[go: up one dir, main page]

JPH1168362A - Heat dissipating structure of heat releasing part group in apparatus cabinet - Google Patents

Heat dissipating structure of heat releasing part group in apparatus cabinet

Info

Publication number
JPH1168362A
JPH1168362A JP25920897A JP25920897A JPH1168362A JP H1168362 A JPH1168362 A JP H1168362A JP 25920897 A JP25920897 A JP 25920897A JP 25920897 A JP25920897 A JP 25920897A JP H1168362 A JPH1168362 A JP H1168362A
Authority
JP
Japan
Prior art keywords
heat
wind tunnel
cabinet
component
convection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25920897A
Other languages
Japanese (ja)
Other versions
JP4457238B2 (en
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP25920897A priority Critical patent/JP4457238B2/en
Publication of JPH1168362A publication Critical patent/JPH1168362A/en
Application granted granted Critical
Publication of JP4457238B2 publication Critical patent/JP4457238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen a temperature difference between heat releasing parts which are each located in the upstream side and downstream side of a convection air current, by a method wherein heat radiators are arranged in series in a wind tunnel, and outside air replenishing means which replenish the wind tunnel with fresh and cool air are each provided near the convection air current inlets of the heat radiators. SOLUTION: A wind tunnel 4 which is square in cross section is provided to a cabinet 6 to suck in outside air through on outside air inlet 4-1 located at its one edge and exhausted outside through an outside air outlet 4-2 located its other edge. Heat radiators are arranged in series in the wind tunnel 4, the heat radiating parts 1-n of the heat radiators are set nearly as large in size as the inner size of the wind tunnel 4, and heat releasing parts 3-n are each indirectly mounted on the heat receiving surfaces of the heat receiving plates 2 of the heat radiators through the intermediary of the wall of the wind tunnel 4. Furthermore, outside air replenishing means 7-n which replenish the wind tunnel 4 with fresh and cool air are each provided near the convection air current inlets of the heat radiators. By this setup, a temperature difference among the heat releasing parts 3-n which are each located in the upstream side and downstream side of a convection air current can be lessened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は機器キャビネット内にお
ける実装部品群の放熱構造に関するもので、特に実装部
品群の放熱構造を小型化し且つ部品群の一括放熱に際し
必然的に発生する対流の上流下流間の温度差を縮小する
ことを可能にする機器キャビネット内発熱部品群の放熱
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating structure for a group of mounted components in an equipment cabinet, and more particularly, to miniaturizing the heat dissipating structure of the group of mounted components, and upstream and downstream of convection which is inevitably generated when heat is collectively dissipated from the component group. The present invention relates to a heat radiating structure of a heat generating component group in an equipment cabinet that can reduce a temperature difference between the components.

【0002】[0002]

【従来の技術】[Prior art]

従来例(1)…従来の機器キャビネット内における発熱
部品群の一括放熱の構造は、一般的に図7に例示の如く
発熱部品群13−nはプリント基板11−1、11−2
の平面上に展開実装している例が多く、風洞の配設が困
難であり、実装基板平面11−1、11−2の間の間隙
空間をそのまま対流の流路として、即ちこの間隙空間を
放熱空間または風洞代替として適用する例が多い。また
それらの発熱部品群13−nの上には夫々に放熱フィン
群17−nが装着されて風洞代替の放熱空間内に展開配
置されてあることが通例であった。
Conventional example (1) A conventional structure of collective heat radiation of a group of heat-generating components in an equipment cabinet generally includes a heat-generating component group 13-n as shown in FIG.
In many cases, it is difficult to arrange a wind tunnel, and the gap space between the mounting board planes 11-1 and 11-2 is used as a convection flow path as it is, that is, this gap space is used. In many cases, it is used as a heat radiation space or wind tunnel replacement. Further, it is customary that a heat radiation fin group 17-n is mounted on each of the heat generating component groups 13-n and is deployed and arranged in a heat radiation space instead of a wind tunnel.

【0003】従来例(2)…従来の機器キャビネット内
における発熱部品群13−nの一括放熱の他の一例とし
ては図8に例示の如く大型のアルミヒートシンク18の
外周に発熱部品群13−nを搭載し、このアルミヒート
シンク18に冷却ファン19と風洞21−1,21−2
を連結して強制対流放熱を実施する例もあった。
Conventional example (2)... Another example of the collective heat radiation of the heat generating component group 13-n in the conventional equipment cabinet is as shown in FIG. The cooling fan 19 and the wind tunnels 21-1 and 21-2 are mounted on the aluminum heat sink 18.
In some cases, forced convection heat radiation is carried out by connecting the two.

【0004】[0004]

【発明が解決しようとする課題】従来例(1)の如き場
合は図7の如く機器キャビネット内に送入または吸入さ
れる対流15の全量の中で、放熱フィン群17−nの夫
々のフィン間隙内に侵入して実際に放熱に寄与する空気
量の割合が少なく、冷却効率が極めて悪い点が大きな問
題であった。これは空気の流れはキャビネット内の流体
抵抗の少ない部分に多くが流れ、流体抵抗の大きな放熱
フィン群17−nの夫々のフィン間隙内に侵入し、通過
する空気量が減少する必然的な現象によるものであっ
た。またこの様にしてキャビネット内に分散した対流は
分散流相互間の干渉が大きく対流の利用効率を低下せし
めていた。その為に対流発生用ファンとしては必要以上
に大型なものが使用され、機器の大型化の原因ともなっ
ていた。また従来例(2)の如き場合は図8における対
流の下流側放熱部品群13−nは上流側で加熱された空
気により放熱されるため、また上流側を通過して高温に
なった対流15の全てが下流側に導入されるので、上流
側に比較して下流側の冷却効率が大幅に低下し、発熱部
品温度が下流ほど高くなることが避けられずこの点が最
も大きな問題であった。更に従来例(2)の場合はアル
ミヒートシンク18が大きい為に機器が大型化しかつ重
量が大きくなる点も大きな問題点であった。
In the case of the conventional example (1), as shown in FIG. 7, each of the fins of the heat radiation fin group 17-n is included in the total amount of the convection 15 sent or sucked into the equipment cabinet. A major problem is that the ratio of the amount of air that enters the gap and actually contributes to heat dissipation is small, and the cooling efficiency is extremely poor. This is a phenomenon that a large amount of air flows into a portion of the cabinet where the fluid resistance is small, and flows into the fin gaps of the radiating fins 17-n having a large fluid resistance, so that the amount of air passing through is reduced. It was due to. In addition, the convection dispersed in the cabinet in this manner has a large interference between the dispersed flows, thereby reducing the convection utilization efficiency. For this reason, an unnecessarily large fan is used as a convection-generating fan, which has caused the equipment to be large. Further, in the case of the conventional example (2), the convection downstream heat radiating component group 13-n in FIG. 8 is radiated by the air heated on the upstream side. Is introduced on the downstream side, so that the cooling efficiency on the downstream side is significantly reduced as compared with the upstream side, and the temperature of the heat-generating components is inevitably higher on the downstream side. . Further, in the case of the conventional example (2), the aluminum heat sink 18 is large, so that the device becomes large and the weight increases, which is also a big problem.

【0005】[0005]

【課題を解決する為の手段】課題を解決する為の手段と
しての本発明の機器キャビネット内発熱部品群の放熱構
造の基本構造を図1、図2に例示する。キャビネット6
内に実装された発熱部品群3−nが発生する熱量を一括
的に吸収してキャビネット外雰囲気中に移送廃棄する為
の放熱構造であって、キャビネット6の外気を一端の外
気吸入口4−1から吸入し、他端の外気排出口4−2か
ら排出する、対流の流路である方形断面の風洞4を第一
の構成要素とし、風洞4には複数の小型強力な放熱器が
直列に配設されてあり、それらの放熱器群またはその放
熱部群1−nの夫々は風洞内をほぼ充満せしめる形状と
大きさであり、それらの受熱板2−nの群の夫々の受熱
面は、風洞壁を介して間接的に発熱部品3−nを実装す
ることが出来るか、または直接放熱部品を実装すること
が出来るか何れかであるように配設されてある配設構造
を第二の構成要素とし、風洞4内を貫流する自然対流ま
たは強制対流8の発生手段を第三の構成要素とし、風洞
には直列に配設された複数の放熱器の各放熱器の対流流
入口の周辺付近には、風洞内に新鮮な冷風を補充する外
気補充手段7−nが夫々に設けられてあり、これを第四
の構成要素とし、これら四構成要素の総てを含んで構成
されてあることを特徴としている。
FIG. 1 and FIG. 2 show a basic structure of a heat radiating structure of a heat generating component group in an equipment cabinet according to the present invention as means for solving the problem. Cabinet 6
A heat radiation structure for collectively absorbing the amount of heat generated by the heat-generating component group 3-n mounted therein and transporting and discarding it in the atmosphere outside the cabinet. The first component is a wind tunnel 4 having a rectangular cross section, which is a convection flow path, which is sucked in from the air outlet 1 and discharged from the outside air outlet 4-2 at the other end. A plurality of small powerful radiators are connected in series to the wind tunnel 4. Each of the radiators or the radiator groups 1-n is shaped and sized to substantially fill the inside of the wind tunnel, and each of the heat receiving surfaces of the group of the heat receiving plates 2-n. Describes an arrangement in which the heat-generating component 3-n can be mounted indirectly via a wind tunnel wall or the heat-radiating component can be mounted directly. The natural convection or forced convection 8 flowing through the wind tunnel 4 The fresh air means is a third component, and outside air replenishing means 7 for replenishing fresh cold air into the wind tunnel is provided near the convection inlet of each of the plurality of radiators arranged in series in the wind tunnel. −n is provided for each of them, and this is the fourth component, and is characterized by including all of these four components.

【0006】図1は基本構造の縦断面略図であり、図2
はその風洞部分付近の部分横断面略図である。図1にお
いては補助風洞5−1、5−2は図示不可能なので90
度転回して図示してある。風洞4における補助風洞5−
1、5−2の正しい相対位置は図2に例示の通りであ
り、発熱部品群3−nがキャビネット内に露出して受熱
板2−nに実装されている状態が正しい構成である。
FIG. 1 is a schematic longitudinal sectional view of the basic structure, and FIG.
Is a schematic partial cross-sectional view near the wind tunnel portion. In FIG. 1, the auxiliary wind tunnels 5-1 and 5-2 cannot be shown, and
It is shown turned around. Auxiliary wind tunnel 5 in wind tunnel 4
Correct relative positions of 1, 5-2 are as illustrated in FIG. 2, and the correct configuration is such that the heat generating component group 3-n is exposed in the cabinet and mounted on the heat receiving plate 2-n.

【0007】[0007]

【作用】上記の四構成要素を要約すると以下の各項の通
りになる。(1)風洞4には複数の小型強力な放熱器ま
たはその放熱部1−nが風洞をほぼ充満する大きさ及び
形状に配設されてあり、それらの複数の放熱器は風洞内
に直列に配設されてある。(2)放熱器は発熱部品群3
−nが出来るだけ放熱器の受熱板2−nに直接搭載出来
る様配設されてある。(3)対流は自然対流または強制
対流の何れかである。(4)各放熱器に流入する対流に
は放熱器毎に新鮮冷風が補充される。以下に各項の構成
要素毎にその作用について述べる。
The above four components can be summarized as follows. (1) In the wind tunnel 4, a plurality of small powerful radiators or a heat radiating portion 1-n thereof are arranged in a size and a shape substantially filling the wind tunnel, and the plurality of radiators are arranged in series in the wind tunnel. It is arranged. (2) Heatsink group 3
-N is provided so that it can be directly mounted on the heat receiving plate 2-n of the radiator as much as possible. (3) Convection is either natural convection or forced convection. (4) The convection flowing into each radiator is supplemented with fresh cold air for each radiator. The operation of each component will be described below.

【0008】(1)小型強力な放熱器は風洞を小型化せ
しめる。また放熱器の直列配設も風洞を小型化せしめ、
且つ風洞の配設本数を最少ならしめる。放熱器またはそ
の放熱部1−nは風洞4を充満する大きさであるから対
流は分散すること無く、流れの全てが無駄なく熱交換さ
れ放熱効率が向上する。放熱器として受熱板2−nを両
面に有するステレオ型放熱器を採用する場合は、風洞4
を中心とした機器内発熱部品3−nの立体的実装(3次
元実装)が可能になり、機器内発熱部品3−nが効率的
に実装される。ここに云う立体的実装とは単に放熱器の
両面実装を意味するものではない。風洞の両面に且つ直
列に複数組の発熱部品群3−nが配置され更にその風洞
は水平、垂直何れの方向にも配設することが可能とな
る。このような発熱部品群3−nの立体的実装は実装設
計の自由度を大きくするだけでなく、機器キャビネット
の小型化にも大きく貢献する。
(1) A small and powerful radiator makes the wind tunnel smaller. In addition, the series arrangement of radiators also makes the wind tunnel smaller,
And minimize the number of wind tunnels. Since the radiator or the radiator 1-n has a size that fills the wind tunnel 4, the convection does not disperse, and the entire flow exchanges heat without waste, thereby improving the heat radiation efficiency. When a stereo radiator having heat receiving plates 2-n on both sides is adopted as the radiator, the wind tunnel 4
, The three-dimensional mounting (three-dimensional mounting) of the in-device heat generating component 3-n becomes possible, and the in-device heat generating component 3-n is efficiently mounted. The three-dimensional mounting mentioned here does not simply mean the double-sided mounting of the radiator. A plurality of heat generating component groups 3-n are arranged in series on both sides of the wind tunnel, and the wind tunnel can be arranged in any of horizontal and vertical directions. Such three-dimensional mounting of the heat generating component group 3-n not only increases the degree of freedom in mounting design, but also greatly contributes to downsizing of the equipment cabinet.

【0009】(2)放熱器を風洞4と組合わせ配設する
に際して、受熱板2−nをキャビネット6内に露出せし
めて配設するなど、放熱器は発熱部品3−nを出来るだ
け受熱板2−nに直接搭載出来る構造にしてあるから、
これに因る熱抵抗の減少と(1)項による放熱効率の向
上と相俟って、全体的に熱抵抗が減少し放熱性能が大幅
に向上する。
(2) When the heat radiator is installed in combination with the wind tunnel 4, the heat radiator exposes the heat receiving plate 2-n in the cabinet 6 and arranges the heat radiator as much as possible. Because it has a structure that can be mounted directly on 2-n,
As a result, the heat resistance is reduced as a whole, and the heat dissipation performance is greatly improved, in combination with the decrease in the heat resistance and the improvement in the heat dissipation efficiency according to the item (1).

【0010】(3)対流は自然対流、強制対流8−1の
いずれか一方を選択することが出来る。(1)項の効果
の一つとして熱吸収後の対流8−1がキャビネット内に
散逸することの無い構成にすることが出来ると共に、風
洞4内とキャビネット6内を完全に気密に遮断出来るか
ら、キャビネット6を完全密閉構造として、強制対流8
−1であってもキャビネット6内をクリーンに保ち実装
部品の信頼性を向上せしめることが出来る。軸流ファン
などに依る従来の強制対流手段の場合は気密性が悪く、
外部の汚染雰囲気を吸収したりキャビネット6内に塵埃
を取り込んだりして内部を汚染するケースが多かった。
またファンに替えて風洞4の煙突効果を自然対流発生手
段とする場合は従来極めて困難とされてきた機器の密閉
キャビネット内の自然対流放熱を効果的に実施すること
が可能となる。
(3) Either natural convection or forced convection 8-1 can be selected as convection. As one of the effects of the item (1), the configuration is such that the convection 8-1 after heat absorption does not dissipate in the cabinet, and the interior of the wind tunnel 4 and the interior of the cabinet 6 can be completely airtightly shut off. The cabinet 6 has a completely sealed structure, and forced convection 8
Even if it is -1, the inside of the cabinet 6 can be kept clean and the reliability of the mounted components can be improved. In the case of conventional forced convection means using an axial fan or the like, airtightness is poor,
In many cases, the inside of the cabinet 6 is contaminated by absorbing an externally contaminated atmosphere or taking in dust in the cabinet 6.
Further, when the chimney effect of the wind tunnel 4 is used as the natural convection generating means instead of the fan, it is possible to effectively perform the natural convection heat radiation inside the closed cabinet of the equipment, which has been extremely difficult in the past.

【0011】(4)風洞4には直列配設された各放熱器
に対して夫々に新鮮冷風を補充する手段7−nが設けら
れるから、下流側放熱器が上流側放熱器から排出される
高温対流の影響を受けることが少なく直列配設であるに
も拘らず全放熱器に効果的な放熱をさせることが出来
る。更にこの外気補充手段7−nは放熱器に供給される
対流を下流側放熱器ほど対流8の流量を増加せしめ流速
を早める特徴があり、下流側放熱器の放熱効率を増加せ
しめ、下流側放熱器の温度上昇を防ぐ効果がある。
(4) The wind tunnel 4 is provided with means 7-n for replenishing fresh cool air to each radiator arranged in series, so that the downstream radiator is discharged from the upstream radiator. All radiators can effectively radiate heat despite being less affected by high-temperature convection and arranged in series. Further, the outside air replenishing means 7-n is characterized in that the convection supplied to the radiator increases the flow rate of the convection 8 toward the downstream radiator, thereby increasing the flow velocity. This has the effect of preventing the temperature of the vessel from rising.

【0012】本発明に係る機器キャビネット内発熱部品
群の放熱構造の四構成要素の総合的作用は次の如くであ
る。従来の放熱構造はキャビネット6内における冷却対
流の流れは分散流であり、分散流相互間の干渉が大き
く、流れの有効利用が不十分であった。本発明の構造に
おいて流れを集中化せしめ効率的に活用することの可能
な放熱構造に改善し、同時に部品群間の相互熱干渉を減
少せしめ、直列実装、三次元実装、を可能にし、キャビ
ネット内実装を高密度化せしめ、機器全体の小型化軽量
化に貢献する。
The overall operation of the four components of the heat dissipation structure of the heat generating component group in the equipment cabinet according to the present invention is as follows. In the conventional heat dissipation structure, the flow of the cooling convection in the cabinet 6 is a dispersed flow, the interference between the dispersed flows is large, and the effective use of the flow is insufficient. In the structure of the present invention, the flow is concentrated and the heat dissipation structure is improved so that the heat can be efficiently utilized.At the same time, the mutual heat interference between the component groups is reduced, and the series mounting and the three-dimensional mounting can be performed. It increases the mounting density and contributes to the reduction in size and weight of the entire device.

【0013】[0013]

【実施例】【Example】

[第一実施例]図3は本発明に係るキャビネット内発熱
部品群の放熱構造の第一実施例の一例を示す。本実施例
においては第一の構成要素である方形断面形状の風洞4
はキャビネット6の壁体内に内接して配設され、三側面
がキャビネット6内に露出して配設されてあり、その他
の一側面はキャビネットの一側面の一部と共通化されて
配設されてあり、第二の構成要素に適用される放熱器は
放熱ピン群かフィン群が両側面の受熱板2−nで挟持し
て構成されたステレオ型放熱器であり、その二枚の受熱
板2−nは受熱面がキャビネット内に露出せしめられて
風洞4内に配設されてあり、受熱板2−nの群に実装さ
れた放熱部品群3−nは風洞の両側外面に直列に且つ全
体として立体的に配置されてあり、また第四の構成要素
における外気補充手段7−nは風洞の一側面と共通化さ
れてあるキャビネット6の一側面の部分に設けられてあ
り、低温新鮮外気を直接取り入れることが可能になって
いることを特徴としている。図における9は対流の中に
放熱部1−nを充満せしめて放熱効率を向上せしめる為
のスペーサーである。また5−1は総ての外気補充手段
7−nに外気を強制送入する為の補助風洞である。図は
風洞4が垂直に保持されてある状態の横断面図で図示さ
れてあるから、複数の放熱部1−nは一個のみ、多数の
受熱板2−n、発熱部品群3−n等は夫々2個のみが図
示されてあるが、それらが直列に多数個配置された状態
は図1に例示されてあると同様ある。
[First Embodiment] FIG. 3 shows an example of a first embodiment of a heat radiation structure of a heat generating component group in a cabinet according to the present invention. In the present embodiment, a wind tunnel 4 having a square cross-sectional shape,
Is disposed inscribed in the wall of the cabinet 6, three sides are exposed in the cabinet 6, and the other side is disposed in common with a part of one side of the cabinet. The radiator applied to the second component is a stereo radiator in which a radiating pin group or a fin group is sandwiched between heat receiving plates 2-n on both sides, and the two heat receiving plates are provided. 2-n is disposed in the wind tunnel 4 with the heat receiving surface exposed in the cabinet, and the heat radiating component group 3-n mounted on the group of heat receiving plates 2-n is connected in series to the outer surfaces on both sides of the wind tunnel. The outside air replenishing means 7-n in the fourth component is provided on a part of one side of the cabinet 6 which is shared with one side of the wind tunnel, and is provided with a low-temperature fresh outside air. The feature is that it is possible to directly incorporate To have. Numeral 9 in the figure denotes a spacer for filling the radiating portion 1-n in the convection to improve the radiating efficiency. 5-1 is an auxiliary wind tunnel for forcibly supplying outside air to all the outside air replenishing means 7-n. The figure is shown in a cross-sectional view in a state where the wind tunnel 4 is held vertically, so that only one radiating portion 1-n, a large number of heat receiving plates 2-n, heat generating component groups 3-n, etc. Although only two are shown in each case, the state where many of them are arranged in series is the same as that illustrated in FIG.

【0014】図3からは風洞4の内外に放熱器、発熱部
品群3−n等が直列に、且つ立体的に配設実装されてあ
る、本発明に係る機器キャビネット内発熱部品群の放熱
構造がキャビネット内に占める部品実装面積及び容積を
大幅に減少せしめている事が良く分かる。特に風洞4の
一側壁とキャビネットの一側壁の一部分とが共通化され
てある点は風洞4によるデッドスペースの発生を減少せ
しめ、キャビネット内の空間を有効に利用出来る効果
と、キャビネット外の新鮮冷気の取り入れが容易になる
効果がある。本実施例においては対流の下流側放熱器に
対するに導入されるキャビネット外の冷気が効率よく導
入されるから、補助風洞5−1は省略される場合もあ
る。
FIG. 3 shows that a heat radiator, a heat generating component group 3-n, and the like are arranged and mounted in series and three-dimensionally inside and outside the wind tunnel 4, and the heat radiating structure of the heat generating component group in the equipment cabinet according to the present invention. Clearly reduces the component mounting area and volume occupied in the cabinet. In particular, the fact that one side wall of the wind tunnel 4 and a part of one side wall of the cabinet are shared reduces the occurrence of dead space due to the wind tunnel 4, effectively utilizing the space inside the cabinet, and providing fresh cold air outside the cabinet. This has the effect of facilitating incorporation. In this embodiment, since the cool air outside the cabinet introduced to the convection downstream radiator is efficiently introduced, the auxiliary wind tunnel 5-1 may be omitted.

【0015】[第二実施例] 図4は本発明に係るキャ
ビネット内発熱部品群の放熱構造の第二実施例の一例を
示す。本実施例では第一の構成要素の方形断面形状の風
洞4はキャビネット6の壁体外に外接して配設され、三
側面がキャビネット6の外に露出して配設された方形風
洞4であり、その他の一側面はキャビネット6の一側面
の一部と共通化されて配設されてあり、第二の構成要素
に適用される放熱器の放熱部1−nは放熱ピン群か放熱
フィン群が一枚の受熱板2−nの片面上に配設されて構
成されてある放熱部1−nであり、その受熱板2−nは
風洞4の一側面がキャビネットの一側面の一部と共通化
されてある部分において、キャビネット壁を介して間接
的に発熱部品3−nを実装することが出来るか、または
直接発熱部品3−nを実装することが出来るか、何れか
であるように配設されてある配設構造であり、第四の構
成要素における外気補充手段7−nは風洞4がキャビネ
ット6の外に露出せしめられてある三側面に設けられて
あることを特徴としてい
[Second Embodiment] FIG. 4 shows an example of a second embodiment of a heat radiation structure of a heat generating component group in a cabinet according to the present invention. In the present embodiment, the first component wind tunnel 4 having a rectangular cross-sectional shape is disposed outside the wall of the cabinet 6 so as to circumscribe the wall, and the three side faces are exposed outside the cabinet 6. The other side is shared with a part of one side of the cabinet 6, and the radiator 1-n of the radiator applied to the second component is composed of a radiating pin group or a radiating fin group. Is a heat radiating portion 1-n that is arranged and arranged on one surface of one heat receiving plate 2-n, and the heat receiving plate 2-n is configured such that one side of the wind tunnel 4 is part of one side of the cabinet. In the common part, the heating component 3-n can be mounted indirectly through the cabinet wall, or the heating component 3-n can be mounted directly. The arrangement structure is arranged, and the outside air is supplemented in the fourth component. Stage 7-n is not characterized by wind tunnel 4 are provided on the three sides are provided brought exposed to the outside of the cabinet 6

【0016】本実施例ではキャビネット6内の空間が風
洞4により占有されることが無いからキャビネット6内
の空間が他の目的に広く利用出来る利点があるがその半
面受熱板2−nの枚数が半減し発熱部品群3−nの実装
可能数量が減少する。然し外気補充手段7−nの配設箇
所は第一実施例の3倍にも増加し、キャビネット外の新
鮮冷気が大量に導入されるから補助風洞5−1を省略す
ることが可能になる。図4においては補助風洞5−1を
省略してあるが、必要によっては補助風洞5−1をも併
設して強制対流を外気補充手段7−n内に導入して、更
に冷却効果を向上させても良い。
In this embodiment, since the space in the cabinet 6 is not occupied by the wind tunnel 4, there is an advantage that the space in the cabinet 6 can be widely used for other purposes. The number of mountable heat-generating component groups 3-n is reduced by half. However, the location of the outside air replenishing means 7-n is three times as large as that of the first embodiment, and a large amount of fresh cold air outside the cabinet is introduced, so that the auxiliary wind tunnel 5-1 can be omitted. Although the auxiliary wind tunnel 5-1 is omitted in FIG. 4, if necessary, the auxiliary wind tunnel 5-1 is also provided to introduce forced convection into the outside air replenishing means 7-n to further improve the cooling effect. May be.

【0017】[第三実施例] 各実施例図に例示の第四
の構成要素である風洞4内及び、またはキャビネット6
の壁に設けられる外気補充手段7−nとしては各種の手
段があるが、本実施例においては、風洞壁及び、または
キャビネット壁に設けられる各下流側放熱器の配設位置
直前付近に設けられた所定の構造のルーバー群か貫通孔
群であることを特徴としている。これらの外気補充手段
7−nは構造が単純で且つ形成が容易であり、風洞4内
を貫流する強制対流の流速により発生する負圧により風
洞外気を容易に流通せしめ、複数の各下流側放熱器に外
気を補充供給する。これにより風洞4内に直列に配置さ
れた複数の放熱器が対流の下流に至るほど温度上昇する
現象の、温度上昇を緩和せしめる。
[Third Embodiment] The inside of the wind tunnel 4 and / or the cabinet 6 which is the fourth component illustrated in each embodiment diagram is illustrated.
Although there are various means as the outside air replenishing means 7-n provided on the wall of this embodiment, in the present embodiment, the external air replenishing means 7-n is provided near the position immediately before the location of each downstream radiator provided on the wind tunnel wall and / or the cabinet wall. And a louver group or a through-hole group having a predetermined structure. These outside air replenishing means 7-n have a simple structure and are easy to form, and the outside air of the wind tunnel is easily circulated by the negative pressure generated by the flow velocity of the forced convection flowing through the wind tunnel 4, so that a plurality of downstream heat radiators are provided. Supply fresh air to the vessel. As a result, the temperature rise, which is a phenomenon in which a plurality of radiators arranged in series in the wind tunnel 4 rise in temperature toward downstream of convection, is reduced.

【0018】[第四実施例] 第四実施例は風洞4内及
び、またはキャビネット6の壁に設けられる外気補充手
段7−nの外気補充能力を強制対流によって大幅に強化
する為の手段であって、その一例は図1及び図3に図示
されてある。図示されてある補助風洞5−1、5−2は
風洞4に並列して設けられてあり、各外気補充手段7−
nである各所定の構造のルーバー群か貫通孔群に共通の
強制対流導入流路及び加圧室をを形成している。その一
端は最下流放熱器の下流側付近で閉鎖封止されてあり、
他の一端は風洞4の強制対流発生用ファン8−2が発生
する強制対流内に開口されてある。このように構成され
てあるから、補助風洞5−1、5−2内は加圧室となり
全てのルーバー群、貫通孔群から新鮮な強制対流が風洞
4内に均一に送入されるようになる。この新鮮な強制対
流は風洞4内を流れる強制対流の主流に合流して各放熱
器を通過する毎の強制対流の温度上昇を緩和せしめる。
この合流した強制対流は下流側の放熱器に至るほど順次
増量増速されるから、下流側放熱器に至る程熱交換効率
が高くなる。このことは対流風の多少の温度上昇にも拘
らず各下流側の発熱部品群3−nの温度上昇を確実に防
止する。
[Fourth Embodiment] The fourth embodiment is a means for greatly enhancing the external air replenishing ability of the external air replenishing means 7-n provided in the wind tunnel 4 and / or on the wall of the cabinet 6 by forced convection. An example is shown in FIGS. 1 and 3. The illustrated auxiliary wind tunnels 5-1 and 5-2 are provided in parallel with the wind tunnel 4, and each of the outside air replenishing means 7-
A common convection introduction flow path and a common pressure chamber are formed for each louver group or through-hole group having a predetermined structure of n. One end is closed and sealed near the downstream side of the most downstream radiator,
The other end is opened in the forced convection generated by the forced convection fan 8-2 in the wind tunnel 4. With such a configuration, the auxiliary wind tunnels 5-1 and 5-2 become pressurized chambers so that fresh forced convection can be uniformly fed into the wind tunnel 4 from all louver groups and through hole groups. Become. The fresh forced convection merges with the main forced convection flowing in the wind tunnel 4 to reduce the temperature rise of the forced convection every time the radiator passes.
Since the combined forced convection is gradually increased in speed as it reaches the radiator on the downstream side, the heat exchange efficiency increases as it reaches the radiator on the downstream side. This reliably prevents the temperature rise of each downstream heat-generating component group 3-n despite the slight rise in temperature of the convection wind.

【0019】[第五実施例] 本実施例は本発明に係る
放熱構造を自然対流により実施する応用例である。図
5、図6、はその断面略図であって、図5はその縦断面
略図であり、図6はその横断面略図である。図5におい
て補助風洞5−1、5−2及び外気補充手段(ルーバ
ー)7−nは縦断面図では図示出来ないので取り付け位
置を90度転回せしめて示してある。即ち風洞4に対す
る補助風洞5−1、5−2及び外気補充手段(ルーバ
ー)7−nの取り付け位置は図6に例示してある位置が
正規の位置である。本実施例において第一の構成要素で
ある風洞4のキャビネット外気の吸入口4−1はキャビ
ネットの底面床部6−1を貫通して設けられてあり、そ
の排出口4−2はキャビネットの頂面天井部6−2を貫
通して設けられてあり、方形断面形状の風洞4を貫流す
る対流は自然体流である。第三の構成要素である対流発
生手段は風洞4が垂直に保持せしめられてあることによ
り発生する煙突効果であることを特徴としている。
Fifth Embodiment This embodiment is an application example in which the heat radiation structure according to the present invention is implemented by natural convection. 5 and 6 are schematic sectional views, FIG. 5 is a schematic longitudinal sectional view, and FIG. 6 is a schematic transverse sectional view thereof. In FIG. 5, since the auxiliary wind tunnels 5-1 and 5-2 and the outside air replenishing means (louvers) 7-n cannot be shown in the vertical sectional view, the mounting positions are turned 90 degrees. That is, the auxiliary wind tunnels 5-1 and 5-2 and the outside air replenishing means (louvers) 7-n with respect to the wind tunnel 4 are fixed at the positions illustrated in FIG. In this embodiment, a first component, an intake port 4-1 for the outside air of the cabinet of the wind tunnel 4 is provided to penetrate the bottom floor 6-1 of the cabinet, and an exhaust port 4-2 thereof is provided at the top of the cabinet. The convection flowing through the wind tunnel 4 having a rectangular cross-sectional shape, which is provided so as to penetrate the ceiling 6-2, is a natural body flow. The third component, the convection generating means, is characterized by a chimney effect generated when the wind tunnel 4 is held vertically.

【0020】放熱器はその受熱板2−nの群がその受熱
面上に実装された発熱部品群3−nがキャビネット6の
中に露出するよう配設されてある。放熱器の放熱部1−
nとしては、風洞4の中に複数個が直列配置されるの
で、自然対流を効果的に風洞4内を貫流させる必要があ
るから、放熱部1−nを構成する自然対流用のフィン配
列が粗で圧力損失の小さなものが適用される。外気補充
手段(ルーバー)7−nは各放熱部1−nの対流吸入部
付近に設けられてある。補助風洞5−1、5−2はその
吸入口4−3、4−4から新鮮な低温外気を煙突効果で
吸入し、全ての外気補充手段(ルーバー)7−nに均一
に供給する。風洞4内には吸入口4−1から吸入された
外気が強力な煙突効果により各放熱部1−nの熱量を吸
収しながら貫流するが、その対流には各外気補充手段
(ルーバー)7−nから新鮮外気が各放熱部1−n毎に
補充され、対流流量が増加し、流速も増加し、下流側ほ
ど熱交換効率が増加し、各発熱部品3−nは上流下流に
亙り比較的均一に冷却される。
The radiator is arranged such that the group of heat receiving plates 2-n mounted on the heat receiving surface exposes the heat generating component group 3-n in the cabinet 6. Radiator 1 of radiator
Since a plurality of n are arranged in series in the wind tunnel 4, it is necessary to allow natural convection to flow through the wind tunnel 4 effectively. Coarse and small pressure loss is applied. The outside air replenishing means (louvers) 7-n are provided near the convection suction portions of the heat radiation portions 1-n. The auxiliary wind tunnels 5-1 and 5-2 inhale fresh low-temperature outside air from the inlets 4-3 and 4-4 by a chimney effect and uniformly supply the outside air to all outside air replenishing means (louvers) 7-n. In the wind tunnel 4, the outside air sucked from the suction port 4-1 flows through while absorbing the heat quantity of each heat radiating portion 1-n by a strong chimney effect. n, fresh outside air is replenished for each heat radiating section 1-n, the convection flow rate increases, the flow velocity also increases, the heat exchange efficiency increases toward the downstream side, and each heat generating component 3-n is relatively distributed upstream and downstream. Cooled uniformly.

【0021】本実施例においては熱交換後の対流排気が
一切キャビネット6内に散逸することが無いからキャビ
ネット6を完全密閉にすることが出来る点は大きな効果
である。従来密閉キャビネット6内における発熱部品群
3−nの自然対流に依る直接冷却は、熱交換後の対流排
気が密閉キャビネット6内に散逸し、キャビネット6内
の空気温度を上昇せしめ、これにより冷却効率が低下す
るので、実効が少なく密閉キャビネット6内の発熱部品
群3−nの自然体流冷却は殆ど不可能とされていた。現
在の機器の密閉キャビネット6内の発熱部品群3−nの
冷却は密閉キャビネット6の内外に強制対流発生手段を
設けた熱交換機に依りキャビネット6内外空気を熱交換
して、キャビネット内空気を冷却して、間接的に発熱部
品群3−nを冷却する極めて効率の悪い冷却手段を適用
することが一般的であった。
In this embodiment, since the convective exhaust gas after the heat exchange does not dissipate in the cabinet 6 at all, the cabinet 6 can be completely sealed, which is a great effect. In the conventional direct cooling by natural convection of the heat generating component group 3-n in the closed cabinet 6, the convective exhaust gas after the heat exchange is dissipated in the closed cabinet 6, and the air temperature in the cabinet 6 is increased. And the natural body cooling of the heat-generating component group 3-n in the closed cabinet 6 is almost impossible. Cooling of the heat generating component group 3-n in the closed cabinet 6 of the current equipment is performed by exchanging heat inside and outside the cabinet 6 with a heat exchanger provided with forced convection generating means inside and outside the closed cabinet 6 to cool the air inside the cabinet. Then, it is common to apply a very inefficient cooling means for indirectly cooling the heat generating component group 3-n.

【0022】[0022]

【発明の効果】小型強力な放熱器が小型風洞内に直列配
置されてあることに依り、機器キャビネット内における
発熱部品群の実装面積が縮小され、風洞に設けられた外
気補充手段と補助風洞の作用に依り、対流の上流下流間
における発熱部品群間の温度差が大幅に縮小され、発熱
部品群の立体的実装が容易になり機器キャビネットが小
型化された。また冷却対流のキャビネット内散逸が無く
なることに依り、キャビネットの密閉化が可能になり特
に密閉キャビネット内の発熱部品群の自然対流冷却も可
能になった。
According to the present invention, the small and powerful radiator is arranged in series in the small wind tunnel, so that the mounting area of the heat generating components in the equipment cabinet is reduced, and the outside air replenishing means and the auxiliary wind tunnel provided in the wind tunnel are provided. Due to the action, the temperature difference between the heat-generating components between the upstream and downstream of the convection is greatly reduced, the three-dimensional mounting of the heat-generating components is facilitated, and the equipment cabinet is downsized. In addition, since the cooling convection does not dissipate in the cabinet, the cabinet can be hermetically sealed, and in particular, natural convection cooling of the heat-generating components in the closed cabinet has also become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の機器キャビネット内発熱部品群の放
熱構造の基本構造を示す縦断面図の略図。
FIG. 1 is a schematic longitudinal sectional view showing a basic structure of a heat radiation structure of a heat generating component group in an equipment cabinet of the present invention.

【図2】 本発明の機器キャビネット内発熱部品群の放
熱構造の基本構造をを示す風洞部分の横断面略図。
FIG. 2 is a schematic cross-sectional view of a wind tunnel portion showing a basic structure of a heat radiation structure of a heat generating component group in an equipment cabinet according to the present invention.

【図3】 本発明の機器キャビネット内発熱部品群の放
熱構造の第一実施例を示す横断面略図。
FIG. 3 is a schematic cross-sectional view showing a first embodiment of a heat radiation structure of a heat generating component group in an equipment cabinet according to the present invention.

【図4】 本発明の機器キャビネット内発熱部品群の放
熱構造の第二実施例を示す横断面略図。
FIG. 4 is a schematic cross-sectional view showing a second embodiment of the heat radiation structure of the heat generating component group in the equipment cabinet of the present invention.

【図5】 本発明の機器キャビネット内発熱部品群の放
熱構造の第五実施例を示す縦断面図の略図。
FIG. 5 is a schematic longitudinal sectional view showing a fifth embodiment of the heat radiation structure of the heat generating component group in the equipment cabinet of the present invention.

【図6】 本発明の機器キャビネット内発熱部品群の放
熱構造の第五実施例を示す横断面略図。
FIG. 6 is a schematic cross-sectional view showing a fifth embodiment of the heat radiation structure of the heat generating component group in the equipment cabinet of the present invention.

【図7】 機器キャビネット内発熱部品群の放熱構造の
従来構造の一例の説明図。
FIG. 7 is an explanatory view of an example of a conventional structure of a heat radiation structure of a heat generating component group in an equipment cabinet.

【図8】 機器キャビネット内発熱部品群の放熱構造の
従来構造の他の一例の説明図。
FIG. 8 is an explanatory view of another example of the conventional structure of the heat radiation structure of the heat generating component group in the equipment cabinet.

