with throttle controllable nozzle |
| US6966199B2 (en) | 2002-07-09 | 2005-11-22 | Denso Corporation | Ejector with throttle controllable nozzle and ejector cycle using the same |
| JP2008215813A (en) * | 2008-06-13 | 2008-09-18 | Daikin Ind Ltd | Expansion valve and refrigeration system |
| JP2015086996A (en) * | 2013-11-01 | 2015-05-07 | 株式会社不二工機 | Electrically driven valve |
| JP2019019983A (en) * | 2018-09-25 | 2019-02-07 | 株式会社不二工機 | Electrically driven valve |
| JP2022187265A (en) * | 2021-06-07 | 2022-12-19 | 株式会社不二工機 | electric valve |
-
1997
- 1997-07-25 JP JP20019997A patent/JP4043076B2/en not_active Expired - Lifetime
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6729158B2 (en) | 2002-02-07 | 2004-05-04 | Denso Corporation | Ejector decompression device with throttle controllable nozzle |
| US6966199B2 (en) | 2002-07-09 | 2005-11-22 | Denso Corporation | Ejector with throttle controllable nozzle and ejector cycle using the same |
| JP2008215813A (en) * | 2008-06-13 | 2008-09-18 | Daikin Ind Ltd | Expansion valve and refrigeration system |
| JP2015086996A (en) * | 2013-11-01 | 2015-05-07 | 株式会社不二工機 | Electrically driven valve |
| JP2019019983A (en) * | 2018-09-25 | 2019-02-07 | 株式会社不二工機 | Electrically driven valve |
| JP2022187265A (en) * | 2021-06-07 | 2022-12-19 | 株式会社不二工機 | electric valve |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4043076B2 (en) | 2008-02-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110873218B (en) | Electric valve and refrigeration cycle system | |
| JP6968768B2 (en) | Electric valve and refrigeration cycle system | |
| JP7409982B2 (en) | Electric valve and refrigeration cycle system | |
| JP2004340260A (en) | Flow control valve | |
| JP6359593B2 (en) | Motorized valve | |
| JP7650332B2 (en) | Motor-operated valve and refrigeration cycle system | |
| JP7474892B2 (en) | Motor-operated valve and refrigeration cycle system | |
| JPH1137311A (en) | Motor-operated valve | |
| JPH1137306A (en) | Flow control valve | |
| JP7383774B2 (en) | Electric valve and refrigeration cycle system | |
| CN111102366A (en) | Electronic expansion valve | |
| CN110836562A (en) | Electronic expansion valve and air conditioning system using same | |
| JP7651657B2 (en) | Motor-operated valve | |
| JP7581461B2 (en) | Motor-operated valve and refrigeration cycle system | |
| JP2003097754A (en) | Motor operated valve | |
| JP2000193101A (en) | Flow control valve | |
| JP7264975B2 (en) | Electric valve and refrigeration cycle system | |
| WO2000029771A1 (en) | Valve | |
| JP7675256B2 (en) | Motor-operated valve and refrigeration cycle system | |
| JP7271486B2 (en) | Electric valve and refrigeration cycle system | |
| JP7455410B2 (en) | Motorized valves and how to assemble them | |
| JPH0893945A (en) | Electric flow control valve | |
| JPH0235089Y2 (en) | ||
| CN113883325A (en) | Flow control valve and refrigeration cycle system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040628 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061214 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070625 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070724 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070925 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071023 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071113 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111122 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121122 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131122 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |