JPH1168239A - Manufacturing method of quantum dots - Google Patents
Manufacturing method of quantum dotsInfo
- Publication number
- JPH1168239A JPH1168239A JP22026397A JP22026397A JPH1168239A JP H1168239 A JPH1168239 A JP H1168239A JP 22026397 A JP22026397 A JP 22026397A JP 22026397 A JP22026397 A JP 22026397A JP H1168239 A JPH1168239 A JP H1168239A
- Authority
- JP
- Japan
- Prior art keywords
- growth
- repetitions
- group iii
- lattice constant
- alternate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
(57)【要約】
【課題】 量子ドットの製造方法に関し、1.3〔μ
m〕帯で発光するInGaAs量子ドットを安定に得ら
れるようにする為、簡単な手段で、原料交互供給の繰り
返し数をある成長条件に対して一義的に決められるよう
にしようとする。
【解決手段】 第1の格子定数を有する半導体下地上に
三族有機金属原料と五族原料を交互に供給する工程を繰
り返して第2の格子定数を有する三族−五族半導体薄膜
を形成して量子ドットを生成させる過程に於いて、三族
−五族半導体薄膜は結晶成長温度と原料交互供給の繰り
返し回数Nを成長パラメータとして形成され、該成長パ
ラメータは結晶成長温度が30〔℃〕以下の刻み幅で変
化し且つ原料交互供給の繰り返し回数Nが各結晶成長温
度に於ける薄膜の成長様式が2次元成長から3次元成長
に変化する際の原料交互供給の繰り返し回数N0 のM
(M>1)倍以上に変化する条件を満たす領域R内に在
る。
(57) [Problem] To provide a method for manufacturing a quantum dot, which has a function of 1.3 [μ].
[m] In order to stably obtain InGaAs quantum dots that emit light in the band, the number of repetitions of the alternate supply of the raw material is to be uniquely determined for certain growth conditions by a simple means. SOLUTION: A group III-V semiconductor thin film having a second lattice constant is formed by repeating a step of alternately supplying a group III organic metal material and a group V material on a semiconductor base having a first lattice constant. In the process of producing quantum dots by using the method of the present invention, the group III-V semiconductor thin film is formed using the crystal growth temperature and the number of repetitions N of alternately supplying the raw materials as a growth parameter, and the growth parameter is such that the crystal growth temperature is 30 ° C. or lower. And the number of repetitions N of alternate material supply is M at the number of repetitions N 0 of alternate material supply when the growth mode of the thin film at each crystal growth temperature changes from two-dimensional growth to three-dimensional growth.
(M> 1) The region R satisfies the condition that changes more than twice.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光通信に多用して
いる波長帯である1.3±0.05〔μm〕帯、通常、
1.3〔μm〕帯と呼ばれている波長帯で発光する量子
ドットの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 1.3 ± 0.05 [.mu.m]
The present invention relates to a method for manufacturing a quantum dot that emits light in a wavelength band called a 1.3 [μm] band.
【0002】現在、3次元的な量子閉じ込めが実現でき
る量子ドット構造を活性層に用いた半導体レーザの研究
が盛んであり、若し、1.3〔μm〕帯で発光する結晶
組成をもつ量子ドットを作製できれば、そのデルタ関数
的な状態密度に依って微分利得が向上し、量子井戸レー
ザを越える低しきい値発振や高温動作特性の向上などを
期待することができる。At present, semiconductor lasers using a quantum dot structure capable of realizing three-dimensional quantum confinement as an active layer have been actively studied, and quantum lasers having a crystal composition that emits light in a 1.3 [μm] band have been developed. If the dot can be manufactured, the differential gain is improved depending on the state density of the delta function, and it is expected that the low threshold oscillation exceeding the quantum well laser and the high temperature operation characteristics are improved.
【0003】本発明は、1.3〔μm〕帯で発光する結
晶組成をもつ量子ドットを再現性良く製造する手段を開
示しようとする。[0003] The present invention intends to disclose means for producing quantum dots having a crystal composition emitting light in the 1.3 [μm] band with good reproducibility.
【0004】[0004]
【従来の技術】量子ドットを作製する場合、初期の頃
は、半導体結晶を電子線リソグラフィ技術或いは集束イ
オン・ビームを用いて微細加工する技術が用いられてい
た。2. Description of the Related Art In the early days of manufacturing quantum dots, an electron lithography technique or a technique for finely processing a semiconductor crystal using a focused ion beam was used.
【0005】然しながら、ナノ・スケールの微細加工の
限界やダメージなどの問題から、前記のような方法は廃
れてしまい、近年は、専ら、結晶成長中の自然形成技術
が用いられている。[0005] However, due to problems such as limitations and damages of nano-scale fine processing, the above-mentioned methods have been abolished, and in recent years, the natural formation technique during crystal growth has been exclusively used.
【0006】結晶成長で量子ドットを作製する方法は何
種類かあるが、その中で比較的多く使われているのは、
格子不整合系材料の結晶成長を利用した量子ドットの製
造方法である。[0006] There are several methods for producing quantum dots by crystal growth.
This is a method for manufacturing a quantum dot utilizing crystal growth of a lattice mismatched material.
【0007】図3は従来の技術を説明する為の製造工程
要所に於ける量子ドットを表す要部切断側面図である。FIG. 3 is a cutaway side view of a main part showing a quantum dot at a key point in a manufacturing process for explaining a conventional technique.
【0008】図3(A)参照 3−(1) 第1の格子定数をもつ半導体下地1上に第1の格子定数
に比較して大きい格子定数をもつ三族−五族半導体層2
を成長させる。3 (A) 3- (1) Group III-V semiconductor layer 2 having a lattice constant larger than the first lattice constant on a semiconductor substrate 1 having a first lattice constant.
Grow.
【0009】この場合、三族−五族半導体層は、成長を
開始した初期に於いて、格子不整合の影響で2次元的層
状に成長される。In this case, the group III-V semiconductor layer is grown in a two-dimensional layer at the beginning of the growth due to the lattice mismatch.
【0010】図3(B)参照 3−(2) 成長させている半導体層2が或層厚に達すると、その上
にナノ・スケールの3次元島3が生成される。この現象
が、所謂、S−K(Stranski−Krastan
ov)成長である。Referring to FIG. 3B, 3- (2) When the growing semiconductor layer 2 reaches a certain thickness, a nano-scale three-dimensional island 3 is formed thereon. This phenomenon is what is called SK (Transki-Krastan).
ov) growth.
【0011】1.3〔μm〕帯で発光する結晶組成をも
つ量子ドットの材料としては、GaAs上のInGaA
sを用いることができ、それを形成する結晶成長技術と
しては、有機金属気相成長(metalorganic
vapor phaseepitaxy:MOVP
E)法、分子線エピタキシャル成長(molecula
r beam epitaxy:MBE)法、MOVP
E法を或いはMBE法に依る原料交互供給法などが知ら
れている。As a material of a quantum dot having a crystal composition that emits light in the 1.3 [μm] band, InGaAs on GaAs is used.
s can be used, and as a crystal growth technique for forming the same, metalorganic vapor phase epitaxy (metalorganic) can be used.
vapor phasepitaxis: MOVP
E) method, molecular beam epitaxial growth (molecula)
r beam epitaxy (MBE) method, MOVP
A method of alternately supplying raw materials by the E method or the MBE method is known.
【0012】これ等、何れの成長法に於いても、1.3
〔μm〕帯で発光するInGaAs量子ドットが得られ
ているのであるが、その成長条件は、商品として通用す
るような量子ドット・レーザを製造できるような確立し
たものではない。In any of these growth methods, 1.3 is used.
InGaAs quantum dots emitting in the [μm] band have been obtained, but the growth conditions are not established such that a quantum dot laser that can be used commercially is manufactured.
【0013】例えば、三族有機金属原料と五族原料の交
互供給法に於いては、420〔℃〕〜500〔℃〕の成
長温度で原料の交互供給の繰り返し数を10回〜24回
にして1.3〔μm〕帯で発光するInGaAs量子ド
ットを作製できることが報告されているが、これは、成
長温度、或いは、原料の交互供給の繰り返し数の何れか
一方を固定し、他方を変化させて得られた結果であっ
て、安定した量産技術として採用するには問題がある。For example, in the method of alternately supplying a group III organometallic material and a group V material, the number of repetitions of the alternate supply of the material is set to 10 to 24 at a growth temperature of 420 ° C. to 500 ° C. It has been reported that InGaAs quantum dots that emit light in the 1.3 [μm] band can be produced by fixing either one of the growth temperature or the number of repetitions of alternate supply of the raw material and changing the other. This is the result obtained, and there is a problem in adopting it as a stable mass production technology.
【0014】即ち、前記原料交互供給法に於いて、原料
交互供給の繰り返し数は、1回当たりの原料供給量、或
いは、原料供給時間に依存するものであり、従って、前
記数値は普遍性があるものではない。That is, in the alternate material supply method, the number of repetitions of alternate material supply depends on the amount of material supply per one time or the material supply time. Not something.
【0015】[0015]
【発明が解決しようとする課題】本発明では、1.3
〔μm〕帯で発光するInGaAs量子ドットを安定に
得られるようにする為、簡単な手段で、原料交互供給の
繰り返し数をある成長条件に対して一義的に決められる
ようにしようとする。According to the present invention, 1.3 is used.
In order to stably obtain InGaAs quantum dots that emit light in the [μm] band, the number of repetitions of the alternate supply of the raw material is to be uniquely determined for certain growth conditions by a simple means.
【0016】[0016]
【課題を解決するための手段】本発明に於いては、原料
交互供給法を適用して量子ドットを生成するに際し、原
料交互供給の繰り返し数を或成長条件について一義的に
指定する為、成長様式が2次元成長から3次元成長に変
化する際の繰り返し回数N0 で規格化することが基本に
なっている。According to the present invention, when a quantum dot is generated by applying the alternate material supply method, the number of repetitions of the alternate material supply is uniquely specified for a certain growth condition. Basically, normalization is performed using the number of repetitions N 0 when the style changes from two-dimensional growth to three-dimensional growth.
【0017】即ち、前記2次元成長から3次元成長に変
化する際の繰り返し回数N0 は、或成長条件に対して一
義的に決めることができ、その繰り返し回数N0 をM倍
(M>1)することで1.3〔μm〕帯で発光するIn
GaAs量子ドットを得ることができる。[0017] That is, the two-dimensional repetition count when changing the three-dimensional growth from the growth N 0 can be determined uniquely with respect to certain growth conditions, the number of repetitions N 0 M times (M> 1 ) To emit light in the 1.3 [μm] band.
GaAs quantum dots can be obtained.
【0018】さて、本発明をなすにあたって行なった原
料交互供給法の研究では、結晶の成長温度を10〔℃〕
〜20〔℃〕刻みで、また、交互供給の繰り返し回数を
2回刻みで変化させることに依り、1.3〔μm〕帯で
発光するInGaAs量子ドットの成長パラメータに明
確な領域が存在することを見出した。In the study of the method for alternately supplying the raw material conducted in the practice of the present invention, the crystal growth temperature was set to 10 ° C.
By changing the number of repetitions of alternate supply in increments of up to 20 [° C.] and in increments of two, a clear region exists in the growth parameters of InGaAs quantum dots that emit light in the 1.3 [μm] band. Was found.
【0019】図1は各試料結晶についてフォトルミネセ
ンス(photoluminescence:PL)を
測定して得られた成長条件のマップであり、縦軸には結
晶の成長温度を、そして、横軸には原料交互供給の繰り
返し回数をそれぞれ採ってあり、そして、マップ中の各
図に於いては、縦軸にPL強度を、また、横軸には波長
〔μm〕をそれぞれ採ってある。FIG. 1 is a map of growth conditions obtained by measuring photoluminescence (PL) of each sample crystal, in which the vertical axis indicates the crystal growth temperature, and the horizontal axis indicates the material alternation. The number of repetitions of the supply is taken, and in each figure in the map, the PL intensity is taken on the vertical axis, and the wavelength [μm] is taken on the horizontal axis.
【0020】このデータを得た実験に依れば、結晶の成
長温度については、500〔℃〕〜560〔℃〕の60
〔℃〕の領域に於いて、また、原料交互供給の繰り返し
回数Nについては、結晶の成長様式が2次元成長から3
次元成長に変化する際の繰り返し回数N0 の概ね1.3
倍以上とすることで1.3〔μm〕帯で発光するInG
aAs量子ドットが得られることを知得した。According to the experiment from which this data was obtained, the crystal growth temperature ranged from 500 ° C. to 560 ° C.
In the range of [° C.] and the number of repetitions N of the alternate material supply, the crystal growth mode was changed from two-dimensional growth to three times.
The number of repetitions N 0 when changing to dimensional growth is approximately 1.3.
InG that emits light in the 1.3 [μm] band
It has been found that aAs quantum dots can be obtained.
【0021】そこで、結晶の成長温度の刻みを60
〔℃〕の半分である30〔℃〕以下に設定すれば、1.
3〔μm〕帯で発光するInGaAs量子ドットの成長
温度領域を得ることができる。Therefore, the increment of the crystal growth temperature is set to 60
If it is set to 30 [° C.] or less, which is half of [° C.],
A growth temperature range of InGaAs quantum dots emitting light in the 3 [μm] band can be obtained.
【0022】尚、結晶の成長温度を変化させる場合、そ
の振り幅(刻み幅)を大きく、例えば50〔℃〕にする
と成長温度領域を限定することができない。即ち、成長
温度を2点決めるには、少なくとも60〔℃〕の半分以
下、従って、30〔℃〕以下にしなければならない。When the crystal growth temperature is changed, if the swing width (step width) is made large, for example, 50 ° C., the growth temperature region cannot be limited. That is, in order to determine two growth temperatures, the growth temperature must be at least half of 60 ° C. or less, and therefore 30 ° C. or less.
【0023】また、原料交互供給の繰り返し回数につい
ては、成長温度500〔℃〕〜560〔℃〕の領域で、
成長様式が2次元成長から3次元成長に変化する際の繰
り返し回数N0 の1.3倍以上に設定すれば、再現性良
く1.3〔μm〕帯で発光するInGaAs量子ドット
を得ることができる。Regarding the number of repetitions of the alternate material supply, the growth temperature is in the range of 500 ° C. to 560 ° C.
If the number of repetitions N 0 at which the growth mode changes from two-dimensional growth to three-dimensional growth is set to 1.3 times or more, it is possible to obtain InGaAs quantum dots that emit light in the 1.3 [μm] band with good reproducibility. it can.
【0024】図2は本発明に於ける結晶の成長条件を説
明する為の線図であり、縦軸には成長温度を、そして、
横軸には原料交互供給の繰り返し回数Nをそれぞれ採っ
てある。FIG. 2 is a diagram for explaining the crystal growth conditions in the present invention. The vertical axis represents the growth temperature, and FIG.
The number of repetitions N of the alternate material supply is plotted on the horizontal axis.
【0025】図に於いて、L1は成長様式が2次元成長
から3次元成長に変化する時点に於ける原料交互供給の
繰り返し回数N0 の境界線、L2は原料交互供給の繰り
返し回数が1.3N0 である境界線、Rは1.3〔μ
m〕帯で発光する量子ドットが得られる成長条件領域を
それぞれ示している。尚、図2は、図1に見られるデー
タから抽出されたものである。In the figure, L1 is the boundary of the number of repetitions N 0 of the alternate material supply at the time when the growth mode changes from two-dimensional growth to three-dimensional growth, and L2 is the number of repetitions of the alternate material supply of 1. The boundary line, 3N 0 , R is 1.3 [μ
[m] shows growth condition regions in which quantum dots emitting light in the band are obtained. FIG. 2 is extracted from the data shown in FIG.
【0026】前記したところから、本発明に依る量子ド
ットの製造方法に於いては、 (1)第1の格子定数を有する半導体下地上に三族有機
金属原料と五族原料を交互に供給する工程を繰り返して
第1の格子定数と異なる第2の格子定数を有する三族−
五族半導体薄膜を形成して量子ドットを生成させる過程
に於いて、該三族−五族半導体薄膜は結晶成長温度及び
原料交互供給の繰り返し回数Nを成長パラメータとして
形成され、該成長パラメータは結晶成長温度が30
〔℃〕以下の刻み幅で変化し且つ原料交互供給の繰り返
し回数Nが該各結晶成長温度に於ける薄膜の成長様式が
2次元成長から3次元成長に変化する際の原料交互供給
の繰り返し回数N0 のM(M>1)倍以上に変化する条
件を満たす領域内に在ることを特徴とするか、或いは、From the above, in the method of manufacturing a quantum dot according to the present invention, (1) a group III organic metal material and a group V material are alternately supplied on a semiconductor base having a first lattice constant. Group III having a second lattice constant different from the first lattice constant by repeating the process
In the process of forming the group V semiconductor thin film and forming quantum dots, the group III-V semiconductor thin film is formed using the crystal growth temperature and the number of repetitions N of alternately supplying the raw materials as growth parameters, and the growth parameter is a crystal. Growth temperature is 30
[° C.] or less, and the number of repetitions N of alternate material supply is the number of repetitions of alternate material supply when the thin film growth mode changes from two-dimensional growth to three-dimensional growth at each crystal growth temperature. Characterized by being in an area that satisfies the condition that changes by M (M> 1) times or more of N 0 , or
【0027】(2)前記(1)に於いて、第1の格子定
数を有する半導体がGaAsであると共に第2の格子定
数を有する三族−五族半導体がInGaAsであって且
つ原料交互供給の繰り返し回数Nが原料交互供給の繰り
返し回数N0 の1.3倍以上であることを特徴とする
か、或いは、(2) In the above (1), the semiconductor having the first lattice constant is GaAs, the group III-V semiconductor having the second lattice constant is InGaAs, and the raw material is alternately supplied. The number of repetitions N is at least 1.3 times the number of repetitions N 0 of the alternate material supply, or
【0028】(3)前記(1)又は(2)に於いて、結
晶成長温度を500〔℃〕〜560〔℃〕の範囲で選択
することを特徴とする。(3) In the above (1) or (2), the crystal growth temperature is selected from the range of 500 ° C. to 560 ° C.
【0029】前記手段を採ることに依り、1.3〔μ
m〕帯で発光するInGaAs量子ドットを安定に得ら
れる結晶の成長条件、即ち、原料交互供給の繰り返し数
をある成長条件に対して一義的に決めることが可能であ
り、従って、光通信用半導体レーザの超低しきい値化や
温度特性を向上させることができる。By adopting the above means, 1.3 [μ
m] The crystal growth conditions for stably obtaining InGaAs quantum dots that emit light in the band, that is, the number of repetitions of the alternate supply of raw materials can be uniquely determined with respect to certain growth conditions. It is possible to lower the threshold value of the laser and improve the temperature characteristics.
【0030】[0030]
【発明の実施の形態】図1及び図2に見られるデータを
得た試料を製造する場合を本発明に於ける実施の形態と
して具体的に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case of manufacturing a sample having the data shown in FIGS. 1 and 2 will be specifically described as an embodiment of the present invention.
【0031】MOVPE法を適用し、ソース・ガスとし
て、 トリメチルインジウムジメチルエチルアミン(TM
IDMEA:(CH3 )3 InN(CH3 )2 (C2 H
5 )) トリメチルガリウム(TMGa:Ga(C
H3 )3 ) アルシン(AsH3 ) を、キャリヤ・ガスとして水素(H2 )を用い、成長圧
力15〔Torr〕として、面指数(100)のGaA
sからなる下地上にTMIDMEA(2〔秒〕)→TM
Ga(0.3〔秒〕)→H2 (3〔秒〕)→AsH
3 (7〔秒〕)→H2 (0.5〔秒〕)の順に交互供給
してInGaAs薄膜を形成した。The MOVPE method is applied, and trimethylindium dimethylethylamine (TM
IDMEA: (CH 3 ) 3 InN (CH 3 ) 2 (C 2 H
5 )) Trimethylgallium (TMGa: Ga (C
H 3 ) 3 ) Arsine (AsH 3 ), hydrogen (H 2 ) as a carrier gas, a growth pressure of 15 [Torr], and a surface index (100) of GaAs.
TMIMEA (2 [seconds]) → TM
Ga (0.3 [sec]) → H 2 (3 [sec]) → AsH
3 (7 [sec]) → H 2 (0.5 [sec]) in this order to form an InGaAs thin film.
【0032】前記各原料の供給順序に付記されている括
弧内の時間は、各原料の供給時間、或いは、H2 に依る
パージ時間であり、図1は前記のようにして形成した試
料について室温PLスペクトルを測定して作製したもの
である。The time in parentheses added to the supply order of each raw material is the supply time of each raw material or the purge time depending on H 2. FIG. 1 shows the room temperature of the sample formed as described above at room temperature. It was prepared by measuring a PL spectrum.
【0033】前記成長を行なうに際し、成長温度につい
ては、490〔℃〕〜580〔℃〕の範囲で10〔℃〕
〜20〔℃〕刻みで変化させ、そして、繰り返し回数に
ついては、12回〜22回の範囲で変化させた。When performing the above-mentioned growth, the growth temperature is in the range of 490 ° C. to 580 ° C. and 10 ° C.
The number of repetitions was changed in the range of 12 to 22 times.
【0034】InGaAs薄膜形成後は、各成長温度に
於いて、厚さが30〔nm〕であるGaAs薄膜を積層
形成した。After the formation of the InGaAs thin film, a GaAs thin film having a thickness of 30 [nm] was formed at each growth temperature.
【0035】前記した三族原料の供給時間は、温度50
0〔℃〕に於けるInAs及びGaAsのALE(at
omic layer epitaxy)成長速度に換
算すると、InAs:0.5ML/サイクル(MLは分
子層)、GaAs:0.05ML/サイクルに相当する
供給量である。The supply time of the above-mentioned group III raw material is set at a temperature of 50.
ALE of InAs and GaAs at 0 ° C. (at
When converted into an omic layer epitaxy (growth rate), the supply rate is equivalent to InAs: 0.5 ML / cycle (ML is a molecular layer) and GaAs: 0.05 ML / cycle.
【0036】この成長温度と繰り返し回数に依るPLス
ペクトルのマッピング、即ち、成長条件のマップからす
ると、類似のPLスペクトルが得られるような成長条件
の領域分けが可能であって、図1には、その領域の境界
線S1及びS2が示されている。According to the mapping of the PL spectrum according to the growth temperature and the number of repetitions, that is, from the map of the growth conditions, it is possible to divide the growth conditions into regions in which similar PL spectra can be obtained. The boundaries S1 and S2 of the area are shown.
【0037】まず、繰り返し回数が少ない場合には、成
長様式が2次元状の成長であって、InGaAs量子ド
ットは形成されず、そして、ある繰り返し回数N0 を境
に3次元InGaAs量子ドットが形成され始める。First, when the number of repetitions is small, the growth mode is two-dimensional growth, and no InGaAs quantum dots are formed. After a certain number of repetitions N 0 , three-dimensional InGaAs quantum dots are formed. Begin to be.
【0038】形成され始めた当初に於けるInGaAs
量子ドットは、1.2〔μm〕帯で発光し、発光半値幅
は約100〔meV〕と広いのであるが、成長温度が5
00〔℃〕〜560〔℃〕の領域では、繰り返し回数を
ある値より多くした場合、1.3〔μm〕帯で発光半値
幅が30〔meV〕〜50〔meV〕を示してシャープ
に発光するInGaAs量子ドットが得られる。InGaAs at the beginning of formation
The quantum dots emit light in the 1.2 [μm] band, and the emission half width is as wide as about 100 [meV].
In the range of 00 [° C] to 560 [° C], when the number of repetitions is set to a value larger than a certain value, the half width of light emission shows 30 [meV] to 50 [meV] in the 1.3 [μm] band and emits light sharply. InGaAs quantum dots are obtained.
【0039】各成長温度に於いて、1.3〔μm〕帯で
発光するInGaAs量子ドットが形成され始める繰り
返し回数N、及び、2次元成長から3次元成長に変化す
る繰り返し回数N0 の比は次のようになる。 温度500〔℃〕〜540〔℃〕の場合 N=18、N0 =〜14 N/N0 =〜1.29 温度560〔℃〕の場合 N=〜18、N0 =〜22 N/N0 =〜1.22At each growth temperature, the ratio of the number of repetitions N at which an InGaAs quantum dot emitting light in the 1.3 [μm] band starts to be formed and the number of repetitions N 0 at which the two-dimensional growth changes to the three-dimensional growth is: It looks like this: For a temperature of 500 [℃] to 540 [℃] N = 18, N 0 = ~14 N / N 0 = ~1.29 temperature 560 when the [℃] N = ~18, N 0 = ~22 N / N 0 = 1.22
【0040】従って、成長温度の刻み量を30〔℃〕以
下とし、原料交互供給の繰り返し回数Nを2次元成長か
ら3次元成長に変化する際に於ける原料交互供給の繰り
返し回数N0 の1.3倍以上まで変化させることで、
1.3〔μm〕帯でシャープに発光するInGaAs量
子ドットの成長パラメータ領域を定めることができる。Accordingly, the increment of the growth temperature is set at 30 ° C. or less, and the number of repetitions N of the alternate material supply is changed to one of the number of repetitions N 0 of the alternate material supply when changing from the two-dimensional growth to the three-dimensional growth. By changing to more than 3 times,
The growth parameter region of the InGaAs quantum dot that emits light sharply in the 1.3 [μm] band can be determined.
【0041】図1に見られる境界線S2で囲んだ成長パ
ラメータ領域は、図2に見られる成長条件領域Rに相当
し、また、境界線S1とS2の間の成長パラメータ領域
は、図2に見られる境界線L1とL2との間の領域に相
当する。The growth parameter region surrounded by the boundary line S2 shown in FIG. 1 corresponds to the growth condition region R shown in FIG. 2, and the growth parameter region between the boundary lines S1 and S2 is shown in FIG. It corresponds to the area between the visible boundaries L1 and L2.
【0042】[0042]
【発明の効果】本発明に依る量子ドットの製造方法に於
いては、第1の格子定数を有する半導体下地上に三族有
機金属原料と五族原料を交互に供給する工程を繰り返し
て第1の格子定数と異なる第2の格子定数を有する三族
−五族半導体薄膜を形成して量子ドットを生成させる過
程で、三族−五族半導体薄膜は結晶成長温度及び原料交
互供給の繰り返し回数Nを成長パラメータとして形成さ
れ、成長パラメータは結晶成長温度が30〔℃〕以下の
刻み幅で変化し且つ原料交互供給の繰り返し回数Nが各
結晶成長温度に於ける薄膜の成長様式が2次元成長から
3次元成長に変化する際の原料交互供給の繰り返し回数
N0 のM(M>1)倍以上に変化する条件を満たす領域
内に在る。In the method of manufacturing a quantum dot according to the present invention, the step of alternately supplying a group III organometallic material and a group V material on a semiconductor substrate having a first lattice constant is repeated. In the process of forming a group III-V semiconductor thin film having a second lattice constant different from the lattice constant of the group III and generating quantum dots, the group III-V semiconductor thin film has a crystal growth temperature and a repetition number N of alternately supplying the raw material. The crystal growth temperature varies in steps of 30 ° C. or less, and the number of repetitions N of the alternate supply of the raw material is changed from two-dimensional growth at each crystal growth temperature. It is in a region that satisfies the condition that the number of repetitions N 0 of the alternate material supply when changing to three-dimensional growth is M (M> 1) times or more.
【0043】前記構成を採ることに依り、1.3〔μ
m〕帯で発光するInGaAs量子ドットを安定に得ら
れる結晶の成長条件、即ち、原料交互供給の繰り返し数
をある成長条件に対して一義的に決めることが可能であ
り、従って、光通信用半導体レーザの超低しきい値化や
温度特性を向上させることができる。By adopting the above configuration, 1.3 [μ
m] The crystal growth conditions for stably obtaining InGaAs quantum dots that emit light in the band, that is, the number of repetitions of the alternate supply of raw materials can be uniquely determined with respect to certain growth conditions. It is possible to lower the threshold value of the laser and improve the temperature characteristics.
【図1】各試料結晶についてフォトルミネセンス(ph
otoluminescence:PL)を測定して得
られた成長条件のマップである。FIG. 1 shows the photoluminescence (ph) of each sample crystal.
6 is a map of the growth conditions obtained by measuring the luminescence (PL).
【図2】本発明に於ける結晶の成長条件を説明する為の
線図である。FIG. 2 is a diagram for explaining crystal growth conditions in the present invention.
【図3】従来の技術を説明する為の製造工程要所に於け
る量子ドットを表す要部切断側面図である。FIG. 3 is a fragmentary side view showing a quantum dot at a key point in a manufacturing process for explaining a conventional technique.
1 第1の格子定数をもつ半導体下地 2 三族−五族半導体層 3 3次元島(量子ドット) Reference Signs List 1 semiconductor base having first lattice constant 2 group III-V semiconductor layer 3 three-dimensional island (quantum dot)
Claims (3)
族有機金属原料と五族原料を交互に供給する工程を繰り
返して第1の格子定数と異なる第2の格子定数を有する
三族−五族半導体薄膜を形成して量子ドットを生成させ
る過程に於いて、 該三族−五族半導体薄膜は結晶成長温度及び原料交互供
給の繰り返し回数Nを成長パラメータとして形成され、 該成長パラメータは結晶成長温度が30〔℃〕以下の刻
み幅で変化し且つ原料交互供給の繰り返し回数Nが該各
結晶成長温度に於ける薄膜の成長様式が2次元成長から
3次元成長に変化する際の原料交互供給の繰り返し回数
N0 のM(M>1)倍以上に変化する条件を満たす領域
内に在ることを特徴とする量子ドットの製造方法。1. A group III material having a second lattice constant different from the first lattice constant by repeating a process of alternately supplying a group III metal organic material and a group V material on a semiconductor substrate having a first lattice constant. In the process of forming a group V semiconductor thin film and forming quantum dots, the group III-V semiconductor thin film is formed using a crystal growth temperature and the number of repetitions N of alternate supply of raw materials as a growth parameter, and the growth parameter is When the crystal growth temperature changes at a step width of 30 ° C. or less and the number N of times of alternately supplying the raw material changes, the raw material when the growth mode of the thin film at each crystal growth temperature changes from two-dimensional growth to three-dimensional growth method of manufacturing a quantum dot, characterized in that located in satisfying the region of alternating M (M> 1) number of times of repetition N 0 of the feed times.
であると共に第2の格子定数を有する三族−五族半導体
がInGaAsであって且つ原料交互供給の繰り返し回
数Nが原料交互供給の繰り返し回数N0 の1.3倍以上
であることを特徴とする請求項1記載の量子ドットの製
造方法。2. The semiconductor having a first lattice constant is GaAs.
And the group III-V semiconductor having the second lattice constant is InGaAs, and the number of repetitions N of the alternate material supply is at least 1.3 times the number of repetitions N 0 of the alternate material supply. The method for producing a quantum dot according to claim 1.
〔℃〕の範囲で選択することを特徴とする請求項1或い
は2記載の量子ドットの製造方法。3. A crystal growth temperature of 500 ° C. to 560.
3. The method according to claim 1, wherein the temperature is selected within a range of [° C.].
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP22026397A JPH1168239A (en) | 1997-08-15 | 1997-08-15 | Manufacturing method of quantum dots |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP22026397A JPH1168239A (en) | 1997-08-15 | 1997-08-15 | Manufacturing method of quantum dots |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH1168239A true JPH1168239A (en) | 1999-03-09 |
Family
ID=16748451
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP22026397A Pending JPH1168239A (en) | 1997-08-15 | 1997-08-15 | Manufacturing method of quantum dots |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH1168239A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001071812A1 (en) * | 2000-03-23 | 2001-09-27 | Mp Technologies Llc | Quantum dots infrared for optoelectronic devices |
-
1997
- 1997-08-15 JP JP22026397A patent/JPH1168239A/en active Pending
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001071812A1 (en) * | 2000-03-23 | 2001-09-27 | Mp Technologies Llc | Quantum dots infrared for optoelectronic devices |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240429680A1 (en) | Surface emitting laser element and manufacturing method of the same | |
| KR100761673B1 (en) | Group III-V compound semiconductor and method of producing the same | |
| JP4991828B2 (en) | Method for manufacturing gallium nitride compound semiconductor | |
| JP4719689B2 (en) | Method for growing nitride semiconductor layer and nitride semiconductor light emitting device using the same | |
| US8183073B2 (en) | Method of manufacturing a semiconductor device with quantum dots formed by self-assembled growth | |
| JPH1079501A (en) | Quantum dot forming method and quantum dot structure | |
| JP2000012961A (en) | Semiconductor laser | |
| JP4651759B2 (en) | Device with quantum dots | |
| US6429032B1 (en) | Nitride semiconductor and a method thereof, a nitride semiconductor device and a method thereof | |
| JPH1168239A (en) | Manufacturing method of quantum dots | |
| JPH1187689A (en) | Manufacturing method of quantum dots | |
| Kobayashi et al. | Structural and optical properties of AlGaInN/GaN grown by MOVPE | |
| JP2980175B2 (en) | Method for manufacturing quantum dot structure and method for manufacturing semiconductor light emitting device using the same | |
| JP2000022130A (en) | Fabrication method of semiconductor quantum dot device | |
| JP4440876B2 (en) | Manufacturing method of semiconductor quantum dot structure | |
| US20070241322A1 (en) | Long Wavelength Induim Arsenide Phosphide (InAsP) Quantum Well Active Region And Method For Producing Same | |
| JPH10261785A (en) | Quantum box semiconductor device and method of manufacturing the same | |
| JP2504849B2 (en) | Semiconductor quantum box structure and manufacturing method thereof | |
| Kaiander | MOCVD growth of InGaAs/GaAs QDs for long wavelength lasers and VCSELs | |
| KR100464814B1 (en) | Method of crystal growth, method of forming fine semiconductor structure, semiconductor device, and system | |
| Schwambera et al. | Investigation of GaInN films and development of double-hetero (DH) structures for blue and green light emitters | |
| JP2005079182A (en) | Semiconductor quantum dot device and manufacturing method thereof | |
| JPH11186536A (en) | Fabrication method of semiconductor quantum dot device | |
| Kishino | Mechanism of Selective Area Growth by MBE | |
| JP6635462B2 (en) | Method for manufacturing semiconductor quantum dot device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Effective date: 20040302 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051025 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060228 |