[go: up one dir, main page]

JPH1140858A - Light emitting diode and method of forming the same - Google Patents

Light emitting diode and method of forming the same

Info

Publication number
JPH1140858A
JPH1140858A JP19277997A JP19277997A JPH1140858A JP H1140858 A JPH1140858 A JP H1140858A JP 19277997 A JP19277997 A JP 19277997A JP 19277997 A JP19277997 A JP 19277997A JP H1140858 A JPH1140858 A JP H1140858A
Authority
JP
Japan
Prior art keywords
led chip
light
emitting diode
light emitting
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19277997A
Other languages
Japanese (ja)
Other versions
JP3617587B2 (en
Inventor
Yoshinori Shimizu
義則 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP19277997A priority Critical patent/JP3617587B2/en
Publication of JPH1140858A publication Critical patent/JPH1140858A/en
Application granted granted Critical
Publication of JP3617587B2 publication Critical patent/JP3617587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45169Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8515Wavelength conversion means not being in contact with the bodies

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

(57)【要約】 (修正有) 【課題】LEDチップからの発光を変換して発光させる
粒子状蛍光物質を有し全方位における色調むらを低減さ
せた発光ダイオード及びその形成方法に関する。 【解決手段】支持体上に配置されたLEDチップ103
と、LEDチップからの発光の少なくとも一部を吸収し
波長変換して発光する粒子状蛍光物質と、を有する発光
ダイオードである。特に、LEDチップ上に配置される
粒子状蛍光物質を有するコーティング部111の厚み
と、LEDチップ上以外の支持体上に配置された粒子状
蛍光物質を有するコーティング部112の厚みと、が略
等しい発光ダイオードである。
(57) [Summary] (Modified) [PROBLEMS] To provide a light emitting diode having a particulate fluorescent substance that converts light emitted from an LED chip to emit light and has reduced color tone unevenness in all directions, and a method of forming the same. An LED chip disposed on a support is provided.
And a particulate fluorescent substance that absorbs at least a part of light emitted from the LED chip and converts the wavelength to emit light. In particular, the thickness of the coating portion 111 having the particulate fluorescent material disposed on the LED chip is substantially equal to the thickness of the coating portion 112 having the particulate fluorescent material disposed on the support other than the LED chip. It is a light emitting diode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、LEDディスプレイ、
バックライト光源、信号機、照光式スイッチ、各種セン
サー及び各種インジケータなどに利用される発光装置に
係わり、特に発光素子からの発光を波長変換して発光可
能な蛍光体を有する発光ダイオードにおいて、発光方
位、色調ムラ及び量産性を改善した発光ダイオード及び
その形成方法に関する。
The present invention relates to an LED display,
The present invention relates to a light emitting device used for a backlight light source, a traffic light, an illuminated switch, various sensors and various indicators, and in particular, in a light emitting diode having a phosphor capable of emitting light by wavelength conversion of light emitted from a light emitting element, a light emitting direction, The present invention relates to a light emitting diode with improved color tone unevenness and mass productivity and a method for forming the same.

【0002】[0002]

【従来技術】発光装置である発光ダイオード(以下、L
EDとも呼ぶ。)は、小型で効率が良く鮮やかな色の発
光をする。また、半導体素子であるため球切れなどの心
配がない。駆動特性に優れ、振動やON/OFF点灯の繰り
返しに強いという特徴を有する。そのため各種インジケ
ータや種々の光源として利用されている。しかしなが
ら、LEDは優れた単色性ピーク波長を有するが故に白
色系などの発光波長を発光することができない。
2. Description of the Related Art Light emitting diodes (hereinafter referred to as L) are light emitting devices.
Also called ED. ) Are small, efficient and emit bright colors. In addition, since it is a semiconductor element, there is no fear of breaking the ball. It has excellent drive characteristics and is resistant to vibration and repeated ON / OFF lighting. Therefore, it is used as various indicators and various light sources. However, LEDs have an excellent monochromatic peak wavelength, and therefore cannot emit light of a wavelength such as white.

【0003】そこで、本出願人は、青色発光ダイオード
と蛍光物質により青色発光ダイオードからの発光を色変
換させて他の色などが発光可能な発光ダイオードとし
て、特開平5−152609号公報、特開平7−993
45号公報などに記載された発光ダイオードを開発し
た。これらの発光ダイオードによって、1種類のLED
チップを用いて白色系や青色LEDチップを用いた緑色
など他の発光色を発光させることができる。
[0003] The applicant of the present invention has proposed a light emitting diode capable of emitting light of another color by converting the color of light emitted from the blue light emitting diode by using a blue light emitting diode and a fluorescent substance. 7-993
No. 45 has developed a light emitting diode. By these light emitting diodes, one kind of LED
Other luminescent colors such as white or green using a blue LED chip can be emitted using the chip.

【0004】具体的には、青色系が発光可能なLEDチ
ップなどをリードフレームの先端に設けられたカップ上
などに配置する。LEDチップは、LEDチップが設け
られたメタルステムやメタルポストとそれぞれ電気的に
接続させる。そして、LEDチップを被覆する樹脂モー
ルド部材中などにLEDチップからの光を吸収し波長変
換する蛍光物質を含有させて形成させてある。青色系の
発光ダイオードと、その発光を吸収し黄色系を発光する
蛍光物質などとを選択することにより、混色を利用して
白色系を発光させることができる。これは、十分な輝度
を発光する白色系発光ダイオードとして利用することが
できる。
[0004] Specifically, an LED chip or the like capable of emitting blue light is arranged on a cup provided at the tip of a lead frame. The LED chip is electrically connected to a metal stem or a metal post provided with the LED chip. Further, a fluorescent substance that absorbs light from the LED chip and converts the wavelength is contained in a resin mold member that covers the LED chip. By selecting a blue light emitting diode and a fluorescent substance that absorbs the emitted light and emits a yellow light, a white light can be emitted by using color mixture. This can be used as a white light emitting diode that emits sufficient luminance.

【0005】[0005]

【発明が解決しようとする課題】しかし、この発光ダイ
オードは、所望通りの色に形成されにくい傾向にある。
発光ダイオードを量産させた場合において、各発光ダイ
オードがそれぞれ所望の色度範囲に形成させることが難
しく歩留まりが低下する傾向にある。また、発光ダイオ
ードの発光観測面において僅かながら色むらを生じると
いう問題がある。
However, this light emitting diode tends to be hardly formed in a desired color.
When the light emitting diodes are mass-produced, it is difficult to form each light emitting diode in a desired chromaticity range, and the yield tends to decrease. Further, there is a problem that color unevenness is slightly generated on a light emission observation surface of the light emitting diode.

【0006】具体的には、発光観測面側から見て発光素
子であるLEDチップが配置された中心部が青色ぽく、
その周囲方向にリング状に黄、緑や赤色ぽい部分が見ら
れる場合がある。人間の色調感覚は、白色において特に
敏感である。そのため、わずかな色調差でも赤ぽい白、
緑色ぽい白、黄色っぽい白等と感じる。
Specifically, when viewed from the light emission observing surface side, the central portion where the LED chip, which is the light emitting element, is arranged is blue,
A yellow, green or reddish portion may be seen in a ring shape in the peripheral direction. Human tone perception is particularly sensitive in white. Therefore, even with a slight color difference, reddish white,
Feel greenish white, yellowish white, etc.

【0007】このような発光観測面を直視することによ
って生ずる色むらは、品質上好ましくないばかりでなく
表示装置に利用したときの表示面における色むらや、光
センサーなど精密機器における誤差を生ずることにもな
る。さらに、より厳しい条件として高輝度長時間の使用
においては発光ダイオードの輝度が低下する傾向があ
る。本発明は上記問題点を解決し発光観測面における色
調むらや発光ダイオードごとのバラツキが極めて少な
く、量産性の良い発光ダイオードを形成させることにあ
る。
[0007] Such color unevenness caused by looking directly at the light emission observation surface is not only unfavorable in quality, but also causes color unevenness on the display surface when used in a display device and errors in precision equipment such as an optical sensor. Also. Further, as a more severe condition, the luminance of the light emitting diode tends to decrease when the device is used for a long time with high luminance. An object of the present invention is to solve the above-mentioned problems and to form a light emitting diode with excellent mass productivity, in which color tone unevenness on a light emission observation surface and variation among light emitting diodes are extremely small.

【0008】[0008]

【課題を解決するための手段】本発明は、支持体上に配
置されたLEDチップと、LEDチップからの発光の少
なくとも一部を吸収し波長変換して発光する粒子状蛍光
体と、を有する発光ダイオードである。特に、本発明で
は、LEDチップ上に配置された粒子状蛍光体を有する
コーティング部の厚みと、LEDチップ上以外の支持体
上に配置された粒子状蛍光体を有するコーティング部の
厚みと、が略等しい発光ダイオードである。
The present invention comprises an LED chip disposed on a support, and a particulate phosphor that absorbs at least a part of the light emitted from the LED chip and converts the wavelength to emit light. It is a light emitting diode. In particular, in the present invention, the thickness of the coating portion having the particulate phosphor disposed on the LED chip and the thickness of the coating portion having the particulate phosphor disposed on a support other than the LED chip are different. The light emitting diodes are substantially equal.

【0009】また、請求項2に記載の本発明の発光ダイ
オードは、コーティング部が粒子状蛍光体と共に少なく
ともSi、Al、Ga、Ti、Ge、P、B及びアルカ
リ土類元素の1種又は2種以上を有する酸化物からなる
発光ダイオードである。
According to a second aspect of the present invention, in the light emitting diode according to the second aspect of the present invention, the coating portion includes at least one of Si, Al, Ga, Ti, Ge, P, B and an alkaline earth element together with the particulate phosphor. A light-emitting diode comprising an oxide having at least one species.

【0010】請求項3に記載の本発明の発光ダイオード
は、LEDチップの発光層が窒化物系化合物半導体であ
り、且つ粒子状蛍光体がセリウムで付活されたイットリ
ウム・アルミニウム・ガーネット系蛍光体である。
According to a third aspect of the present invention, the light emitting layer of the LED chip is a nitride-based compound semiconductor, and the particulate phosphor is an yttrium-aluminum-garnet-based phosphor activated with cerium. It is.

【0011】請求項4に記載の本発明の発光ダイオード
は、LEDチップの主発光ピークが400nmから53
0nmであり、且つ粒子状蛍光体の主発光波長がLED
チップの主発光ピークよりも長い発光ダイオードであ
る。
According to the light emitting diode of the present invention, the main emission peak of the LED chip is from 400 nm to 53 nm.
0 nm and the main emission wavelength of the particulate phosphor is LED
The light emitting diode is longer than the main light emission peak of the chip.

【0012】請求項5に記載の本発明の発光ダイオード
は、LEDチップの発光層が窒化物系化合物半導体であ
り、且つ粒子状蛍光体が(Re1-xSmx3(Al1-y
y512:Ceである。(ただし、0≦x<1、0≦
y≦1、Reは、Y、Gd、Laから選択される少なく
とも一種の元素である。)請求項6に記載の本発明の形
成方法は、LEDチップと、LEDチップからの発光の
少なくとも一部を吸収し波長変換して発光する蛍光体
と、を有する発光ダイオードの形成方法である。特に、
気相又は液相中に分散させた粒子状蛍光体の沈降によ
り、LEDチップ上に粒子状蛍光体を含むコーティング
部を形成させる発光ダイオードの形成方法である。
According to a fifth aspect of the present invention, in the light emitting diode of the present invention, the light emitting layer of the LED chip is a nitride-based compound semiconductor and the particulate phosphor is (Re 1-x Sm x ) 3 (Al 1-y). G
a y ) 5 O 12 : Ce. (However, 0 ≦ x <1, 0 ≦
y ≦ 1, Re is at least one element selected from Y, Gd, and La. According to a sixth aspect of the present invention, there is provided a method for forming a light emitting diode comprising: an LED chip; and a phosphor that absorbs at least a part of the light emitted from the LED chip and converts the wavelength to emit light. Especially,
This is a method for forming a light emitting diode in which a coating portion containing a particulate phosphor is formed on an LED chip by sedimentation of the particulate phosphor dispersed in a gas phase or a liquid phase.

【0013】[0013]

【作用】本発明は、粒子状蛍光体が含有されたコーティ
ング部の厚みがLEDチップ上及びLEDチップが配置
された基体上の何れにおいても略等しい。LEDチップ
から放出された光の光路長差が比較的等しく均一な発光
特性を得ることができる。また、発光面における色むら
や発光ダイオードごとのバラツキのきわめて少なくする
ことができる。さらに、複数のLEDチップが配置され
たパッケージ上に粒子状蛍光体を沈降堆積させることに
より、一度に大量の発光ダイオードを量産性良く形成さ
せることができる。LED上に配置される粒子状蛍光体
の量がきわめて少量であっても粒子状蛍光体の量(コー
ティング部の厚み)を均等に制御させることができる。
そのため、よりバラツキの少ない発光ダイオードを形成
させることができる。
According to the present invention, the thickness of the coating portion containing the particulate phosphor is substantially equal on both the LED chip and the substrate on which the LED chip is disposed. The light emitted from the LED chip has a relatively equal optical path length difference and uniform light emission characteristics can be obtained. In addition, color unevenness on the light emitting surface and variations among the light emitting diodes can be extremely reduced. Furthermore, a large amount of light emitting diodes can be formed at once with good productivity by depositing and depositing the particulate phosphor on a package on which a plurality of LED chips are arranged. Even when the amount of the particulate phosphor disposed on the LED is extremely small, the amount of the particulate phosphor (the thickness of the coating portion) can be controlled uniformly.
Therefore, a light emitting diode with less variation can be formed.

【0014】コーティング部がSi、Al、Ga、T
i、Ge、P、B及びアルカリ土類元素の1種又は2種
以上を有する酸化物である無機物で粒子状蛍光体をバイ
ンドする。これによりLEDチップからの比較的高いエ
ネルギー光を高密度に照射した場合でもコーティング部
が着色劣化することがなくなる。そのため、長時間高輝
度に発光させても輝度が低下することがない発光ダイオ
ードとすることができる。
The coating part is made of Si, Al, Ga, T
The particulate phosphor is bound with an inorganic substance that is an oxide having one or more of i, Ge, P, B and an alkaline earth element. Thus, even when relatively high energy light from the LED chip is irradiated at a high density, the coating portion does not deteriorate in color. Therefore, it is possible to provide a light emitting diode in which the luminance does not decrease even when the light is emitted with high luminance for a long time.

【0015】[0015]

【発明の実施の形態】本発明者は種々の実験の結果、L
EDチップ上に配置された粒子状蛍光体と、それ以外の
支持体上に配置された粒子状蛍光体とを略均等に配分さ
せることによって発光観測面における色調むらや発光装
置ごとのバラツキを改善できることを見出し本発明を成
すに到った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have obtained L
By distributing the particle phosphors arranged on the ED chip and the particle phosphors arranged on other supports almost evenly, the color tone unevenness on the emission observation surface and the variation of each light emitting device are improved. The inventors have found out what can be done and have accomplished the present invention.

【0016】発光観測面における色調むらや発光ダイオ
ードごとのバラツキは、コーティング部形成時にコーテ
ィング部中に含まれる粒子状蛍光体の平面分布における
傾きが生ずることにより生ずると考えられる。即ち、コ
ーティング部は粒子状蛍光体を含有させた樹脂を先の細
いノズルの如き管から吐出させることによって所望のカ
ップ上に配置させることができる。
It is considered that the uneven color tone and the variation of each light emitting diode on the light emission observation surface are caused by the inclination in the planar distribution of the particulate phosphor contained in the coating portion when the coating portion is formed. That is, the coating portion can be disposed on a desired cup by discharging the resin containing the particulate phosphor from a tube such as a thin nozzle.

【0017】しかし、バインダー中に含有された粒子状
蛍光体をLEDチップ上に等量均一且つ、高速に塗布さ
せることは極めて難しい。また、バインダーの粘度やコ
ーティング部と接するパッケージ表面などとの表面張力
により、最終的に形成されるコーティング部の形状が一
定しない。コーティング部の厚み(粒子状蛍光体の量)
が部分的に異なり、LEDチップからの光量、粒子状蛍
光体からの光量が部分的に異なる。
However, it is extremely difficult to apply the particulate phosphor contained in the binder uniformly and at high speed on the LED chip. Further, due to the viscosity of the binder and the surface tension with the package surface in contact with the coating portion, the shape of the finally formed coating portion is not constant. Coating thickness (amount of particulate phosphor)
Are partially different, and the amount of light from the LED chip and the amount of light from the particulate phosphor are partially different.

【0018】そのため発光観測面上において部分的にL
EDチップからの発光色が強くなったり、蛍光体からの
発光色が強くなり色調むらが生ずる。また、各発光ダイ
オードごとのバラツキが生ずると考えられる。本発明で
は、LEDチップ上とそれ以外に形成される粒子状蛍光
体が均一に配置させることにより、色調むらや指向性な
どを改善させることができるものである。以下、本発明
の構成部材について詳述する。
For this reason, L
The color of light emitted from the ED chip becomes strong, and the color of light emitted from the phosphor becomes strong, causing uneven color tone. Further, it is considered that variations occur for each light emitting diode. In the present invention, uneven color tone and directivity can be improved by uniformly disposing the particulate phosphors formed on the LED chip and other portions. Hereinafter, the constituent members of the present invention will be described in detail.

【0019】(コーティング部111、112)本発明
に用いられるコーティング部111、112とは、モー
ルド部材とは別にマウント・リードのカップ内やパッケ
ージの開口部内などに設けられるものでありLEDチッ
プ103の発光を変換する粒子状蛍光体及び粒子状蛍光
体を結着する樹脂や硝子などである。本発明のコーティ
ング部111、112は、LEDチップ103上に設け
られたコーティング部111の厚みとLEDチップ以外
の支持体上に設けられたコーティング部112の厚みと
が略等しい。LEDチップ103上に設けられたコーテ
ィング部111と、支持体となるパッケージの開口部表
面に設けられたコーティング部112との厚みは、気相
や液相中に分散させた粒子状蛍光体を静置させ沈降する
ことにより比較的簡単に略等しく形成させることができ
る。
(Coating Parts 111 and 112) The coating parts 111 and 112 used in the present invention are provided in a cup of a mount lead or an opening of a package separately from a mold member. Examples include a particulate phosphor that converts light emission, and a resin or glass that binds the particulate phosphor. In the coating parts 111 and 112 of the present invention, the thickness of the coating part 111 provided on the LED chip 103 is substantially equal to the thickness of the coating part 112 provided on the support other than the LED chip. The thickness of the coating portion 111 provided on the LED chip 103 and the thickness of the coating portion 112 provided on the surface of the opening of the package serving as a support are such that the particulate phosphor dispersed in the gas phase or the liquid phase can be statically dispersed. It is relatively easy to form substantially the same by placing and settling.

【0020】コーティング部では、カップなどによりL
EDチップから放出される高エネルギー光などが反射も
されるため高密度になる。さらに、粒子状蛍光体によっ
ても反射散乱されコーティング部が高密度の高エネルギ
ー光にさらされる場合がある。そのため、発光強度が強
く高エネルギー光が発光可能な窒化物系半導体をLED
チップとして利用した場合は、それらの高エネルギー光
に対して耐光性のあるSi、Al、Ga、Ti、Ge、
P、B及びアルカリ土類金属の1種又は2種以上有する
酸化物を結着剤として利用することが好ましい。
In the coating part, L
High-density light emitted from the ED chip is also reflected, so that the density becomes high. Furthermore, the coating may be exposed to high-density high-energy light by being reflected and scattered by the particulate phosphor. Therefore, a nitride-based semiconductor that emits high-energy light
When used as a chip, Si, Al, Ga, Ti, Ge,
It is preferable to use an oxide having one or more of P, B and an alkaline earth metal as the binder.

【0021】コーティング部の具体的主材料の一つとし
ては、SiO2、Al23、MSiO3(なお、Mとして
は、Zn、Ca、Mg、Ba、Srなどが挙げられ
る。)などの透光性無機部材に粒子状蛍光体を含有させ
たものが好適に用いられる。これらの透光性無機部材に
より粒子状蛍光体が結着され層状にLEDチップや支持
体上に堆積される。なお、コーティング部には、粒子状
蛍光体と共に紫外線吸収剤を含有させても良い。
One of the specific main materials of the coating portion is SiO 2 , Al 2 O 3 , MSiO 3 (M is Zn, Ca, Mg, Ba, Sr, etc.). A translucent inorganic member containing a particulate phosphor is preferably used. The particulate phosphor is bound by these translucent inorganic members and deposited in layers on the LED chip or the support. The coating portion may contain an ultraviolet absorber together with the particulate phosphor.

【0022】このようなコーティング部111、121
は、コーティング部111、121の材料となる粒子状
蛍光体と結着剤とをよく混合させ容器202内に排出手
段201のノズルから噴出する。容器202内には、、
LEDチップを有するパッケージ105が配置されてい
る。ノズルから噴出された材料は、懸濁液として容器2
02内にたまる。容器202を静置しておくと、蛍光体
粒子が沈降し容器202の底に蛍光体膜204が形成さ
れる。上澄液を排出後、乾燥装置205から放出される
加温エアを吹き付け乾燥させる。その後、各パッケージ
105を取り出すことにより粒子状蛍光体を有する発光
ダイオードとすることができる。
Such coating sections 111 and 121
Is obtained by thoroughly mixing the particulate fluorescent substance and the binder, which are the materials of the coating portions 111 and 121, and ejecting the mixture into the container 202 from the nozzle of the discharging means 201. In the container 202,
A package 105 having an LED chip is provided. The material ejected from the nozzle is converted into a suspension
Collect in 02. When the container 202 is left standing, the phosphor particles settle, and a phosphor film 204 is formed on the bottom of the container 202. After discharging the supernatant, heated air discharged from the drying device 205 is blown and dried. Thereafter, by taking out each package 105, a light emitting diode having a particulate phosphor can be obtained.

【0023】(粒子状蛍光体)本発明に用いられる蛍光
体としては、少なくともLEDチップ103の半導体発
光層から発光された光で励起されて発光する粒子状蛍光
体をいう。LEDチップ103が発光した光と、粒子状
蛍光体が発光した光が補色関係などにある場合、それぞ
れの光を混色させることで白色を発光することができ
る。具体的には、LEDチップ103からの光と、それ
によって励起され発光する粒子状蛍光体の光がそれぞれ
光の3原色(赤色系、緑色系、青色系)に相当する場合
やLEDチップ103が発光した青色の光と、それによ
って励起され発光する粒子状蛍光体の黄色の光が挙げら
れる。
(Particulate Phosphor) The phosphor used in the present invention is a particulate phosphor that emits light when excited by at least light emitted from the semiconductor light emitting layer of the LED chip 103. When the light emitted by the LED chip 103 and the light emitted by the particulate phosphor have a complementary color relationship, white light can be emitted by mixing the respective lights. Specifically, the case where the light from the LED chip 103 and the light of the particulate phosphor excited and emitted by the LED chip 103 correspond to the three primary colors of light (red, green, and blue), respectively, The emitted blue light and the yellow light of the particulate phosphor that is excited and emits light by the emitted blue light are exemplified.

【0024】発光ダイオードの発光色は、粒子状蛍光体
と粒子状蛍光体の結着剤として働く各種樹脂やガラスな
どの無機部材などとの比率、粒子状蛍光体の沈降時間、
粒子状蛍光体の形状などを種々調整すること及びLED
チップの発光波長を選択することにより電球色など任意
の白色系の色調を提供させることができる。発光ダイオ
ードの外部には、LEDチップからの光と蛍光体からの
光がモールド部材を効率よく透過することが好ましい。
The emission color of the light-emitting diode is determined by the ratio of the particulate phosphor to the inorganic member such as a resin or glass serving as a binder for the particulate phosphor, the settling time of the particulate phosphor,
Various adjustment of the shape of particulate phosphor and LED
By selecting the emission wavelength of the chip, an arbitrary white color tone such as a bulb color can be provided. It is preferable that the light from the LED chip and the light from the phosphor pass through the mold member efficiently outside the light emitting diode.

【0025】具体的な粒子状蛍光体としては、銅で付活
された硫化カドミ亜鉛やセリウムで付活されたイットリ
ウム・アルミニウム・ガーネット系蛍光体が挙げられ
る。特に、高輝度且つ長時間の使用時においては(Re
1-xSmx3(Al1-yGay512:Ce(0≦x<
1、0≦y≦1、但し、Reは、Y,Gd,Laからな
る群より選択される少なくとも一種の元素である。)な
どが好ましい。粒子状蛍光体として特に(Re1-x
x3(Al1-yGay512:Ceを用いた場合に
は、LEDチップと接する或いは近接して配置され放射
照度として(Ee)=3W・cm-2以上10W・cm-2
以下においても高効率に十分な耐光性を有する発光ダイ
オードとすることができる。
Specific examples of the particulate phosphor include cadmium zinc sulfide activated by copper and yttrium aluminum garnet-based phosphor activated by cerium. In particular, when used for a long time with high brightness, (Re
1-x Sm x) 3 ( Al 1-y Ga y) 5 O 12: Ce (0 ≦ x <
1, 0 ≦ y ≦ 1, where Re is at least one element selected from the group consisting of Y, Gd, and La. Is preferred. Especially as a particulate phosphor (Re 1-x S
m x) 3 (Al 1- y Ga y) 5 O 12: in the case of using the Ce is placed in contact with the LED chip or close to the irradiance (Ee) = 3W · cm -2 or more 10 W · cm -2
In the following, a light-emitting diode having sufficient light resistance can be obtained with high efficiency.

【0026】(Re1-xSmx3(Al1-yGay
512:Ce蛍光体は、ガーネット構造のため、熱、光
及び水分に強く、励起スペクトルのピークが470nm
付近などにさせることができる。また、発光ピークも5
30nm付近にあり720nmまで裾を引くブロードな
発光スペクトルを持たせることができる。しかも、組成
のAlの一部をGaで置換することで発光波長が短波長
にシフトし、また組成のYの一部をGdで置換すること
で、発光波長が長波長へシフトする。このように組成を
変化することで発光色を連続的に調節することが可能で
ある。したがって、長波長側の強度がGdの組成比で連
続的に変えられるなど窒化物半導体の青色系発光を利用
して白色系発光に変換するための理想条件を備えてい
る。
(Re 1-x Sm x ) 3 (Al 1-y G ay )
Since the 5 O 12 : Ce phosphor has a garnet structure, it is resistant to heat, light and moisture, and has a peak of an excitation spectrum of 470 nm.
It can be made nearby. The emission peak is 5
A broad emission spectrum that is near 30 nm and extends down to 720 nm can be provided. In addition, the emission wavelength shifts to a short wavelength by substituting a part of the Al in the composition with Ga, and the emission wavelength shifts to a long wavelength by substituting a part of the Y in the composition with Gd. By changing the composition in this way, the emission color can be continuously adjusted. Therefore, there is provided an ideal condition for converting the blue light emission of the nitride semiconductor to white light emission such that the intensity on the long wavelength side can be continuously changed by the composition ratio of Gd.

【0027】このような蛍光体は、Y、Gd、Ce、S
m、Al、La及びGaの原料として酸化物、又は高温
で容易に酸化物になる化合物を使用し、それらを化学量
論比で十分に混合して原料を得る。又は、Y、Gd、C
e、Smの希土類元素を化学量論比で酸に溶解した溶解
液を蓚酸で共沈したものを焼成して得られる共沈酸化物
と、酸化アルミニウム、酸化ガリウムとを混合して混合
原料を得る。これにフラックスとしてフッ化アンモニウ
ム等のフッ化物を適量混合して坩堝に詰め、空気中13
50〜1450°Cの温度範囲で2〜5時間焼成して焼
成品を得る。次に焼成品を水中でボールミルして、洗
浄、分離、乾燥、最後に篩を通すことで所望の粒子状蛍
光体を得ることができる。
Such phosphors include Y, Gd, Ce, S
An oxide or a compound which easily becomes an oxide at a high temperature is used as a raw material of m, Al, La and Ga, and these are sufficiently mixed in a stoichiometric ratio to obtain a raw material. Or Y, Gd, C
e, a co-precipitated oxide obtained by co-precipitating a solution obtained by dissolving a rare earth element of Sm in an acid at a stoichiometric ratio with oxalic acid, aluminum oxide, and gallium oxide to obtain a mixed raw material. obtain. An appropriate amount of a fluoride such as ammonium fluoride is mixed into the crucible as a flux and packed in a crucible.
It is fired in a temperature range of 50 to 1450 ° C for 2 to 5 hours to obtain a fired product. Next, the fired product is ball-milled in water, washed, separated, dried, and finally passed through a sieve to obtain a desired particulate phosphor.

【0028】本発明の発光ダイオードにおいて、粒子状
蛍光体は、2種類以上の粒子状蛍光体を混合させてもよ
い。即ち、Al、Ga、Y、La及びGdやSmの含有
量が異なる2種類以上の(Re1-xSmx3(Al1-y
y512:Ce蛍光体を混合させてRGBの波長成分
を増やすことができる。また、現在のところ半導体発光
素子の発光波長には、バラツキが生ずるものがあるため
2種類以上の蛍光体を混合調整させて所望の白色光など
を得ることができる。具体的には、発光素子の発光波長
に合わせて色度点の異なる蛍光体の量を調整し含有させ
ることでその蛍光体間と発光素子で結ばれる色度図上の
任意の点を発光させることができる。
In the light emitting diode of the present invention, two or more kinds of particulate phosphors may be mixed. That, Al, Ga, Y, the content of La and Gd and Sm are two or more kinds of (Re 1-x Sm x) 3 (Al 1-y G
a y ) 5 O 12 : Ce phosphor can be mixed to increase the RGB wavelength component. Further, at present, there are some emission wavelengths of the semiconductor light emitting elements, and therefore, a desired white light or the like can be obtained by mixing and adjusting two or more kinds of phosphors. Specifically, by adjusting and including the amount of phosphors having different chromaticity points according to the emission wavelength of the light emitting element, an arbitrary point on the chromaticity diagram connected between the phosphors and the light emitting element is emitted. be able to.

【0029】このような粒子状蛍光体は、気相や液相中
に分散させ均一に放出させることができる。気相や液相
中での粒子状蛍光体は、自重によって沈降する。特に液
相中においては懸濁液を静置させることで、より均一性
の高い粒子状蛍光体を持つ層を形成させることができ
る。所望に応じて複数回繰り返すことにより所望の粒子
状蛍光体量を形成することができる。
Such a particulate phosphor can be dispersed in a gas phase or a liquid phase and uniformly emitted. The particulate phosphor in a gas phase or a liquid phase sediments by its own weight. In particular, by allowing the suspension to stand still in the liquid phase, a layer having more uniform particulate phosphor can be formed. By repeating a plurality of times as desired, a desired amount of the particulate phosphor can be formed.

【0030】(LEDチップ103)本発明に用いられ
るLEDチップ103とは、粒子状蛍光体を励起可能な
ものである。発光素子であるLEDチップ103は、M
OCVD法等により基板上にGaAs、InP、GaA
lAs、InGaAlP、InN、AlN、GaN、I
nGaN、AlGaN、InGaAlN等の半導体を発
光層として形成させる。半導体の構造としては、MIS
接合、PIN接合やPN接合などを有するホモ構造、ヘ
テロ構造あるいはダブルへテロ構成のものが挙げられ
る。半導体層の材料やその混晶度によって発光波長を種
々選択することができる。また、半導体活性層を量子効
果が生ずる薄膜に形成させた単一量子井戸構造や多重量
子井戸構造とすることもできる。好ましくは、粒子状蛍
光体を効率良く励起できる比較的短波長を効率よく発光
可能な窒化物系化合物半導体(一般式IniGajAlk
N、ただし、0≦i、0≦j、0≦k、i+j+k=
1)である。
(LED Chip 103) The LED chip 103 used in the present invention can excite the particulate phosphor. The LED chip 103 which is a light emitting element has M
GaAs, InP, GaAs on the substrate by OCVD
lAs, InGaAlP, InN, AlN, GaN, I
A semiconductor such as nGaN, AlGaN, and InGaAlN is formed as a light emitting layer. The structure of the semiconductor is MIS
Homo-structure, hetero-structure or double-hetero structure having a junction, PIN junction, PN junction or the like. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal thereof. Also, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed as a thin film in which a quantum effect occurs can be used. Preferably, a nitride-based compound semiconductor (general formula: In i Ga j Al k ) capable of efficiently emitting a relatively short wavelength capable of efficiently exciting the particulate phosphor is provided.
N, where 0 ≦ i, 0 ≦ j, 0 ≦ k, i + j + k =
1).

【0031】窒化ガリウム系化合物半導体を使用した場
合、半導体基板にはサファイヤ、スピネル、SiC、S
i、ZnO、GaN等の材料が好適に用いられる。結晶
性の良い窒化ガリウムを形成させるためにはサファイヤ
基板を用いることがより好ましい。サファイヤ基板上に
半導体膜を成長させる場合、GaN、AlN等のバッフ
ァー層を形成しその上にPN接合を有する窒化ガリウム
半導体を形成させることが好ましい。また、サファイア
基板上にSiO2をマスクとして選択成長させたGaN
単結晶自体を基板として利用することもできる。この場
合、各半導体層を形成後SiO2をエッチング除去させ
ることによって発光素子とサファイア基板とを分離させ
ることもできる。窒化ガリウム系化合物半導体は、不純
物をドープしない状態でN型導電性を示す。発光効率を
向上させるなど所望のN型窒化ガリウム半導体を形成さ
せる場合は、N型ドーパントとしてSi、Ge、Se、
Te、C等を適宜導入することが好ましい。一方、P型
窒化ガリウム半導体を形成させる場合は、P型ドーパン
ドであるZn、Mg、Be、Ca、Sr、Ba等をドー
プさせる。
When a gallium nitride-based compound semiconductor is used, sapphire, spinel, SiC, S
Materials such as i, ZnO, and GaN are preferably used. In order to form gallium nitride having good crystallinity, it is more preferable to use a sapphire substrate. When a semiconductor film is grown on a sapphire substrate, it is preferable to form a buffer layer such as GaN or AlN and form a gallium nitride semiconductor having a PN junction thereon. GaN selectively grown on a sapphire substrate using SiO 2 as a mask
The single crystal itself can be used as a substrate. In this case, the light emitting element and the sapphire substrate can be separated by etching and removing SiO 2 after forming each semiconductor layer. Gallium nitride-based compound semiconductors exhibit N-type conductivity without being doped with impurities. When a desired N-type gallium nitride semiconductor is formed, for example, to improve luminous efficiency, Si, Ge, Se,
It is preferable to appropriately introduce Te, C, and the like. On the other hand, in the case of forming a P-type gallium nitride semiconductor, P-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped.

【0032】窒化ガリウム系化合物半導体は、P型ドー
パントをドープしただけではP型化しにくいためP型ド
ーパント導入後に、炉による加熱、低速電子線照射やプ
ラズマ照射等によりアニールすることでP型化させるこ
とが好ましい。具体的発光素子の層構成としては、窒化
ガリウム、窒化アルミニウムなどを低温で形成させたバ
ッファ層を有するサファイア基板や炭化珪素上に、窒化
ガリウム半導体であるN型コンタクト層、窒化アルミニ
ウム・ガリウム半導体であるN型クラッド層、Zn及び
Siをドープさせた窒化インジュウムガリウム半導体で
ある活性層、窒化アルミニウム・ガリウム半導体である
P型クラッド層、窒化ガリウム半導体であるP型コンタ
クト層が積層されたものが好適に挙げられる。LEDチ
ップ103を形成させるためにはサファイア基板を有す
るLEDチップ103の場合、エッチングなどによりP
型半導体及びN型半導体の露出面を形成させた後、半導
体層上にスパッタリング法や真空蒸着法などを用いて所
望の形状の各電極を形成させる。SiC基板の場合、基
板自体の導電性を利用して一対の電極を形成させること
もできる。
The gallium nitride-based compound semiconductor is difficult to be converted into a P-type only by doping it with a P-type dopant. After the introduction of the P-type dopant, the gallium nitride-based compound semiconductor is annealed by heating in a furnace, low-speed electron beam irradiation, plasma irradiation, etc. Is preferred. As a specific layer structure of the light-emitting element, a gallium nitride semiconductor N-type contact layer, an aluminum gallium nitride semiconductor, and a sapphire substrate having a buffer layer formed of gallium nitride, aluminum nitride, or the like at a low temperature or silicon carbide are used. An N-type cladding layer, an active layer of an indium gallium nitride semiconductor doped with Zn and Si, a P-type cladding layer of an aluminum-gallium nitride semiconductor, and a P-type contact layer of a gallium nitride semiconductor are laminated. Preferred examples are given. In order to form the LED chip 103, in the case of the LED chip 103 having a sapphire substrate, P
After the exposed surfaces of the type semiconductor and the N-type semiconductor are formed, each electrode having a desired shape is formed on the semiconductor layer by using a sputtering method, a vacuum evaporation method, or the like. In the case of a SiC substrate, a pair of electrodes can be formed using the conductivity of the substrate itself.

【0033】次に、形成された半導体ウエハー等をダイ
ヤモンド製の刃先を有するブレードが回転するダイシン
グソーにより直接フルカットするか、又は刃先幅よりも
広い幅の溝を切り込んだ後(ハーフカット)、外力によ
って半導体ウエハーを割る。あるいは、先端のダイヤモ
ンド針が往復直線運動するスクライバーにより半導体ウ
エハーに極めて細いスクライブライン(経線)を例えば
碁盤目状に引いた後、外力によってウエハーを割り半導
体ウエハーからチップ状にカットする。このようにして
窒化物系化合物半導体であるLEDチップ103を形成
させることができる。
Next, the formed semiconductor wafer or the like is directly full-cut by a dicing saw in which a blade having a diamond cutting edge is rotated, or after a groove having a width larger than the cutting edge width is cut (half cut). The semiconductor wafer is broken by external force. Alternatively, a very thin scribe line (meridian) is drawn on the semiconductor wafer, for example, in a checkerboard pattern by a scriber in which a diamond needle at the tip reciprocates linearly, and then the wafer is cut by an external force and cut into chips from the semiconductor wafer. Thus, the LED chip 103 which is a nitride-based compound semiconductor can be formed.

【0034】本発明の発光ダイオードにおいて白色系を
発光させる場合は、粒子状蛍光体との補色等を考慮して
LEDチップ103の主発光波長は400nm以上53
0nm以下が好ましく、420nm以上490nm以下
がより好ましい。LEDチップ103と粒子状蛍光体と
の効率をそれぞれより向上させるためには、450nm
以上475nm以下がさらに好ましい。
In the case where the light emitting diode of the present invention emits white light, the main emission wavelength of the LED chip 103 is 400 nm or more in consideration of the complementary color with the particulate phosphor.
0 nm or less is preferable, and 420 nm or more and 490 nm or less are more preferable. In order to further improve the efficiency of the LED chip 103 and the efficiency of the particulate phosphor, respectively, 450 nm
It is more preferably at least 475 nm.

【0035】(パッケージ102)パッケージ102
は、LEDチップ103を凹部内に固定保護する支持体
として働く。また、外部との電気的接続が可能な外部電
極104を有する。LEDチップ103の数や大きさに
合わせて複数の開口部を持ったパッケージ102とする
こともできる。また、好適には遮光機能を持たせるため
に黒や灰色などの暗色系に着色させる、或いはパッケー
ジ102の発光観測表面側が暗色系に着色されている。
パッケージ102は、LEDチップ103をさらに外部
環境から保護するためにコーティング部111、112
に加えて透光性保護体であるモールド部材106を設け
ることもできる。パッケージ102は、コーティング部
111、112やモールド部材106との接着性がよく
剛性の高いものが好ましい。LEDチップ103と外部
とを電気的に遮断させるために絶縁性を有することが望
まれる。さらに、パッケージ102は、LEDチップ1
03などからの熱の影響をうけた場合、モールド部材1
06との密着性を考慮して熱膨張率の小さい物が好まし
い。
(Package 102) Package 102
Functions as a support for fixing and protecting the LED chip 103 in the recess. In addition, an external electrode 104 which can be electrically connected to the outside is provided. The package 102 may have a plurality of openings in accordance with the number and size of the LED chips 103. Further, it is preferable that the package 102 be colored in a dark color such as black or gray to have a light shielding function, or the light emission observation surface side of the package 102 be colored in a dark color.
The package 102 includes coating portions 111 and 112 to further protect the LED chip 103 from the external environment.
In addition, a mold member 106 which is a light-transmitting protective body can be provided. The package 102 preferably has good adhesion to the coating portions 111 and 112 and the mold member 106 and high rigidity. It is desired that the LED chip 103 has an insulating property in order to electrically disconnect the LED chip 103 from the outside. Further, the package 102 includes the LED chip 1
03, etc., the mold member 1
A material having a small coefficient of thermal expansion is preferable in consideration of the adhesiveness to the film.

【0036】パッケージ102の凹部内表面は、エンボ
ス加工させて接着面積を増やしたり、プラズマ処理して
モールド部材との密着性を向上させることもできる。パ
ッケージ102は、外部電極104と一体的に形成させ
てもよく、パッケージ102が複数に分かれ、はめ込み
などにより組み合わせて構成させてもよい。このような
パッケージ102は、インサート成形などにより比較的
簡単に形成することができる。パッケージ材料としてポ
リカーボネート樹脂、ポリフェニレンサルファイド(P
PS)、液晶ポリマー(LCP)、ABS樹脂、エポキ
シ樹脂、フェノール樹脂、アクリル樹脂、PBT樹脂等
の樹脂やセラミックなどを用いることができる。また、
パッケージ102を暗色系に着色させる着色剤としては
種々の染料や顔料が好適に用いられる。具体的には、C
23、MnO2、Fe23やカーボンブラックなどが
好適に挙げられる。
The inner surface of the concave portion of the package 102 can be embossed to increase the bonding area, or can be plasma-treated to improve the adhesion to the mold member. The package 102 may be formed integrally with the external electrode 104, or the package 102 may be divided into a plurality of parts and combined by fitting or the like. Such a package 102 can be formed relatively easily by insert molding or the like. Polycarbonate resin, polyphenylene sulfide (P
PS), a liquid crystal polymer (LCP), an ABS resin, an epoxy resin, a phenol resin, an acrylic resin, a resin such as a PBT resin, or a ceramic. Also,
Various dyes and pigments are suitably used as a coloring agent for coloring the package 102 in a dark color system. Specifically, C
r 2 O 3 , MnO 2 , Fe 2 O 3 , carbon black and the like are preferred.

【0037】LEDチップ103とパッケージ102と
の接着は熱硬化性樹脂などによって行うことができる。
具体的には、エポキシ樹脂、アクリル樹脂やイミド樹脂
などが挙げられる。また、LEDチップ103を配置固
定させると共にパッケージ102内の外部電極104と
電気的に接続させるためにはAgペースト、カーボンペ
ースト、ITOペースト、金属バンプ等が好適に用いら
れる。
The bonding between the LED chip 103 and the package 102 can be performed with a thermosetting resin or the like.
Specifically, an epoxy resin, an acrylic resin, an imide resin, and the like can be given. In order to dispose and fix the LED chip 103 and electrically connect the LED chip 103 to the external electrode 104 in the package 102, an Ag paste, a carbon paste, an ITO paste, a metal bump, or the like is preferably used.

【0038】(外部電極104)外部電極104は、パ
ッケージ102外部からの電力を内部に配置されたLE
Dチップ103に供給させるために用いられるためのも
のである。そのためパッケージ102上に設けられた導
電性を有するパターンやリードフレームを利用したもの
など種々のものが挙げられる。また、外部電極104は
放熱性、電気伝導性、LEDチップ103の特性などを
考慮して種々の大きさに形成させることができる。外部
電極104は、各LEDチップ103を配置すると共に
LEDチップ103から放出された熱を外部に放熱させ
るため熱伝導性がよいことが好ましい。外部電極104
の具体的な電気抵抗としては300μΩ・cm以下が好
ましく、より好ましくは、3μΩ・cm以下である。ま
た、具体的な熱伝導度は、0.01cal/(s)(c
2)(℃/cm)以上が好ましく、より好ましくは 0.
5cal/(s)(cm2)(℃/cm)以上である。
(External Electrode 104) The external electrode 104 is used to supply power from outside the package 102 to the LE
This is to be used for supplying to the D chip 103. Therefore, there are various types such as those using a conductive pattern provided on the package 102 and a lead frame. Further, the external electrode 104 can be formed in various sizes in consideration of heat dissipation, electric conductivity, characteristics of the LED chip 103, and the like. It is preferable that the external electrode 104 has good thermal conductivity for disposing the LED chips 103 and radiating heat emitted from the LED chips 103 to the outside. External electrode 104
Is preferably 300 μΩ · cm or less, more preferably 3 μΩ · cm or less. The specific thermal conductivity is 0.01 cal / (s) (c
m 2 ) (° C./cm) or more, and more preferably 0.
5 cal / (s) (cm 2 ) (° C./cm) or more.

【0039】このような外部電極104としては、銅や
りん青銅板表面に銀、パラジュウム或いは金などの金属
メッキや半田メッキなどを施したものが好適に用いられ
る。外部電極104としてリードフレームを利用した場
合は、電気伝導度、熱伝導度によって種々利用できるが
加工性の観点から板厚0.1mmから2mmが好まし
い。ガラスエポキシ樹脂やセラミックなどの支持体上な
どに設けられた外部電極104としては、銅箔やタング
ステン層を形成させることができる。プリント基板上に
金属箔を用いる場合は、銅箔などの厚みとして18〜7
0μmとすることが好ましい。また、銅箔等の上に金、
半田メッキなどを施しても良い。
As the external electrode 104, a copper or phosphor bronze plate whose surface is plated with a metal such as silver, palladium or gold, or a solder plating is preferably used. When a lead frame is used as the external electrode 104, it can be variously used depending on the electric conductivity and the heat conductivity, but the thickness is preferably 0.1 mm to 2 mm from the viewpoint of workability. As the external electrode 104 provided on a support such as glass epoxy resin or ceramic, a copper foil or a tungsten layer can be formed. When using a metal foil on a printed circuit board, the thickness of the copper foil or the like should be 18 to 7
Preferably, it is 0 μm. Also, gold on copper foil etc.
You may give solder plating etc.

【0040】(導電性ワイヤー105)導電性ワイヤー
105としては、LEDチップ103の電極とのオーミ
ック性、機械的接続性、電気伝導性及び熱伝導性がよい
ものが求められる。熱伝導度としては0.01cal/
(s)(cm2)(℃/cm)以上が好ましく、より好ましく
は0.5cal/(s)(cm2)(℃/cm)以上である。
また、作業性などを考慮して導電性ワイヤー105の直
径は、好ましくは、Φ10μm以上、Φ45μm以下で
ある。このような導電性ワイヤー105として具体的に
は、金、銅、白金、アルミニウム等の金属及びそれらの
合金を用いた導電性ワイヤーが挙げられる。このような
導電性ワイヤー105は、各LEDチップ103の電極
と、インナー・リード及びマウント・リードなどと、を
ワイヤーボンディング機器によって容易に接続させるこ
とができる。
(Conductive Wire 105) The conductive wire 105 is required to have good ohmic contact with the electrodes of the LED chip 103, good mechanical connection, good electrical conductivity and good thermal conductivity. The thermal conductivity is 0.01 cal /
(s) (cm 2 ) (° C./cm) or more, and more preferably 0.5 cal / (s) (cm 2 ) (° C./cm) or more.
The diameter of the conductive wire 105 is preferably Φ10 μm or more and Φ45 μm or less in consideration of workability and the like. Specific examples of such conductive wires 105 include conductive wires using metals such as gold, copper, platinum, and aluminum and alloys thereof. Such a conductive wire 105 can easily connect an electrode of each LED chip 103 to an inner lead, a mount lead, and the like by a wire bonding device.

【0041】(モールド部材106)モールド部材10
6は、発光ダイオードの使用用途に応じてLEDチップ
103、導電性ワイヤー105、粒子状蛍光体が含有さ
れたコーティング部111、112などを外部から保護
するために設けることができる。モールド部材106
は、各種樹脂や硝子などを用いて形成させることができ
る。モールド部材106の具体的材料としては、主とし
てエポキシ樹脂、ユリア樹脂、シリコーン樹脂などの耐
候性に優れた透明樹脂や硝子などが好適に用いられる。
また、モールド部材に拡散剤を含有させることによって
LEDチップ103からの指向性を緩和させ視野角を増
やすこともできる。このような、モールド部材106
は、コーティング部の結着剤と同じ材料を用いても良い
し異なる材料としても良い。以下、本発明の実施例につ
いて説明するが、本発明は具体的実施例のみに限定され
るものではないことは言うまでもない。
(Mold member 106) Mold member 10
Reference numeral 6 can be provided to protect the LED chip 103, the conductive wire 105, and the coating portions 111 and 112 containing the particulate phosphor from the outside according to the application of the light emitting diode. Mold member 106
Can be formed using various resins, glass, or the like. As a specific material of the mold member 106, a transparent resin having excellent weather resistance, such as an epoxy resin, a urea resin, or a silicone resin, or glass is preferably used.
Further, by including a diffusing agent in the mold member, the directivity from the LED chip 103 can be reduced and the viewing angle can be increased. Such a mold member 106
May be the same material as the binder of the coating portion, or may be a different material. Hereinafter, examples of the present invention will be described, but it goes without saying that the present invention is not limited to only specific examples.

【0042】[0042]

【実施例】【Example】

(実施例1)LEDチップとして主発光ピークが460
nmのIn0.2Ga0.8N半導体を用いた。LEDチップ
は、洗浄させたサファイヤ基板上にTMG(トリメチル
ガリウム)ガス、TMI(トリメチルインジュウム)ガ
ス、窒素ガス及びドーパントガスをキャリアガスと共に
流し、MOCVD法で窒化ガリウム系化合物半導体を成
膜させることにより形成させた。ドーパントガスとして
SiH4とCp2Mgと、を切り替えることによってN型
導電性を有する窒化ガリウム系半導体とP型導電性を有
する窒化ガリウム系半導体を形成しPN接合を形成させ
る。半導体発光素子として、N型導電性を有する窒化ガ
リウム半導体であるコンタクト層と、P型導電性を有す
る窒化ガリウムアルミニウム半導体であるクラッド層、
P型導電性を有する窒化ガリウム半導体であるコンタク
ト層を形成させた。N型導電性を有するコンタクト層と
P型導電性を有するクラッド層との間に厚さ約3nmで
あり、単一量子井戸構造とされるノンドープInGaN
の活性層を形成させた。(なお、サファイア基板上には
低温で窒化ガリウム半導体を形成させバッファ層とさせ
てある。また、P型導電性を有する半導体は、成膜後4
00℃以上でアニールさせてある。) エッチングによりサファイア基板上のPN各半導体表面
を露出させた後、スパッタリングにより各電極をそれぞ
れ形成させた。こうして出来上がった半導体ウエハーを
スクライブラインを引いた後、外力により分割させ発光
素子として350μm角のLEDチップを形成させた。
(Example 1) The main emission peak of an LED chip was 460.
nm In 0.2 Ga 0.8 N semiconductor was used. In the LED chip, a TMG (trimethyl gallium) gas, a TMI (trimethyl indium) gas, a nitrogen gas, and a dopant gas are flowed together with a carrier gas on a cleaned sapphire substrate, and a gallium nitride-based compound semiconductor is formed by MOCVD. Formed. By switching between SiH 4 and Cp 2 Mg as the dopant gas, a gallium nitride-based semiconductor having N-type conductivity and a gallium nitride-based semiconductor having P-type conductivity are formed to form a PN junction. A contact layer made of a gallium nitride semiconductor having N-type conductivity, a cladding layer made of a gallium aluminum nitride semiconductor having P-type conductivity,
A contact layer of a gallium nitride semiconductor having P-type conductivity was formed. Non-doped InGaN having a single quantum well structure with a thickness of about 3 nm between a contact layer having N-type conductivity and a cladding layer having P-type conductivity
Was formed. (Note that a gallium nitride semiconductor is formed on a sapphire substrate at a low temperature to serve as a buffer layer. In addition, a semiconductor having P-type conductivity is
Annealed above 00 ° C. After exposing each PN semiconductor surface on the sapphire substrate by etching, each electrode was formed by sputtering. After a scribe line was drawn on the semiconductor wafer thus completed, the wafer was divided by external force to form LED chips of 350 μm square as light emitting elements.

【0043】一方、インサート成形によりポリカーボネ
ート樹脂を用いてチップタイプLEDのパッケージを形
成させた。チップタイプLEDのパッケージ内は、LE
Dチップが配される開口部を備えている。パッケージ中
には、銀メッキした銅板を外部電極として配置させてあ
る。パッケージ内部でLEDチップをエポキシ樹脂など
を用いて固定させる。導電性ワイヤーである金線をLE
Dチップの各電極とパッケージに設けられた各外部電極
とにそれぞれワイヤーボンディングさせ電気的に接続さ
せてある。こうしてLEDチップが配置されたパッケー
ジを8280個形成させた。各パッケージの開口部を除
く表面には、レジスト膜が形成されている。8280個
のLEDチップが配置されたパッケージを純粋電解質が
入った容器中に配置させる。
On the other hand, a chip type LED package was formed by insert molding using a polycarbonate resin. LE inside the chip type LED package
It has an opening in which the D chip is arranged. In the package, a silver-plated copper plate is arranged as an external electrode. The LED chip is fixed using an epoxy resin or the like inside the package. LE wire is a conductive wire
Each electrode of the D chip and each external electrode provided on the package are electrically connected by wire bonding. Thus, 8280 packages on which the LED chips were arranged were formed. A resist film is formed on the surface of each package excluding the opening. The package in which the 8280 LED chips are placed is placed in a container containing the pure electrolyte.

【0044】他方、粒子状蛍光体は、Y、Gd、Ceの
希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で
共沈させた。これを焼成して得られる共沈酸化物と、酸
化アルミニウムと混合して混合原料を得る。これにフラ
ックスとしてフッ化アンモニウムを混合して坩堝に詰
め、空気中1400°Cの温度で3時間焼成して焼成品
を得た。焼成品を水中でボールミルして、洗浄、分離、
乾燥、最後に篩を通して形成させた。形成された(Y
0.8Gd0.23Al512:Ce蛍光体をSiO2ゾル中
に分散させる。
On the other hand, as the particulate phosphor, a solution obtained by dissolving rare earth elements of Y, Gd and Ce in an acid at a stoichiometric ratio was coprecipitated with oxalic acid. This is mixed with a coprecipitated oxide obtained by calcination and aluminum oxide to obtain a mixed raw material. This was mixed with ammonium fluoride as a flux, packed in a crucible, and fired in air at a temperature of 1400 ° C. for 3 hours to obtain a fired product. Ball-mill the baked product in water, wash, separate,
Dried and finally formed through a sieve. Formed (Y
0.8 Gd 0.2 ) 3 Al 5 O 12 : Ce phosphor is dispersed in a SiO 2 sol.

【0045】次に、酢酸でpHを5.0に調整した後、
直ちにパッケージが配置された容器中に(Y0.8
0.23Al512:Ce蛍光体とSiO2ゾルを一挙に
懸濁注入させる(図2(A))。静置後(Y0.8Gd0.23
Al512:Ce蛍光体が沈降しパッケージ上に沈降す
る(図2(B))。容器内の廃液を除しLEDチップ上に
粒子状蛍光体が堆積したパッケージを120度に加熱し
た空気で乾燥させる(図2(C))。この後に、容器から
各発光ダイオードを取り出して発光ダイオードの非発光
部に付着した粒子状蛍光体をレジストマスクごと除去す
ることによってLEDチップ上とパッケージ底面との膜
厚が共に約40μmと略等しいコーティング部を形成さ
せることができる。さらに、LEDチップや粒子状蛍光
体を外部応力、水分及び塵埃などから保護する目的でコ
ーティング部が形成されたパッケージ開口部内にモール
ド部材として透光性エポキシ樹脂を形成させた。透光性
エポシキ樹脂を混入後、150℃5時間にて硬化させ
た。こうして図1の如き発光装置である発光ダイオード
を形成させた。
Next, after adjusting the pH to 5.0 with acetic acid,
Immediately in the container where the package is placed (Y 0.8 G
d 0.2 ) 3 Al 5 O 12 : Ce phosphor and SiO 2 sol are suspended and injected at once (FIG. 2 (A)). After standing (Y 0.8 Gd 0.2 ) 3
The Al 5 O 12 : Ce phosphor sediments and settles on the package (FIG. 2 (B)). The waste liquid in the container is removed, and the package in which the particulate phosphor is deposited on the LED chip is dried with air heated to 120 degrees (FIG. 2 (C)). Thereafter, each light-emitting diode is taken out of the container, and the particulate phosphor adhered to the non-light-emitting portion of the light-emitting diode is removed together with the resist mask, so that the film thickness on both the LED chip and the package bottom is substantially equal to about 40 μm. A part can be formed. Further, a translucent epoxy resin was formed as a mold member in the package opening where the coating was formed in order to protect the LED chip and the particulate phosphor from external stress, moisture, dust and the like. After mixing the translucent epoxy resin, the mixture was cured at 150 ° C. for 5 hours. Thus, a light emitting diode as a light emitting device as shown in FIG. 1 was formed.

【0046】得られた発光ダイオードに電力を供給させ
ることによって白色系を発光させることができる。発光
ダイオードの正面から色温度、演色性をそれぞれ測定し
た。色温度8090K、Ra(演色性指数)=87.5
を示した。また、発光光率は10.8 lm/wであっ
た。さらに、CIE色度図上のx,y=(0.305,
0.315)±0.03で囲まれた範囲内に、約811
4個の各発光ダイオードが分布しており歩留まりは、約
98%であった。
By supplying power to the obtained light emitting diode, white light can be emitted. The color temperature and the color rendering were measured from the front of the light emitting diode. Color temperature 8090K, Ra (color rendering index) = 87.5
showed that. The luminous efficiency was 10.8 lm / w. Further, x, y = (0.305,
0.315) Within a range surrounded by ± 0.03, about 811
Four light emitting diodes were distributed, and the yield was about 98%.

【0047】(比較例1)エポキシ樹脂中に(Y0.8
0.23Al512:Ce蛍光体を混合させてノズルか
ら突出させコーティング部を形成させた以外は、実施例
1と同様にして発光ダイオードを形成させた。形成され
た発光ダイオードの断面は、コーティング部の端面がは
い上がっていると共に粒子状蛍光体の量が不均一であっ
た。こうして形成された発光ダイオードの色度点を実施
例1と同様に測定した。形成された発光ダイオードの色
度点は、LEDチップの主発光ピークと蛍光体の主発光
波長を結んだ線上に略位置していたが、歩留まりは約6
1%にしか過ぎなかった。
(Comparative Example 1) (Y 0.8 G
d0.2 ) 3 Al 5 O 12 : A light emitting diode was formed in the same manner as in Example 1 except that a phosphor was mixed and projected from the nozzle to form a coating portion. In the cross section of the formed light emitting diode, the end face of the coating portion was raised and the amount of the particulate phosphor was not uniform. The chromaticity point of the light emitting diode thus formed was measured in the same manner as in Example 1. The chromaticity point of the formed light emitting diode was substantially located on a line connecting the main light emission peak of the LED chip and the main light emission wavelength of the phosphor, but the yield was about 6%.
It was only 1%.

【0048】[0048]

【発明の効果】コーティングの厚みが均一な本発明の発
光ダイオードとすることにより各方位による色度のずれ
が極めて少なく、発光観測面から見て色調ずれがない発
光ダイオードとさせることができる。また、歩留まりの
高い発光ダイオードとすることができる。
According to the light emitting diode of the present invention having a uniform coating thickness, a chromaticity shift in each direction is extremely small, and a light emitting diode having no color tone shift from the light emission observation surface can be obtained. Further, a light-emitting diode with a high yield can be obtained.

【0049】特に、本発明の請求項1に記載の構成とす
ることにより高輝度、長時間の使用においても色ずれ、
発光光率の低下が極めて少ない発光ダイオードとするこ
とができる。
In particular, by adopting the structure according to the first aspect of the present invention, color shift can be achieved even with high luminance and long time use.
A light-emitting diode with a very small decrease in the luminous efficiency can be obtained.

【0050】本発明の請求項2の構成とすることによ
り、より耐光性及び発光効率の高い発光ダイオードとす
ることができる。
According to the configuration of the second aspect of the present invention, a light emitting diode having higher light resistance and higher luminous efficiency can be obtained.

【0051】本発明の請求項3の構成とすることによ
り、高輝度、長時間の使用においてもより輝度の低下や
色ずれが少なく白色系が発光可能な発光ダイオードとす
ることができる。
By adopting the structure of the third aspect of the present invention, a light emitting diode capable of emitting white light with less decrease in luminance and less color shift even when used at high luminance for a long time can be obtained.

【0052】本発明の請求項4の構成とすることによ
り、白色発光可能でより発光効率の高い発光ダイオード
とすることができる。
According to the configuration of the fourth aspect of the present invention, a light emitting diode capable of emitting white light and having higher luminous efficiency can be obtained.

【0053】本発明の請求項5の構成とすることによ
り、高輝度、長時間の使用においてもより輝度の低下や
色ずれが少なく白色系が発光可能な発光ダイオードとす
ることができる。
By adopting the structure of claim 5 of the present invention, it is possible to obtain a light emitting diode capable of emitting white light with less decrease in luminance and less color shift even when used for a long time with high luminance.

【0054】本発明の請求項6の方法とすることによ
り、発光むらがなく、且つ大量に均一発光可能な発光ダ
イオードを歩留まりよく形成させることができる。
According to the method of claim 6 of the present invention, it is possible to form a light-emitting diode capable of emitting a large amount of light uniformly without emission unevenness with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の発光装置であるチップタイプ
LEDの模式的断面図である。
FIG. 1 is a schematic sectional view of a chip type LED which is a light emitting device of the present invention.

【図2】図2は、本発明の発光ダイオードを形成させる
形成装置を示した模式図である。
FIG. 2 is a schematic view showing a forming apparatus for forming a light emitting diode of the present invention.

【符号の説明】[Explanation of symbols]

111・・LEDチップ上のコーティング部 112・・・支持体上のコーティング部 102・・・パッケージ 103・・・LEDチップ 104・・・外部電極 105・・・導電性ワイヤー 106・・・モールド部材 201・・・コーティング部の材料を噴出させる排出手
段 202・・・容器 203・・・ノズルから噴出されたコーティング部の材
料 204・・・蛍光体膜 205・・・加温エアを吹き付けれる乾燥装置
111 Coating portion on LED chip 112 Coating portion on support 102 Package 103 LED chip 104 External electrode 105 Conductive wire 106 Mold member 201 ... Ejecting means for ejecting the material of the coating portion 202 ... Container 203 ... Material of the coating portion ejected from the nozzle 204 ... Phosphor film 205 ... Drying device that can blow heated air

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】支持体上に配置されたLEDチップと、該
LEDチップからの発光の少なくとも一部を吸収し波長
変換して発光する粒子状蛍光体と、を有する発光ダイオ
ードであって、 前記LEDチップ上に配置された粒子状蛍光体を有する
コーティング部の厚みと、前記LEDチップ上以外の支
持体上に配置された粒子状蛍光体を有するコーティング
部の厚みと、が略等しいことを特徴とする発光ダイオー
ド。
1. A light-emitting diode comprising: an LED chip disposed on a support; and a particulate phosphor that absorbs at least a part of light emitted from the LED chip and converts the wavelength to emit light. The thickness of the coating portion having the particulate phosphor disposed on the LED chip is substantially equal to the thickness of the coating portion having the particulate phosphor disposed on the support other than the LED chip. Light emitting diode.
【請求項2】前記コーティング部は、粒子状蛍光体と共
に少なくともSi、Al、Ga、Ti、Ge、P、B及
びアルカリ土類元素の1種又は2種以上を有する酸化物
からなる請求項1記載の発光ダイオード。
2. The coating part comprises an oxide containing at least one of Si, Al, Ga, Ti, Ge, P, B and an alkaline earth element together with the particulate phosphor. A light-emitting diode as described.
【請求項3】前記LEDチップの発光層が窒化物系化合
物半導体であり、且つ前記粒子状蛍光体がセリウムで付
活されたイットリウム・アルミニウム・ガーネット系蛍
光体である請求項1記載の発光ダイオード。
3. The light-emitting diode according to claim 1, wherein the light-emitting layer of the LED chip is a nitride-based compound semiconductor, and the particulate phosphor is an yttrium-aluminum-garnet-based phosphor activated with cerium. .
【請求項4】前記LEDチップの主発光ピークが400
nmから530nmであり、且つ前記粒子状蛍光体の主
発光波長が前記LEDチップの主発光ピークよりも長い
請求項3記載の発光ダイオード。
4. The main emission peak of the LED chip is 400
The light emitting diode according to claim 3, wherein the main emission wavelength of the particulate phosphor is longer than the main emission peak of the LED chip.
【請求項5】前記LEDチップの発光層が窒化物系化合
物半導体であり、且つ前記粒子状蛍光体が(Re1-x
x3(Al1-yGay512:Ceである請求項1記
載の発光ダイオード。ただし、0≦x<1、0≦y≦
1、Reは、Y、Gd、Laから選択される少なくとも
一種の元素である。
5. The light emitting layer of the LED chip is a nitride-based compound semiconductor, and the particulate phosphor is (Re 1 -xS).
m x) 3 (Al 1- y Ga y) 5 O 12: Ce a is claim 1, wherein the light emitting diode. However, 0 ≦ x <1, 0 ≦ y ≦
1, Re is at least one element selected from Y, Gd, and La.
【請求項6】LEDチップと、該LEDチップからの発
光の少なくとも一部を吸収し波長変換して発光する蛍光
体と、を有する発光ダイオードの形成方法であって、 気相又は液相中に分散させた粒子状蛍光体の沈降により
前記LEDチップ上に粒子状蛍光体を含むコーティング
部を形成させることを特徴とする発光ダイオードの形成
方法。
6. A method for forming a light emitting diode, comprising: an LED chip; and a phosphor that absorbs at least a part of light emitted from the LED chip and converts the wavelength to emit light. A method for forming a light emitting diode, comprising forming a coating portion containing a particulate phosphor on the LED chip by sedimentation of the dispersed particulate phosphor.
JP19277997A 1997-07-17 1997-07-17 Light emitting diode and method for forming the same Expired - Lifetime JP3617587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19277997A JP3617587B2 (en) 1997-07-17 1997-07-17 Light emitting diode and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19277997A JP3617587B2 (en) 1997-07-17 1997-07-17 Light emitting diode and method for forming the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2001381603A Division JP3835276B2 (en) 2001-12-14 2001-12-14 Light emitting diode and method for forming the same
JP2003028989A Division JP3858829B2 (en) 2003-02-06 2003-02-06 Method for forming light emitting diode

Publications (2)

Publication Number Publication Date
JPH1140858A true JPH1140858A (en) 1999-02-12
JP3617587B2 JP3617587B2 (en) 2005-02-09

Family

ID=16296877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19277997A Expired - Lifetime JP3617587B2 (en) 1997-07-17 1997-07-17 Light emitting diode and method for forming the same

Country Status (1)

Country Link
JP (1) JP3617587B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044513A (en) * 1999-08-03 2001-02-16 Matsushita Electronics Industry Corp Surface-emitting device
JP2001183463A (en) * 1999-12-24 2001-07-06 Hitachi Medical Corp Scintillator, radiation detector using the same, and x-ray ct equipment
WO2002001649A1 (en) * 2000-06-29 2002-01-03 Koninklijke Philips Electronics N.V. Optoelectric element
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP2003115614A (en) * 2001-10-03 2003-04-18 Nichia Chem Ind Ltd Light emitting device manufacturing method
EP1179858A3 (en) * 2000-08-09 2003-07-30 Agilent Technologies, Inc. (a Delaware corporation) Light emitting devices
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, method of manufacturing light emitting device, and method of adjusting chromaticity of light emitting device
JP2004342782A (en) * 2003-05-14 2004-12-02 Nichia Chem Ind Ltd Light emitting device and manufacturing method thereof
KR20050016804A (en) * 2003-08-04 2005-02-21 서울반도체 주식회사 Phosphor structure with high brightness for Light Emitting Device and Light Emitting Device using the same
US6982522B2 (en) 2002-10-07 2006-01-03 Sharp Kabushiki Kaisha LED device including phosphor layers on the reflecting surface
JP2006074036A (en) * 2004-09-01 2006-03-16 Shogen Koden Kofun Yugenkoshi Semiconductor light emitting device and manufacturing method thereof
JP2006518111A (en) * 2003-02-14 2006-08-03 クリー インコーポレイテッド Light emitting device incorporating a light emitting material
EP1921686A3 (en) * 2000-03-10 2009-06-10 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
WO2010005294A1 (en) * 2008-06-15 2010-01-14 Stichting Administratiekantoor Vomgroup A method for manufacturing a lens to be added to a led, and a lens obtained with that method
US7749038B2 (en) 2004-02-19 2010-07-06 Hong-Yuan Technology Co., Ltd. Light emitting device fabrication method
JP2010166057A (en) * 2009-01-15 2010-07-29 Yiguang Electronic Ind Co Ltd Package structure of light-emitting diode and method for fabricating the same
US7910938B2 (en) 2006-09-01 2011-03-22 Cree, Inc. Encapsulant profile for light emitting diodes
US7910940B2 (en) 2005-08-05 2011-03-22 Panasonic Corporation Semiconductor light-emitting device
JP2012039122A (en) * 2010-08-09 2012-02-23 Lg Innotek Co Ltd Light emitting element
JP2013175757A (en) * 2013-04-08 2013-09-05 Toshiba Corp Semiconductor light emitting device
JP2014130963A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9310062B2 (en) 2012-07-24 2016-04-12 Toyoda Gosei Co., Ltd. Light-emitting device and method of manufacturing the same
KR20180113573A (en) * 2016-04-25 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member, method of manufacturing the same, and light emitting device
US10431721B2 (en) 2016-02-02 2019-10-01 Citizen Electronics Co., Ltd. Light-emitting device and method for manufacturing same
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043913A (en) * 1973-08-20 1975-04-21
JPS5737889A (en) * 1980-08-18 1982-03-02 Stanley Electric Co Ltd Production of light emitting diode
JPS5920286U (en) * 1982-07-29 1984-02-07 日本電気株式会社 display element
JPH08148717A (en) * 1994-11-15 1996-06-07 Nichia Chem Ind Ltd Blue light emitting diode
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group III nitride semiconductor light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5043913A (en) * 1973-08-20 1975-04-21
JPS5737889A (en) * 1980-08-18 1982-03-02 Stanley Electric Co Ltd Production of light emitting diode
JPS5920286U (en) * 1982-07-29 1984-02-07 日本電気株式会社 display element
JPH08148717A (en) * 1994-11-15 1996-06-07 Nichia Chem Ind Ltd Blue light emitting diode
JPH0927639A (en) * 1995-07-12 1997-01-28 Toshiba Corp Semiconductor device
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group III nitride semiconductor light emitting device

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001044513A (en) * 1999-08-03 2001-02-16 Matsushita Electronics Industry Corp Surface-emitting device
JP2001183463A (en) * 1999-12-24 2001-07-06 Hitachi Medical Corp Scintillator, radiation detector using the same, and x-ray ct equipment
EP1921686A3 (en) * 2000-03-10 2009-06-10 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
JP4928046B2 (en) * 2000-06-29 2012-05-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photoelectric element
WO2002001649A1 (en) * 2000-06-29 2002-01-03 Koninklijke Philips Electronics N.V. Optoelectric element
JP2004502307A (en) * 2000-06-29 2004-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Photoelectric element
KR100869866B1 (en) 2000-06-29 2008-11-24 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Optoelectronic device and covering method
EP1179858A3 (en) * 2000-08-09 2003-07-30 Agilent Technologies, Inc. (a Delaware corporation) Light emitting devices
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP2003115614A (en) * 2001-10-03 2003-04-18 Nichia Chem Ind Ltd Light emitting device manufacturing method
US6982522B2 (en) 2002-10-07 2006-01-03 Sharp Kabushiki Kaisha LED device including phosphor layers on the reflecting surface
JP2004186488A (en) * 2002-12-04 2004-07-02 Nichia Chem Ind Ltd Light emitting device, method of manufacturing light emitting device, and method of adjusting chromaticity of light emitting device
JP2006518111A (en) * 2003-02-14 2006-08-03 クリー インコーポレイテッド Light emitting device incorporating a light emitting material
JP4791351B2 (en) * 2003-02-14 2011-10-12 クリー インコーポレイテッド Light emitting device incorporating a light emitting material
JP2004342782A (en) * 2003-05-14 2004-12-02 Nichia Chem Ind Ltd Light emitting device and manufacturing method thereof
KR20050016804A (en) * 2003-08-04 2005-02-21 서울반도체 주식회사 Phosphor structure with high brightness for Light Emitting Device and Light Emitting Device using the same
US9105817B2 (en) 2003-09-18 2015-08-11 Cree, Inc. Molded chip fabrication method and apparatus
US7749038B2 (en) 2004-02-19 2010-07-06 Hong-Yuan Technology Co., Ltd. Light emitting device fabrication method
JP2006074036A (en) * 2004-09-01 2006-03-16 Shogen Koden Kofun Yugenkoshi Semiconductor light emitting device and manufacturing method thereof
US7910940B2 (en) 2005-08-05 2011-03-22 Panasonic Corporation Semiconductor light-emitting device
US7910938B2 (en) 2006-09-01 2011-03-22 Cree, Inc. Encapsulant profile for light emitting diodes
US8766298B2 (en) 2006-09-01 2014-07-01 Cree, Inc. Encapsulant profile for light emitting diodes
US10505083B2 (en) 2007-07-11 2019-12-10 Cree, Inc. Coating method utilizing phosphor containment structure and devices fabricated using same
NL2003027C (en) * 2008-06-15 2010-04-12 Stichting Administratiekantoor Vomgroup METHOD FOR MANUFACTURING A LENS TO BE ADDED TO A LED AND WITH THE LENS OBTAINED BY THE METHOD.
WO2010005294A1 (en) * 2008-06-15 2010-01-14 Stichting Administratiekantoor Vomgroup A method for manufacturing a lens to be added to a led, and a lens obtained with that method
JP2010166057A (en) * 2009-01-15 2010-07-29 Yiguang Electronic Ind Co Ltd Package structure of light-emitting diode and method for fabricating the same
US8399904B2 (en) 2010-08-09 2013-03-19 Lg Innotek Co., Ltd. Light emitting device and lighting system having the same
JP2012039122A (en) * 2010-08-09 2012-02-23 Lg Innotek Co Ltd Light emitting element
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
US9310062B2 (en) 2012-07-24 2016-04-12 Toyoda Gosei Co., Ltd. Light-emitting device and method of manufacturing the same
JP2014130963A (en) * 2012-12-28 2014-07-10 Nichia Chem Ind Ltd Light emitting device
JP2013175757A (en) * 2013-04-08 2013-09-05 Toshiba Corp Semiconductor light emitting device
US10431721B2 (en) 2016-02-02 2019-10-01 Citizen Electronics Co., Ltd. Light-emitting device and method for manufacturing same
US10825963B2 (en) 2016-02-02 2020-11-03 Citizen Electronics Co., Ltd. Light-emitting device and method for manufacturing same
KR20180113573A (en) * 2016-04-25 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member, method of manufacturing the same, and light emitting device

Also Published As

Publication number Publication date
JP3617587B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
JP3617587B2 (en) Light emitting diode and method for forming the same
JP3546650B2 (en) Method of forming light emitting diode
JP3065263B2 (en) Light emitting device and LED display using the same
JP3407608B2 (en) Light emitting diode and method for forming the same
JP3282176B2 (en) Method of forming light emitting diode
JPH1146019A5 (en)
JP6542509B2 (en) Phosphor and light emitting device package including the same
KR20020079513A (en) Light emitting device
JPH10247750A (en) LED lamp
JP3729001B2 (en) Light emitting device, bullet-type light emitting diode, chip type LED
JP3367096B2 (en) Method of forming light emitting diode
JP2000216434A5 (en)
JP5077282B2 (en) Light emitting element mounting package and light emitting device
JP3858829B2 (en) Method for forming light emitting diode
JP2000315826A (en) Light emitting device, formation thereof, gun type light emitting diode, chip type led
JP2000315826A5 (en)
JP3775268B2 (en) Method for forming light emitting device
JP3087828B2 (en) LED display
JP3604298B2 (en) Method of forming light emitting diode
JP2003224307A5 (en)
JP3835276B2 (en) Light emitting diode and method for forming the same
JPH10233533A (en) Method and apparatus for forming light emitting device
JP2004080058A (en) Light emitting diode
JPH11233832A (en) Method of forming light emitting diode
JP2003008082A (en) Light emitting diode and method of forming the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term