【符号の説明】[Explanation of symbols]

1−n 放熱器放熱部 2−n 放熱器受熱板 3−n 発熱部品 4 風洞 4−1 外気吸入口 4−2 外気排出口 4−3 補助風洞吸入口 4−4 補助風洞吸入口 5−1 補助風洞 5−2 補助風洞 6 キャビネット 6−1 キャビネット底面床部 6−2 キャビネット頂面天井部 7−n 外気補充手段(ルーバー) 8−1 強制対流 8−2 強制対流発生手段(ファン) 9 スペーサー 11−1 プリント基板 11−2 プリント基板 13−n 発熱部品 14−1 支持板 14−2 支持板 15 強制対流 17−n 放熱フィン 18 大型ヒートシンク 19 冷却ファン 20 キャビネット 21−1 風洞 21−2 風洞 1-n radiator radiator 2-n radiator heat receiving plate 3-n heat-generating component 4 wind tunnel 4-1 outside air inlet 4-2 outside air outlet 4-3 auxiliary wind tunnel inlet 4-4 auxiliary wind tunnel inlet 5-1 Auxiliary wind tunnel 5-2 Auxiliary wind tunnel 6 Cabinet 6-1 Cabinet bottom floor 6-2 Cabinet top ceiling 7-n External air replenishment means (louver) 8-1 Forced convection 8-2 Forced convection generation means (fan) 9 Spacer 11-1 Printed circuit board 11-2 Printed circuit board 13-n Heat generating component 14-1 Support plate 14-2 Support plate 15 Forced convection 17-n Radiation fin 18 Large heat sink 19 Cooling fan 20 Cabinet 21-1 Wind tunnel 21-2 Wind tunnel

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 機器キャビネット内に実装された発熱部
品群が発生する熱量を一括的に吸収してキャビネット外
雰囲気中に移送廃棄する為の放熱構造であって、キャビ
ネット外気を一端から吸入し、他端から排出する対流の
流路である方形断面の風洞を第一の構成要素とし、風洞
には複数の小型強力な放熱器が直列に配設されてあり、
それらの放熱器群またはその放熱部群の夫々は風洞内を
ほぼ充満せしめる形状と大きさであり、それらの受熱部
群の各受熱面は風洞壁を介して間接的に発熱部品を実装
することが出来るか、または受熱部群の各受熱面にに直
接放熱部品を実装することが出来るか何れかであるよう
に配設されてある配設構造を第二の構成要素とし、風洞
内を貫流する自然対流または強制対流の発生手段を第三
の構成要素とし、風洞には直列に配設された各下流側放
熱器の対流流入口の周辺付近から風洞内に新鮮な冷風を
補充する外気補充手段が夫々に設けられてあり、これを
第四の構成要素とし、これら四構成要素要素の総てを含
んで構成されてあることを特徴とする機器キャビネット
内発熱部品群の放熱構造。
1. A heat radiation structure for collectively absorbing heat generated by a heat generating component group mounted in an equipment cabinet and transferring and disposing the heat to an atmosphere outside the cabinet. The first component is a wind tunnel having a rectangular cross section that is a convection flow path discharged from the other end, and a plurality of small powerful radiators are arranged in series in the wind tunnel.
Each of these radiators or their radiating units should have a shape and size that almost completely fills the inside of the wind tunnel, and each heat receiving surface of those heat receiving units should be indirectly mounted with heat-generating components via the wind tunnel wall. Or the second component can be installed directly on each heat-receiving surface of the group of heat-receiving units. The means for generating natural convection or forced convection is the third component, and outside air is supplied to the wind tunnel to replenish fresh cold air into the wind tunnel from around the convection inlet of each downstream radiator arranged in series. A heat dissipating structure for a heat-generating component group in an equipment cabinet, wherein a means is provided for each of the four components, and the fourth component is used as the fourth component.
【請求項2】 第一の構成要素はキャビネット壁体内に
内接して配設され、三側面がキャビネット内に露出して
配設された方形風洞であり、その他の一側面はキャビネ
ットの一側面の一部と共通化されて配設されてあり、第
二の構成要素に適用される複数の放熱器は夫々放熱ピン
群かフィン群が両側面二枚の受熱板で挟持して構成され
たステレオ型放熱器であり、それらの受熱板は夫々の受
熱面がキャビネット内に露出せしめられて風洞に配設さ
れてあり、受熱板群に実装された放熱都品群は風洞の両
側外面に直列に且つ全体として立体的に配置されてあ
り、第四の構成要素における外気補充手段は風洞の一側
面と共通化されてあるキャビネットの一側面の部分に各
下流側放熱器毎に設けられてあることを特徴とする請求
項1に記載の機器キャビネット内発熱部品群の放熱構
造。
2. The first component is a rectangular wind tunnel inscribed in the cabinet wall, three sides are exposed in the cabinet, and the other side is one side of the cabinet. A plurality of radiators applied to the second component are arranged in common with a part, and each of the radiators is a stereo in which a radiating pin group or a fin group is sandwiched between two heat receiving plates on both sides. These heat receiving plates are arranged in the wind tunnel with their heat receiving surfaces exposed in the cabinet, and the heat radiating devices mounted on the heat receiving plates are arranged in series on both outer surfaces on both sides of the wind tunnel. And the outside air replenishment means in the fourth component is provided for each downstream radiator in a portion of one side of the cabinet shared with one side of the wind tunnel. The device carrier according to claim 1, wherein Heat dissipating structure of heat generating components in vignette.
【請求項3】 第一の構成要素はキャビネット壁体外に
外接して配設され、三側面がキャビネット外に露出して
配設された方形風洞であり、その他の一側面はキャビネ
ットの一側面の一部と共通化されて配設されてあり、第
二の構成要素に適用される複数の放熱器の各放熱部は放
熱ピン群か放熱フィン群が一枚の受熱板の片面上に配設
されて構成されてある放熱部であり、それらの受熱板の
各受熱面は、風洞の一側面がキャビネットの一側面の一
部と共通化されてある部分において、キャビネット壁を
介して間接的に発熱部品を実装することが出来るか、ま
たは直接放熱部品を実装することが出来るか、何れかで
あるように配設されてある配設構造であり、第四の構成
要素における外気補充手段は、風洞がキャビネット外に
露出せしめられてある三側面に各下流側放熱器毎に設け
られてあることを特徴とする請求項1に記載の機器キャ
ビネット内発熱部品群の放熱構造。
3. The first component is a rectangular wind tunnel disposed circumscribing the outside of the cabinet wall, three sides exposed to the outside of the cabinet, and the other side is defined by one side of the cabinet. The heat dissipating parts of multiple radiators applied to the second component are arranged in common with a part, and the heat dissipating pins or heat dissipating fins are arranged on one side of one heat receiving plate The heat receiving surface of each of the heat receiving plates is indirectly connected to a portion of one side of the wind tunnel and one side of the cabinet through a cabinet wall. Either a heat-generating component can be mounted, or a heat-radiating component can be mounted directly, which is an arrangement structure arranged so as to be either, and the outside air replenishment means in the fourth component is: The wind tunnel was exposed outside the cabinet The heat dissipating structure of a group of heat generating components in an equipment cabinet according to claim 1, wherein the heat dissipating parts are provided on the three side surfaces for each downstream radiator.
【請求項4】 第四の構成要素の風洞内に直列配置され
てある複数の放熱器の各下流側放熱器の外気補充手段
は、風洞壁及び、またはキャビネット壁における各下流
側放熱器の配設位置直前付近に設けられた所定の構造の
ルーバー群か貫通孔群であることを特徴とする請求項1
に記載のキャビネット内発熱部品群の放熱構造。
4. The outside air replenishment means of each downstream radiator of the plurality of radiators arranged in series in the wind tunnel of the fourth component, the arrangement of each downstream radiator on the wind tunnel wall and / or the cabinet wall. 2. A louver group or a through-hole group having a predetermined structure provided immediately before the installation position.
Heat dissipating structure of the heat generating components in the cabinet described in the above.
【請求項5】 第四の構成要素の風洞内に直列配置され
てある複数の放熱器の各下流側放熱器の外気補充手段
は、風洞壁及び、またはキャビネット壁に設けられた所
定の構造のルーバー群か貫通孔群に強制対流を送入する
手段が併設されてある構造であることを特徴とする請求
項1に記載の機器キャビネット内発熱部品群の放熱構
造。
5. The outside air replenishing means of each downstream radiator of the plurality of radiators arranged in series in the wind tunnel of the fourth component has a predetermined structure provided on a wind tunnel wall and / or a cabinet wall. 2. The heat radiating structure for a heat generating component group in an equipment cabinet according to claim 1, wherein the louver group or the through-hole group is provided with means for sending forced convection.
【請求項6】 第一の構成要素の風洞のキャビネット外
気の吸入口はキャビネットの底面床部を貫通して設けら
れてあり、その排出口はキャビネットの頂面天井部を貫
通して設けられてあり、その中を貫流する対流は自然対
流であることを特徴とする方形断面の風洞であり、第三
の構成要素である対流発生手段は風洞が垂直保持せしめ
られてあることにより発生する煙突効果であることを特
徴とする請求項1に記載の機器キャビネット内発熱部品
群の放熱構造。
6. A first component of the wind tunnel, in which a suction port for the outside air of the cabinet is provided through the bottom floor of the cabinet, and a discharge port thereof is provided through the top ceiling of the cabinet. There is a convection flowing through the wind tunnel with a rectangular cross section characterized by natural convection, and the third component, convection generating means, is a chimney effect generated by the wind tunnel being held vertically. The heat radiating structure of a heat generating component group in an equipment cabinet according to claim 1, wherein:
JP25920897A 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet Expired - Fee Related JP4457238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25920897A JP4457238B2 (en) 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25920897A JP4457238B2 (en) 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet

Publications (2)

Publication Number Publication Date
JPH1168362A true JPH1168362A (en) 1999-03-09
JP4457238B2 JP4457238B2 (en) 2010-04-28

Family

ID=17330901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25920897A Expired - Fee Related JP4457238B2 (en) 1997-08-20 1997-08-20 Heat dissipating structure of heat generating parts in equipment cabinet

Country Status (1)

Country Link
JP (1) JP4457238B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049106A1 (en) * 2000-12-11 2002-06-20 Fujitsu Limited Electronic device unit
JP2008187136A (en) * 2007-01-31 2008-08-14 Densei Lambda Kk Heat dissipating structure
JP2018022868A (en) * 2016-07-26 2018-02-08 三菱電機株式会社 Electronic apparatus cooler
CN110248519A (en) * 2019-04-28 2019-09-17 北京广利核系统工程有限公司 It is provided with the nuclear safe level cabinet of free convection air duct radiation
JP2021158221A (en) * 2020-03-27 2021-10-07 日立建機株式会社 Grid box and dump truck
CN114222482A (en) * 2021-12-17 2022-03-22 国华(齐齐哈尔)风电有限公司 Reactor cabinet for fan that ventilation radiating effect is good
JP2022095382A (en) * 2020-12-16 2022-06-28 株式会社Gsユアサ Uninterruptible power supply and power supply related equipment
CN115226380A (en) * 2022-07-31 2022-10-21 中国船舶重工集团衡远科技有限公司 Electric cabinet with heat dissipation function
CN115426857A (en) * 2022-09-30 2022-12-02 南京拓攻自动驾驶技术研究院有限公司 UAV control box

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049106A1 (en) * 2000-12-11 2002-06-20 Fujitsu Limited Electronic device unit
US6888725B2 (en) 2000-12-11 2005-05-03 Fujitsu Limited Electronics device unit
JP2008187136A (en) * 2007-01-31 2008-08-14 Densei Lambda Kk Heat dissipating structure
JP2018022868A (en) * 2016-07-26 2018-02-08 三菱電機株式会社 Electronic apparatus cooler
CN110248519A (en) * 2019-04-28 2019-09-17 北京广利核系统工程有限公司 It is provided with the nuclear safe level cabinet of free convection air duct radiation
CN110248519B (en) * 2019-04-28 2024-01-16 北京广利核系统工程有限公司 Nuclear safety grade cabinet with natural convection air duct heat dissipation function
JP2021158221A (en) * 2020-03-27 2021-10-07 日立建機株式会社 Grid box and dump truck
JP2022095382A (en) * 2020-12-16 2022-06-28 株式会社Gsユアサ Uninterruptible power supply and power supply related equipment
CN114222482A (en) * 2021-12-17 2022-03-22 国华(齐齐哈尔)风电有限公司 Reactor cabinet for fan that ventilation radiating effect is good
CN115226380A (en) * 2022-07-31 2022-10-21 中国船舶重工集团衡远科技有限公司 Electric cabinet with heat dissipation function
CN115426857A (en) * 2022-09-30 2022-12-02 南京拓攻自动驾驶技术研究院有限公司 UAV control box

Also Published As

Publication number Publication date
JP4457238B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
KR100608958B1 (en) Cooling device and electronic appliance internally mounting the same
US5063476A (en) Apparatus for controlled air-impingement module cooling
US20080135211A1 (en) Heat-Exchanger Device and Cooling System
JP2016225621A (en) Closed cabinet for power electronic device having heat pipe
US7312992B2 (en) Apparatus and method for transferring heat from processors
JP4720688B2 (en) Electronic control unit cooling system
CN113056161B (en) Electronic device enclosures and edge computing systems
TW200808164A (en) Electronic apparatus
JP2833999B2 (en) LSI cooling module
JPH1168362A (en) Heat dissipating structure of heat releasing part group in apparatus cabinet
KR100939992B1 (en) Cooling device for electric and electronic equipment and electric and electronic equipment equipped with it
TWI382300B (en) Liquid cooling unit and heat exchanger therefor
JP2017005010A (en) Electronics
JP3364764B2 (en) Sealed equipment housing cooling device
JP4603783B2 (en) Liquid cooling system and radiator
US20130301214A1 (en) Electronic unit having a housing in which heat generating components are disposed
CN116648030A (en) A top-mounted heat dissipation photovoltaic inverter device
JP2580507Y2 (en) Electronic equipment cooling device
CN220156945U (en) Radiating assembly, electric control box and air conditioner
JP3947797B2 (en) Three-dimensional mounting type heat dissipation module
CN111880625B (en) A liquid cooling heat dissipation device capable of dissipating heat from multiple heat sources
JP2007335624A (en) Liquid cooling equipment for electronic equipment
WO2008004280A1 (en) Heat radiation unit, heat radiator, and electronic apparatus
CN210899817U (en) Circuit board module with high-efficiency heat dissipation
KR102001029B1 (en) Dissipation Module Using Peltier Devices With Diode Module On Connection Board For Solar Power Generation In Outer Case

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071204

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160219

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees