JPH1190165A - Treatment of waste water from flue gas desulfurization - Google Patents
Treatment of waste water from flue gas desulfurizationInfo
- Publication number
- JPH1190165A JPH1190165A JP9254481A JP25448197A JPH1190165A JP H1190165 A JPH1190165 A JP H1190165A JP 9254481 A JP9254481 A JP 9254481A JP 25448197 A JP25448197 A JP 25448197A JP H1190165 A JPH1190165 A JP H1190165A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- flue gas
- wastewater
- waste water
- coagulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 71
- 238000006477 desulfuration reaction Methods 0.000 title claims abstract description 41
- 230000023556 desulfurization Effects 0.000 title claims abstract description 41
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 239000003546 flue gas Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 69
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000002253 acid Substances 0.000 claims abstract description 47
- 229910001385 heavy metal Inorganic materials 0.000 claims abstract description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 32
- 238000009287 sand filtration Methods 0.000 claims abstract description 29
- 239000002738 chelating agent Substances 0.000 claims abstract description 22
- 239000002244 precipitate Substances 0.000 claims abstract description 19
- RMGVZKRVHHSUIM-UHFFFAOYSA-N dithionic acid Chemical compound OS(=O)(=O)S(O)(=O)=O RMGVZKRVHHSUIM-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229960004887 ferric hydroxide Drugs 0.000 claims abstract description 16
- 150000002506 iron compounds Chemical class 0.000 claims abstract description 16
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical group [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 claims abstract description 16
- 239000013522 chelant Substances 0.000 claims abstract description 14
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 14
- 239000011707 mineral Substances 0.000 claims abstract description 14
- 238000002485 combustion reaction Methods 0.000 claims abstract description 10
- 239000000295 fuel oil Substances 0.000 claims abstract description 10
- PFRUBEOIWWEFOL-UHFFFAOYSA-N [N].[S] Chemical class [N].[S] PFRUBEOIWWEFOL-UHFFFAOYSA-N 0.000 claims abstract description 7
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011777 magnesium Substances 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 238000005345 coagulation Methods 0.000 claims description 64
- 230000015271 coagulation Effects 0.000 claims description 64
- 238000001556 precipitation Methods 0.000 claims description 45
- 238000000354 decomposition reaction Methods 0.000 claims description 38
- 238000004062 sedimentation Methods 0.000 claims description 37
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 22
- 238000001179 sorption measurement Methods 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 9
- 229910052815 sulfur oxide Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 3
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical group NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 claims description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000002912 waste gas Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 38
- 239000010802 sludge Substances 0.000 description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 12
- 235000010755 mineral Nutrition 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000003672 processing method Methods 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 8
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 7
- 230000018044 dehydration Effects 0.000 description 6
- 238000006297 dehydration reaction Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 5
- 239000005708 Sodium hypochlorite Substances 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 5
- 239000013049 sediment Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 238000010979 pH adjustment Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 235000010288 sodium nitrite Nutrition 0.000 description 4
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 239000000701 coagulant Substances 0.000 description 3
- 229940125961 compound 24 Drugs 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000003311 flocculating effect Effects 0.000 description 3
- 238000005189 flocculation Methods 0.000 description 3
- 230000016615 flocculation Effects 0.000 description 3
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 3
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 3
- 239000000347 magnesium hydroxide Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- -1 ammonium ions Chemical class 0.000 description 2
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 2
- 239000003830 anthracite Substances 0.000 description 2
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229910052602 gypsum Inorganic materials 0.000 description 2
- 239000010440 gypsum Substances 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 229940125846 compound 25 Drugs 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- IIXGBDGCPUYARL-UHFFFAOYSA-N hydroxysulfamic acid Chemical class ONS(O)(=O)=O IIXGBDGCPUYARL-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Treating Waste Gases (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、重油等の燃焼排ガ
スを冷却および除塵すると共に、石灰−石膏法にて硫黄
酸化物を吸収処理する湿式排煙脱硫装置、特にスート混
合型脱硫装置から排出される排煙脱硫排水の処理方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet type flue gas desulfurization apparatus for cooling and removing dust from combustion exhaust gas such as heavy oil and the like, and for absorbing sulfur oxides by a lime-gypsum method, and particularly for discharging from a soot mixed desulfurization apparatus. The present invention relates to a method for treating flue gas desulfurization wastewater.
【0002】[0002]
【従来の技術】重油等を燃料とする燃焼排ガスは、石灰
−石膏法による脱硫装置で処理され、二チオン酸、窒素
−硫黄化合物(以下、「N−S化合物」ともいう。)等
のCOD成分(化学的酸素要求量の原因となる成分)お
よび重金属成分を含む排水が排出される。排水中のCO
D成分の処理法としては、凝集沈澱法、微生物分解法、
吸着法等が一般的に用いられている。しかし、排水中の
無機性のCOD成分である二チオン酸、N−S化合物等
は、処理が極めて難しく、これらの処理法だけでは十分
に除去することができない。2. Description of the Related Art Combustion exhaust gas using heavy oil or the like as a fuel is treated by a desulfurization apparatus using the lime-gypsum method, and COD such as dithionic acid and nitrogen-sulfur compound (hereinafter also referred to as "NS compound"). Wastewater containing components (components responsible for chemical oxygen demand) and heavy metal components is discharged. CO in wastewater
As a method for treating the D component, a coagulation sedimentation method, a microbial decomposition method,
An adsorption method or the like is generally used. However, inorganic COD components such as dithionic acid and NS compound in wastewater are extremely difficult to treat, and cannot be sufficiently removed only by these treatment methods.
【0003】これら無機性のCOD成分のうち、二チオ
ン酸を分解する方法として、酸分解法が知られている。
酸分解法は、排水に鉱酸を添加して所定の温度に維持す
ることによって、次のような反応を生じさせ、二チオン
酸を硫酸イオンと亜硫酸ガスに分解するものである。こ
の方法によれば、二チオン酸を比較的容易に除去するこ
とができる。 S2 O6 2- → SO4 2-+SO2 酸分解法は、例えば、特開昭63−252526号公報
や特開昭64−47493号公報に記載されている。[0003] Among these inorganic COD components, an acid decomposition method is known as a method for decomposing dithionic acid.
In the acid decomposition method, a mineral acid is added to waste water and maintained at a predetermined temperature to cause the following reaction to decompose dithionic acid into sulfate ions and sulfur dioxide. According to this method, dithionic acid can be removed relatively easily. S 2 O 6 2- → SO 4 2- + SO 2 acid decomposition method, for example, is described in Japanese or Japanese 64-47493 Patent Publication No. Sho 63-252526.
【0004】また、N−S化合物を分解する方法として
は、亜硝酸ソーダ分解法や次亜塩素酸ソーダ分解法が知
られている。N−S化合物については、酸分解処理を適
用した報告または事例はない。亜硝酸ソーダ分解法は、
排水中に亜硝酸ナトリウム(NaNO2 )を NO2 - −N/N−S化合物=1〜2 (モル比) の割合で添加し、pH2以下、温度45℃以上の条件で
分解するものである。しかし、亜硝酸ナトリウムは高価
である。また、スート混合型排煙脱硫装置から排出され
る脱硫排水は、通常、弱酸性であるため、pH2以下と
するために多量の酸を必要とし、しかも、反応終了後
に、中性ないし弱アルカリ性に戻すために多量のアルカ
リ剤を必要とする。[0004] As a method for decomposing the NS compound, a sodium nitrite decomposition method and a sodium hypochlorite decomposition method are known. As for the NS compound, there is no report or case in which the acid decomposition treatment is applied. Sodium nitrite decomposition method
Sodium nitrite (NaNO 2 ) is added to waste water at a ratio of NO 2 − −N / NS compound = 1 to 2 (molar ratio), and is decomposed under conditions of pH 2 or less and temperature of 45 ° C. or more. . However, sodium nitrite is expensive. Further, the desulfurization effluent discharged from the soot mixing type flue gas desulfurization device is usually weakly acidic, so a large amount of acid is required to adjust the pH to 2 or less. A large amount of alkaline agent is required to return.
【0005】次に、次亜塩素酸ソーダ分解法は、次亜塩
素酸ナトリウム(NaClO)を NaClO/N−S化合物=3.0〜5.0 (モル比) の割合で添加し、温度40℃以上、滞留時間2時間以上
で反応させるものである。例えば、N−S化合物のう
ち、ヒドロキシアミントリスルフォネートは、次のよう
に分解する。 6ON(SO3 )3 3-+18ClO- +10H2 O→
4NO+2NO3 - +18HSO4 +18Cl- +H+
+3O2 例えば、アンモニウムイオンが6000mg/L程度含
まれていると、次亜塩素酸ナトリウムが多量に消費され
るため、薬品の費用が高額になり、また、処理効率が大
きく低下する。次亜塩素酸ソーダ分解法は、例えば、特
開平4−59026号公報に記載されている。従来の処
理法では、脱硫排水のように二チオン酸とN−S化合物
とが共存する場合、これらの成分を別々に処理しなけれ
ばならず、工程が複雑化し、設備費用が高額になるなど
の問題があった。Next, in the sodium hypochlorite decomposition method, sodium hypochlorite (NaClO) is added at a ratio of NaClO / NS compound = 3.0 to 5.0 (molar ratio), and the temperature is reduced to 40%. The reaction is carried out at a temperature of not less than 2 ° C. and a residence time of not less than 2 hours. For example, among the NS compounds, hydroxyamine trisulfonate decomposes as follows. 6ON (SO 3 ) 3 3- + 18ClO − + 10H 2 O →
4NO + 2NO 3 − + 18HSO 4 + 18Cl − + H +
+ 3O 2 For example, when ammonium ions are contained in an amount of about 6000 mg / L, sodium hypochlorite is consumed in a large amount, so that the cost of chemicals becomes high and the treatment efficiency is greatly reduced. The sodium hypochlorite decomposition method is described in, for example, JP-A-4-59026. In a conventional treatment method, when dithionic acid and an NS compound coexist, such as in desulfurization wastewater, these components must be treated separately, complicating the process and increasing equipment costs. There was a problem.
【0006】また、排水中の重金属成分の処理方法とし
ては、排水に消石灰や硫酸バン土等を添加して沈澱物を
分離する凝集沈澱法が、一般的である。しかし、この処
理法を用いた場合、重金属を概ね除去することができる
ものの、重金属がある程度残留することは避けられな
い。したがって、厳しい排出基準値を満足させるために
は、何らかの後続手段が必要となる。As a method for treating heavy metal components in wastewater, a coagulation sedimentation method in which slaked lime or bansulfate is added to wastewater to separate precipitates is generally used. However, when this processing method is used, although heavy metals can be almost removed, it is inevitable that heavy metals remain to some extent. Therefore, in order to satisfy the strict emission standard value, some subsequent means is required.
【0007】さらに、通常の凝集沈澱と共に、キレート
剤(高分子重金属捕集剤)を添加し、重金属を捕集した
マイクロフロックを生成させて、凝集沈澱汚泥と共に分
離する方法も用いられている。しかし、所要の処理性能
を得るためには、多量に添加しなければならず、しか
も、キレート剤が高価であることから、薬品の費用がか
なり高額になるという難点があった。Further, a method has also been used in which a chelating agent (polymer heavy metal collecting agent) is added together with ordinary coagulated sedimentation to generate microflocs that have collected heavy metals and are separated together with coagulated sediment sludge. However, in order to obtain the required processing performance, it has to be added in a large amount, and since the chelating agent is expensive, the cost of the chemical is considerably high.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、重油
燃焼排ガス中の硫黄酸化物を吸収除去する湿式排煙脱硫
装置の排水から、無機性のCOD成分である二チオン酸
およびN−S化合物と、マンガン、カドミウム等の重金
属と、有機性のCOD成分とを、これら各成分の従来の
処理方法の欠点を有さずに、効率的かつ十分に除去処理
する方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an inorganic COD component, dithionic acid and N-S, from waste water of a wet flue gas desulfurization unit that absorbs and removes sulfur oxides in heavy oil combustion exhaust gas. It is an object of the present invention to provide a method for efficiently and sufficiently removing a compound, a heavy metal such as manganese and cadmium, and an organic COD component without having the drawbacks of the conventional treatment methods for these components. .
【0009】[0009]
【課題を解決するための手段】本発明の第一の排煙脱硫
排水の処理方法は、重油燃焼排ガス中の硫黄酸化物を吸
収除去する湿式排煙脱硫装置から排出される排煙脱硫排
水の処理方法において、(a)該排水に鉱酸を添加して
酸性下で昇温し、該排水中の二チオン酸および窒素−硫
黄化合物を分解する酸分解工程と、(b)該酸分解工程
で処理された排水をpH10〜11に調整して、排水中
のマグネシウムを水酸化物としてフロックを析出させ、
該フロックが重金属成分を捕捉して生成した沈澱物を分
離する凝集沈澱工程Aと、(c)該凝集沈澱工程Aで処
理された排水に、キレート剤および鉄化合物を添加する
と共にpH6〜8に調整して、重金属キレート化合物を
生成させると共に水酸化第二鉄のフロックを析出させ、
該水酸化第二鉄のフロックが該重金属キレート化合物を
捕捉して生成した沈澱物を分離する凝集沈澱工程Bとを
含むことを特徴とする(請求項1)。該方法は、さら
に、(d)該凝集沈澱工程Bで処理された排水を、砂ろ
過処理して懸濁物を除去する砂ろ過工程と、(e)該砂
ろ過工程で処理された排水を、活性炭と接触させて有機
性のCOD成分を吸着除去する活性炭吸着工程とを含む
ことができる(請求項2)。The first method of treating flue gas desulfurization effluent of the present invention is a method of treating flue gas desulfurization effluent discharged from a wet type flue gas desulfurization unit for absorbing and removing sulfur oxides in heavy oil combustion exhaust gas. In the treatment method, (a) an acid decomposition step of adding a mineral acid to the wastewater and raising the temperature under acidity to decompose dithionic acid and a nitrogen-sulfur compound in the wastewater; and (b) the acid decomposition step The wastewater treated in the above is adjusted to pH 10 to 11, and magnesium in the wastewater is used as hydroxide to precipitate flocs,
A flocculating sedimentation step A in which the floc captures heavy metal components to separate a precipitate formed; and (c) adding a chelating agent and an iron compound to the wastewater treated in the flocculating sedimentation step A and adjusting the pH to 6 to 8. By adjusting, to generate a heavy metal chelate compound and precipitate the flocs of ferric hydroxide,
A flocculating and sedimentation step B in which the ferric hydroxide floc captures the heavy metal chelate compound to separate a precipitate formed (claim 1). The method further comprises: (d) sand filtration of the wastewater treated in the coagulation / sedimentation step B to remove suspended matter; and (e) wastewater treated in the sand filtration step. Activated carbon adsorbing step of adsorbing and removing organic COD components by contacting with activated carbon (claim 2).
【0010】本発明の第二の排煙脱硫排水の処理方法
は、重油燃焼排ガス中の硫黄酸化物を吸収除去する湿式
排煙脱硫装置から排出される排煙脱硫排水の処理方法に
おいて、(a)該排水に鉱酸を添加して酸性下で昇温
し、該排水中の二チオン酸および窒素−硫黄化合物を分
解する酸分解工程と、(b)該酸分解工程で処理された
排水に、キレート剤を添加すると共にpH8〜10に調
整して、重金属キレート化合物を生成させた後、鉄化合
物を添加すると共にpH8〜10に維持して、水酸化第
二鉄のフロックを析出させ、該水酸化第二鉄のフロック
が該重金属キレート化合物を捕捉して生成した沈澱物を
分離する凝集沈澱工程Cとを含むことを特徴とする(請
求項3)。該方法は、さらに、(c)該凝集沈澱工程C
で処理された排水を、砂ろ過処理して懸濁物を除去する
砂ろ過工程と、(d)該砂ろ過工程で処理された排水
を、活性炭と接触させて有機性のCOD成分を吸着除去
する活性炭吸着工程とを含むことができる(請求項
4)。[0010] The second method of treating flue gas desulfurization wastewater according to the present invention is a method of treating flue gas desulfurization wastewater discharged from a wet flue gas desulfurization unit that absorbs and removes sulfur oxides in heavy oil combustion exhaust gas. A) an acid decomposition step of adding a mineral acid to the wastewater and raising the temperature under acidity to decompose dithionic acid and a nitrogen-sulfur compound in the wastewater; and (b) treating the wastewater treated in the acid decomposition step. After adding a chelating agent and adjusting the pH to 8 to 10 to generate a heavy metal chelate compound, adding an iron compound and maintaining the pH at 8 to 10 to precipitate flocs of ferric hydroxide, A flocculant-precipitation step C in which the ferric hydroxide floc captures the heavy metal chelate compound and separates a precipitate formed (claim 3). The method further comprises (c) the coagulation and precipitation step C
And (d) contacting the wastewater treated in the sand filtration step with activated carbon to remove organic COD components by adsorption. Activated carbon adsorption step (claim 4).
【0011】上記本発明の第一または第二の排煙脱硫排
水の処理方法において、酸分解工程として、排煙脱硫排
水に塩酸をその濃度が0.2〜2.0重量%となるよう
に添加して、95〜130℃に昇温させる工程を採用す
ることができる(請求項5)。上記本発明の第一または
第二の排煙脱硫排水の処理方法において、キレート剤と
して、キレート形成基がジチオカルバミン酸基またはチ
オール基であるものを用いることができる(請求項
6)。In the first or second method for treating flue gas desulfurization waste water according to the present invention, the acid decomposition step is carried out by adding hydrochloric acid to the flue gas desulfurization waste water so that the concentration thereof becomes 0.2 to 2.0% by weight. A step of adding and raising the temperature to 95 to 130 ° C can be adopted (claim 5). In the first or second method for treating flue gas desulfurization wastewater of the present invention, a chelating agent having a chelating group of a dithiocarbamic acid group or a thiol group can be used (claim 6).
【0012】[0012]
【発明の実施の形態】本発明の排煙脱硫排水の処理方法
の各工程を、順に説明する。なお、本発明の第一の処理
方法と第二の処理方法とで共通する工程については、ま
とめて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Each step of the method for treating flue gas desulfurization wastewater of the present invention will be described in order. Note that steps common to the first processing method and the second processing method of the present invention will be described together.
【0013】(1)酸分解工程 酸分解工程は、排水に鉱酸を添加して酸性下で昇温し、
該排水中の二チオン酸および窒素−硫黄化合物を分解す
る工程である。本発明の方法の処理対象である脱硫排水
中には、脱硫装置でSO2 を酸化する際に生成する二チ
オン酸(S2 O6 2-)、および、SO2 とNOX とが反
応して生成する主として次の組成からなるN−S化合物
が含まれている。 (a) ヒドロキシアミンモノスルフォネート: HONHSO3 - (b) ヒドロキシアミンジスルフォネート: HON(SO3 )2 2- (c) ヒドロキシアミントリスルフォネート: ON(SO3 )3 3- (1) Acid Decomposition Step In the acid decomposition step, a mineral acid is added to waste water, and the temperature is raised under acidic conditions.
This is a step of decomposing dithionic acid and nitrogen-sulfur compounds in the wastewater. During desulfurization effluent which is processed by the method of the present invention, dithionite produced during the oxidation of SO 2 in the desulfurization apparatus (S 2 O 6 2-), and reacts with SO 2 and NO X And mainly contains an NS compound having the following composition. (a) hydroxylamine mono sulfonates: HONHSO 3 - (b) hydroxylamine THIS Gandolfo sulfonate: HON (SO 3) 2 2- (c) hydroxylamine tris Gandolfo sulfonate: ON (SO 3) 3 3-
【0014】鉱酸(無機酸)としては、例えば、塩酸、
硫酸等を挙げることができる。濃度は、例えば、塩酸の
場合、排水中に0.2〜2.0重量%程度である。鉱酸
の添加により、pH2以下の酸性になるとみられる。塩
酸と硫酸とを各々、同濃度添加して比較した場合、酸分
解処理された排水のCOD値に有意差はないが、汚泥発
生量の減少、スケール生成の抑制等の点で、塩酸の方が
好ましい。As the mineral acid (inorganic acid), for example, hydrochloric acid,
Sulfuric acid and the like can be mentioned. For example, in the case of hydrochloric acid, the concentration is about 0.2 to 2.0% by weight in the waste water. It is expected that the addition of a mineral acid will result in an acidity of pH 2 or less. When hydrochloric acid and sulfuric acid are added at the same concentration, respectively, there is no significant difference in COD value of the acid-decomposed wastewater. However, in terms of reduction of sludge generation and suppression of scale generation, hydrochloric acid is used. Is preferred.
【0015】昇温は、水蒸気によって、95〜130℃
に達するまで行なう。昇温させた後、その温度を2〜4
時間程度維持させることによって、二チオン酸およびN
−S化合物が次のように分解する。 (a) 二チオン酸(S2 O6 2-) → SO4 2-+SO2 (b) N−S化合物 → N2 O+mSO4 2-+nH+ 反応終了後の酸分解処理された排水は、次工程(第一の
処理方法中の凝集沈澱工程A、または第二の処理方法中
の凝集沈澱工程C)において処理される。The temperature is raised at 95 to 130 ° C. by steam.
Until it reaches. After raising the temperature, the temperature is
The dithioic acid and N
The -S compound decomposes as follows. (a) dithionite (S 2 O 6 2-) → SO 4 2- + SO 2 (b) N-S compounds → N 2 O + mSO 4 2- + nH + acidolysis treated waste water after completion of the reaction, the following Step (Aggregative precipitation step A in the first processing method, or aggregative precipitation step C in the second processing method).
【0016】(2)凝集沈澱工程A 凝集沈澱工程Aは、酸分解工程で処理された排水をpH
10〜11に調整して、排水中のマグネシウムを水酸化
物としてフロックを析出させ、該フロックが重金属成分
を捕捉して生成した沈澱物を分離する工程である。pH
を調整するには、水酸化ナトリウム等のアルカリ剤を用
いる。 (2) Coagulation and Precipitation Step A In the coagulation and precipitation step A, pH of the wastewater treated in the acid decomposition step is adjusted to pH.
This step is a step in which magnesium is contained in the wastewater as hydroxide to precipitate flocs, and the flocs capture heavy metal components to separate precipitates formed. pH
Is adjusted using an alkali agent such as sodium hydroxide.
【0017】pHを10〜11に調整することによっ
て、排水中にもともと含まれるマグネシウムイオンおよ
び重金属(マンガン、カドミウム等)が、次のように反
応して水酸化マグネシウムおよび重金属の水酸化物とな
る。この水酸化マグネシウムのフロックに、重金属の水
酸化物が吸着し包含されて、沈澱物が生成する。 (a) Mg2++2OH- → Mg(OH)2 (b) Mn2++2OH- → Mn(OH)2 (c) Cd2++2OH- → Cd(OH)2 これらのフロックを含む懸濁液中の固形物を、沈澱槽に
おいて分離し、上澄水は、次工程(第一の処理方法中の
凝集沈澱工程B)において処理される。By adjusting the pH to 10 to 11, magnesium ions and heavy metals (manganese, cadmium, etc.) originally contained in the wastewater react as follows to form magnesium hydroxide and heavy metal hydroxides. . The hydroxide of the heavy metal is adsorbed and included in the magnesium hydroxide flocs to form a precipitate. (a) Mg 2+ + 2OH - → Mg (OH) 2 (b) Mn 2+ + 2OH - → Mn (OH) 2 (c) Cd 2+ + 2OH - → Cd (OH) 2 suspension containing these flocs The solids therein are separated in a sedimentation tank, and the supernatant water is treated in the next step (coagulation / sedimentation step B in the first treatment method).
【0018】(3)凝集沈澱工程B 凝集沈澱工程Bは、凝集沈澱工程Aで処理された排水
に、キレート剤および鉄化合物を添加すると共にpH6
〜8に調整して、重金属キレート化合物を生成させると
共に水酸化第二鉄のフロックを析出させ、該水酸化第二
鉄のフロックが該重金属キレート化合物を捕捉して生成
した沈澱物を分離する工程である。キレート剤として
は、ジチオカルバミン酸基(−NH−CS2 Na)、チ
オール基(−SNa)等のキレート形成基を有する液体
の高分子重金属捕集剤を用いることができる。キレート
剤を、通常、10〜1,000mg/L添加することに
よって、重金属を捕集したマイクロフロックが生成す
る。 (3) Coagulation and Precipitation Step B In the coagulation and precipitation step B, a chelating agent and an iron compound are added to the wastewater treated in the coagulation and precipitation step A, and the pH is adjusted to pH 6.
To 8 to form a heavy metal chelate compound and precipitate flocs of ferric hydroxide, and the floc of ferric hydroxide captures the heavy metal chelate compound to separate a precipitate formed. It is. As the chelating agent, a liquid polymer heavy metal collecting agent having a chelating group such as a dithiocarbamic acid group (—NH—CS 2 Na) or a thiol group (—SNa) can be used. By adding a chelating agent in an amount of usually 10 to 1,000 mg / L, a microfloc capturing heavy metals is generated.
【0019】鉄化合物としては、凝集剤である塩化第二
鉄、硫酸第二鉄等を使用することができる。例えば、塩
化第二鉄の場合、中性付近で次のように反応して水酸化
第二鉄となる。水酸化第二鉄は、フロックとなり、この
フロックに上記重金属を捕集したマイクロフロックが吸
着し包含されて、沈澱物が生成する。 FeCl3 +OH- → Fe(OH)3 鉄化合物の添加量は、Feとして100〜500mg/
L程度である。As the iron compound, ferric chloride, ferric sulfate and the like, which are coagulants, can be used. For example, in the case of ferric chloride, it reacts as follows near neutrality to become ferric hydroxide. The ferric hydroxide becomes flocs, and the flocs adsorb and include the microflocs that have collected the heavy metals, thereby producing precipitates. FeCl 3 + OH − → Fe (OH) 3 The amount of the iron compound added is 100 to 500 mg / Fe as Fe.
It is about L.
【0020】その際、適宜、ポリアクリルアミド等、ア
ニオン系高分子凝集剤を添加することによって、更に粗
大なフロックを形成させて、分離性を向上させることが
できる。これらのフロックを含む懸濁液中の固形物は、
沈澱槽において分離され、上澄水は、次の工程(第一の
処理方法中の砂ろ過工程)において処理される。キレー
ト剤と鉄化合物を併用することによって、重金属イオン
が高度に除去されると共に、キレート剤の使用量を大幅
に減少させることができる。At this time, by adding an anionic polymer flocculant such as polyacrylamide as appropriate, a coarser floc can be formed and the separability can be improved. The solids in the suspension containing these flocs are:
Separated in the precipitation tank and the supernatant water is treated in the next step (sand filtration step in the first treatment method). By using a chelating agent and an iron compound in combination, heavy metal ions can be removed to a high degree, and the amount of the chelating agent used can be significantly reduced.
【0021】(4)凝集沈澱工程C 凝集沈澱工程Cは、酸分解工程で処理された排水に、キ
レート剤を添加すると共にpH8〜10に調整して、重
金属キレート化合物を生成させた後、鉄化合物を添加す
ると共にpH8〜10に維持して、水酸化第二鉄のフロ
ックを析出させ、該水酸化第二鉄のフロックが該重金属
キレート化合物を捕捉して生成した沈澱物を分離する工
程である。キレート剤としては、上記凝集沈澱工程Bで
用いるキレート剤と同様のものを用いることができる。
キレート剤の添加量は、通常、10〜1,000mg/
Lである。 (4) Coagulation and Precipitation Step C In the coagulation and precipitation step C, a chelating agent is added to the wastewater treated in the acid decomposition step and the pH is adjusted to 8 to 10 to generate a heavy metal chelate compound. In the step of adding the compound and maintaining the pH at 8 to 10 to precipitate flocs of ferric hydroxide, the flocs of ferric hydroxide capture the heavy metal chelate compound and separate the precipitate formed. is there. As the chelating agent, the same chelating agent as that used in the coagulation / precipitation step B can be used.
The addition amount of the chelating agent is usually 10 to 1,000 mg /
L.
【0022】pHの調整は、水酸化ナトリウム等のアル
カリ剤、または必要に応じて塩酸等の鉱酸を用いて行
う。pH8〜10に調整することにより、カドミウムを
主として捕集したマイクロフロックが生成する。鉄化合
物としては、上記凝集沈澱工程Bで用いる鉄化合物と同
様なものを用いることができる。鉄化合物の添加量は、
Feとして100〜500mg/L程度である。排水を
pH8〜10に維持するには、水酸化ナトリウム等のア
ルカリ剤を添加する。The pH is adjusted by using an alkali agent such as sodium hydroxide or, if necessary, a mineral acid such as hydrochloric acid. By adjusting the pH to 8 to 10, microfloc mainly collecting cadmium is generated. As the iron compound, the same iron compound as that used in the coagulation / precipitation step B can be used. The amount of iron compound added is
It is about 100 to 500 mg / L as Fe. To maintain the drainage at pH 8 to 10, an alkaline agent such as sodium hydroxide is added.
【0023】排水をpH8〜10に維持することによっ
て、上記凝集沈澱工程Bにおけるのと同様な反応が生じ
て、水酸化第二鉄のフロックが析出する。このフロック
に上記マイクロフロックのほか未だ捕捉されていないマ
ンガン等が吸着し包含されて、沈澱物が生成する。その
際、適宜、前述の凝集沈澱工程Bと同様の高分子凝集剤
を添加することによって、さらに粗大なフロックを形成
し、分離性を向上させることができる。これらのフロッ
クを含む懸濁液中の固形物は、沈澱槽において分離され
る。上澄水は、次工程(第二の処理方法中の砂ろ過工
程)で処理される。By maintaining the pH of the waste water at pH 8 to 10, a reaction similar to that in the coagulation / precipitation step B occurs, and flocs of ferric hydroxide precipitate. In addition to the microfloc, manganese and the like not yet trapped are adsorbed and included in the floc, and a precipitate is formed. At this time, by adding a polymer flocculant similar to that in the above-mentioned flocculation / precipitation step B, a coarser floc can be formed and the separability can be improved. The solids in the suspension containing these flocs are separated in a settling tank. The supernatant water is treated in the next step (sand filtration step in the second treatment method).
【0024】(5)濃縮工程 濃縮工程では、第一の処理方法中の凝集沈澱工程Aおよ
び凝集沈澱工程B、または第二の処理方法中の凝集沈澱
工程Cにおいて、固形物として分離し排出された汚泥
を、シックナーによって濃縮する。これらの汚泥濃度
は、通常、1〜2重量%程度であるが、濃縮後は5重量
%程度となる。その分離水は、前段の工程(第一の処理
方法中の凝集沈澱工程A、または第二の処理方法中の凝
集沈澱工程C)に返送して、酸分解処理された排水と共
に再度処理される。汚泥は、脱水工程に送られる。 (5) Concentration Step In the concentration step, in the coagulation precipitation step A and the coagulation precipitation step B in the first treatment method, or in the coagulation precipitation step C in the second treatment method, the solid matter is separated and discharged. The sludge is concentrated by a thickener. The concentration of these sludges is usually about 1 to 2% by weight, but becomes about 5% by weight after concentration. The separated water is returned to the previous step (the coagulation / sedimentation step A in the first treatment method, or the coagulation / sedimentation step C in the second treatment method), and is treated again together with the acid-decomposed wastewater. . Sludge is sent to a dewatering step.
【0025】(6)脱水工程 脱水工程では、濃縮された汚泥を脱水機によって更に脱
水し、ケーキとして排出する。ここで、脱水機として
は、フィルタプレス、ベルトプレス、スクリューデカン
タ等を使用することができる。例えば、フィルタプレス
を使用した場合、汚泥の含水率を70重量%以下とする
ことができる。 (6) Dehydration Step In the dehydration step, the concentrated sludge is further dehydrated by a dehydrator and discharged as a cake. Here, a filter press, a belt press, a screw decanter, or the like can be used as the dehydrator. For example, when a filter press is used, the water content of the sludge can be reduced to 70% by weight or less.
【0026】(7)砂ろ過工程 砂ろ過工程では、第一の処理方法中の凝集沈澱工程B、
または第二の処理方法中の凝集沈澱工程Cから排出され
る上澄水中の残留する浮遊物を、砂ろ過処理によって分
離除去する。砂ろ過の際の濾過層の構成は、例えば、支
持砂利300mm、砂600mm、アンスラサイト60
0mmとする。ろ過の流速(LV)は、下向流で通常、
7〜15m/hである。 (7) Sand Filtration Step In the sand filtration step, the coagulation precipitation step B in the first treatment method,
Alternatively, the suspended matter remaining in the supernatant water discharged from the coagulation / sedimentation step C in the second treatment method is separated and removed by a sand filtration treatment. The configuration of the filtration layer at the time of sand filtration is, for example, 300 mm of support gravel, 600 mm of sand, and 60 anthracite.
0 mm. The flow rate (LV) of the filtration is usually
7 to 15 m / h.
【0027】(8)活性炭吸着工程 砂ろ過工程から排出される砂ろ過処理水を、活性炭吸着
工程に導入し、充填塔内の活性炭層内を通過させる。こ
の工程では、主に、工業用水に起因する有機性のCOD
成分を吸着除去する。活性炭吸着処理された排水は、最
終の処理水として、放流または再利用される。 (8) Activated carbon adsorption step The sand filtration treatment water discharged from the sand filtration step is introduced into the activated carbon adsorption step, and is passed through the activated carbon layer in the packed tower. In this step, organic COD mainly caused by industrial water is used.
The components are adsorbed and removed. The wastewater subjected to the activated carbon adsorption treatment is discharged or reused as final treated water.
【0028】[0028]
【実施例】実施例1(第一の処理方法) 実施例1を図1に示す。図1において、排煙脱硫排水処
理方法は、酸分解工程1、凝集沈澱工程A 2、凝集沈
澱工程B 3、砂ろ過工程7、および活性炭吸着工程8
から構成される。これらの工程に沿って、脱硫排水10
を順次処理した。なお、これらの工程と共に、濃縮工程
5および脱水工程6を付帯的に設け、凝集沈澱工程A
2および凝集沈澱工程B 3で発生した汚泥を処理し
た。以下、詳述する。Embodiment 1 (First Processing Method) Embodiment 1 is shown in FIG. In FIG. 1, the flue gas desulfurization wastewater treatment method includes an acid decomposition step 1, a coagulation precipitation step A2, a coagulation precipitation step B3, a sand filtration step 7, and an activated carbon adsorption step 8.
Consists of Along these steps, the desulfurization wastewater 10
Were processed sequentially. In addition, together with these steps, a concentration step 5 and a dehydration step 6 are additionally provided, and the coagulation precipitation step A
2 and the sludge generated in the coagulation sedimentation step B3 were treated. The details will be described below.
【0029】先ず、重油燃焼排ガスを処理する脱硫装置
から排出された脱硫排水10を酸分解工程1に導入し
た。酸分解工程1は、図2に示すように、鉱酸混合槽1
a、水蒸気混合槽1b、分解槽1c、および中和槽1d
からなる。鉱酸混合槽1aでは、脱硫排水10に鉱酸
(塩酸)22を添加した。塩酸は、その濃度が0.2重
量%となるように添加して混合した。混合後のpHは、
2以下とみられる。次いで、水蒸気混合槽1bにおい
て、水蒸気21によって95℃となるように排水を昇温
させた後、保温機能を具備した分解槽1cに排水を流入
させて、2時間反応させた。なお、上記塩酸濃度、反応
温度、および反応時間は、一連の実験結果を通じ、CO
D成分の分解に有効性が現れ始めることが判明した値で
ある。二チオン酸およびN−S化合物を分解した後の排
水は、中和槽1dに流入させ、中和槽1dにおいて、ア
ルカリ剤23によって予めpHを中性付近(pH7程
度)に調整した。アルカリ剤23としては、固形物を生
成するおそれのない水酸化ナトリウムを用いた。予備的
に中和することによって、次工程に到る装置の材料を保
護することができると共に、次工程におけるpH調整が
小幅で済み、調整し易くなる。酸分解処理された排水1
1は、凝集沈澱工程A 2において処理した。First, the desulfurization effluent 10 discharged from the desulfurization unit for treating heavy oil combustion exhaust gas was introduced into the acid decomposition step 1. In the acid decomposition step 1, as shown in FIG.
a, steam mixing tank 1b, decomposition tank 1c, and neutralization tank 1d
Consists of In the mineral acid mixing tank 1a, a mineral acid (hydrochloric acid) 22 was added to the desulfurization wastewater 10. Hydrochloric acid was added and mixed so that the concentration became 0.2% by weight. The pH after mixing is
It seems to be 2 or less. Next, in the steam mixing tank 1b, the temperature of the wastewater was raised to 95 ° C. by the steam 21. Then, the wastewater was allowed to flow into the decomposition tank 1c having a heat retaining function and reacted for 2 hours. The hydrochloric acid concentration, the reaction temperature, and the reaction time were determined based on a series of experimental results.
This is a value that has been found to be effective in decomposing the D component. The waste water after decomposing the dithionic acid and the NS compound was flowed into the neutralization tank 1d, and the pH was previously adjusted to around neutral (about pH 7) with the alkali agent 23 in the neutralization tank 1d. As the alkaline agent 23, sodium hydroxide which does not generate a solid was used. By preliminarily neutralizing, the material of the apparatus to be used in the next step can be protected, and the pH adjustment in the next step can be made small and easy. Wastewater treated with acid decomposition 1
No. 1 was treated in the coagulation sedimentation step A2.
【0030】凝集沈澱工程A 2は、図3に示すよう
に、pH調整槽2a、凝集槽2b、および沈澱槽2cか
らなる。pH調整槽2aでは、酸分解処理された排水1
1に、アルカリ剤23として水酸化ナトリウムを注入し
て、pH10.3に調整し、次いで凝集槽2bにおいて
高分子凝集剤25を添加することによって、水酸化マグ
ネシウムおよび重金属の水酸化物を含む粗大なフロック
を生成させた。なお、高分子凝集剤25としては、ポリ
アクリルアミド系等のアニオン系凝集剤を使用すること
ができる。これらフロックを含む懸濁液は、沈澱槽2c
において固液分離し、上澄水は、凝集沈澱処理水A 1
2として、次の凝集沈澱工程B 3で処理し、凝集沈澱
汚泥A 12sは、濃縮工程5に送って処理した。As shown in FIG. 3, the coagulation / sedimentation step A2 includes a pH adjusting tank 2a, a coagulation tank 2b, and a precipitation tank 2c. In the pH adjusting tank 2a, the wastewater 1 subjected to the acid decomposition is treated.
1 was adjusted to pH 10.3 by injecting sodium hydroxide as the alkaline agent 23, and then the polymer flocculant 25 was added in the flocculation tank 2b to obtain a coarse particle containing magnesium hydroxide and a heavy metal hydroxide. A flock. In addition, as the polymer coagulant 25, an anionic coagulant such as polyacrylamide can be used. The suspension containing these flocs is transferred to the settling tank 2c.
And the supernatant water is coagulated sedimentation treated water A 1
As No. 2, it was treated in the following coagulation / sedimentation step B3, and the coagulation / sedimentation sludge A 12s was sent to the concentration step 5 for treatment.
【0031】凝集沈澱工程B 3は、図4に示すよう
に、凝集槽3a、反応槽3b、および沈澱槽3cからな
る。凝集槽3aでは、凝集沈澱処理水A 12にキレー
ト剤26を60mg/L、および鉄化合物24として塩
化第二鉄を100mg/L添加した後、鉱酸22および
アルカリ剤23として、塩酸および水酸化ナトリウムを
用いてpH7.4に調整した。次いで、反応槽3bにお
いて、高分子凝集剤25を添加することによって、重金
属成分を包含した粗大な水酸化第二鉄のフロックを生成
させた。なお、キレート剤26としては、エポフロック
L−1(ミヨシ油脂社製)を使用した。なお、鉄化合物
24として、塩化第二鉄の代わりに硫酸第二鉄等を用い
てもよい。これらのフロックを含む懸濁液を沈澱槽3c
において固液分離し、上澄水は、凝集沈澱処理水B 1
3として、次の砂ろ過工程7で処理し、凝集沈澱汚泥B
13sは、濃縮工程5に送って処理した。As shown in FIG. 4, the coagulation / precipitation step B3 includes a coagulation tank 3a, a reaction tank 3b, and a precipitation tank 3c. In the coagulation tank 3a, 60 mg / L of the chelating agent 26 and 100 mg / L of ferric chloride as the iron compound 24 are added to the coagulated sedimentation treated water A12, and then hydrochloric acid and hydroxylic acid are used as the mineral acid 22 and the alkali agent 23. The pH was adjusted to 7.4 using sodium. Next, in the reaction tank 3b, a coarse floc of ferric hydroxide containing a heavy metal component was generated by adding the polymer flocculant 25. In addition, as the chelating agent 26, Epofloc L-1 (manufactured by Miyoshi Oil & Fats Co., Ltd.) was used. As the iron compound 24, ferric sulfate or the like may be used instead of ferric chloride. The suspension containing these flocs is transferred to the settling tank 3c.
And the supernatant water is coagulated sedimentation treated water B 1
As No. 3, treated in the next sand filtration step 7, the coagulated sediment sludge B
13s was sent to the concentration step 5 for processing.
【0032】凝集沈澱汚泥A 12sおよび凝集沈澱汚
泥B 13sは、濃縮工程5に導き、シックナーでまと
めて沈降分離させた。その結果、これらの汚泥の濃度
は、1〜2重量%程度から5重量%程度にまで濃縮され
た。濃縮後の分離水15wは、凝集沈澱工程A 2に返
送し、濃縮された汚泥15sは、さらに脱水工程6で脱
水し、ケーキ16sとして系外に排出した。脱水機とし
てフィルタプレスを用いて脱水したところ、含水率70
重量%以下のケーキが得られた。脱離水16wは、凝集
沈澱工程A 2に返送した。The coagulated sediment sludge A 12 s and the coagulated sediment sludge B 13 s were led to a concentration step 5, and were collectively settled and separated by a thickener. As a result, the concentration of these sludges was concentrated from about 1 to 2% by weight to about 5% by weight. The separated water 15w after the concentration was returned to the coagulation / sedimentation step A2, and the concentrated sludge 15s was further dehydrated in the dehydration step 6, and discharged out of the system as a cake 16s. When dewatered using a filter press as a dehydrator, the water content was 70%.
A cake of less than or equal to% by weight was obtained. The desorbed water 16w was returned to the coagulation sedimentation step A2.
【0033】砂ろ過工程7では、凝集沈澱工程B 3か
ら排出される上澄水、すなわち凝集沈澱処理水B 13
を、砂をろ層とする単層式の砂ろ過層を通過させて、残
留する浮遊物を分離除去した。なお、砂ろ過の方式は、
これに限定されるものではなく、一般に使用されている
圧力式急速ろ過方式のものでもよい。その際、粒子径な
ど浮遊物の状態を考慮して、ろ層(単層または複層等)
を決める。また、ろ材は、砂、砂利、アンスラサイト等
から適宜選択して使用することができる。ろ層を通過後
の砂ろ過処理水17は、次の活性炭吸着工程8に送って
処理した。In the sand filtration step 7, the supernatant water discharged from the coagulation / sedimentation step B3, that is, the coagulation / sedimentation treated water B13
Was passed through a single-layer sand filter layer using sand as a filter layer to separate and remove remaining suspended matter. The method of sand filtration is
The present invention is not limited to this, and a commonly used pressure type rapid filtration type may be used. At that time, taking into account the state of suspended matter such as particle size, filter layer (single layer or multiple layers)
Decide. The filter medium can be appropriately selected from sand, gravel, anthracite and the like. The sand filtration treatment water 17 after passing through the filter layer was sent to the next activated carbon adsorption step 8 for treatment.
【0034】なお、ろ過を継続して前記浮遊物によって
ろ層が目詰まりした場合には、槽内に水を送って逆洗
し、これら堆積した浮遊物よりなる固形物を取り除き、
このとき排出された逆洗水17wは、凝集沈澱工程A
2に返送して処理した。活性炭吸着工程8では、砂ろ過
処理水17を充填塔(図示省略)内の粒状活性炭層を通
過させ、主に工業用水に起因する有機性のCOD成分を
吸着除去した。なお、活性炭は、粒状と粉状の何れでも
使用することができる。If the filtration layer is clogged by the suspended matter while the filtration is continued, water is fed into the tank and backwashed to remove solid matter composed of the accumulated suspended matter.
The backwash water 17w discharged at this time is subjected to the coagulation and precipitation step A.
2 for processing. In the activated carbon adsorption step 8, the sand filtration treatment water 17 was passed through a granular activated carbon layer in a packed tower (not shown) to adsorb and remove organic COD components mainly caused by industrial water. The activated carbon can be used in any of a granular form and a powder form.
【0035】なお、吸着処理を続けて活性炭層が夾雑物
によって目詰まりした場合には、槽内に水を送って逆洗
してこれらの夾雑物を取り除き、このとき排出される逆
洗排水18wは、凝集沈澱工程A 2に返送した。こう
して、活性炭吸着工程8より排出された活性炭吸着処理
された排水を、pH7.0に調整して最終の処理水18
が得られた。If the activated carbon layer is clogged with foreign substances while continuing the adsorption treatment, water is fed into the tank and backwashed to remove these foreign substances. Was returned to the coagulation sedimentation step A2. In this manner, the activated carbon adsorption-treated wastewater discharged from the activated carbon adsorption step 8 is adjusted to pH 7.0 to obtain the final treated water 18.
was gotten.
【0036】実施例2(第二の処理方法) 図5は、実施例2(第二の処理方法)の工程を示す。図
5において、実施例2の方法は、酸分解工程1、凝集沈
澱工程C 4、砂ろ過工程7、および活性炭吸着工程8
を含む。脱硫排水10を、これらの工程に沿って順次処
理した。なお、この工程と共に濃縮工程5および脱水工
程6が付帯的に設けられており、凝集沈澱工程C 4で
発生した汚泥を処理した。 Second Embodiment (Second Processing Method) FIG. 5 shows the steps of a second embodiment (second processing method). In FIG. 5, the method of Example 2 comprises an acid decomposition step 1, a coagulation and precipitation step C4, a sand filtration step 7, and an activated carbon adsorption step 8
including. The desulfurization effluent 10 was sequentially processed according to these steps. In addition, a concentration step 5 and a dehydration step 6 were additionally provided along with this step, and sludge generated in the coagulation / sedimentation step C4 was treated.
【0037】実施例2では、実施例1の凝集沈澱工程A
2、および凝集沈澱工程B 3に代えて、凝集沈澱工
程C 4を設けている。実施例1の場合と同様に、重油
燃焼排ガスを処理する脱硫装置から排出された脱硫排水
10を酸分解工程1に導入して、排水中の二チオン酸お
よびN−S化合物を分解した後、排出された酸分解処理
水11を凝集沈澱工程C 4に導入した。図5におい
て、凝集沈澱工程C 4は、反応槽4a、pH調整槽4
b、凝集槽4c、沈澱槽4dからなる。In Example 2, the coagulation / sedimentation step A of Example 1
2 and the coagulation / precipitation step B3 instead of the coagulation / precipitation step B3. As in the case of Example 1, the desulfurization effluent 10 discharged from the desulfurization device that treats the heavy oil combustion exhaust gas is introduced into the acid decomposition step 1 to decompose dithionic acid and NS compounds in the effluent, The discharged acid-decomposed water 11 was introduced into the coagulation / precipitation step C4. In FIG. 5, the coagulation / sedimentation step C4 includes a reaction tank 4a and a pH adjustment tank 4
b, a coagulation tank 4c and a precipitation tank 4d.
【0038】反応槽4aでは、酸分解処理水11にキレ
ート剤(商品名「エポフロックL−1」;ミヨシ油脂社
製)26を60mg/L添加した後、アルカリ剤23と
して水酸化ナトリウムでpH8.8に調整することによ
って、重金属を含むマイクロフロックが析出した。次い
で、pH調整槽4bにおいて、鉄化合物24として塩化
第二鉄を100mg/L添加し、前記アルカリ剤23で
このpHを維持することによって、前記重金属のマイク
ロフロックを吸着し包含する水酸化第二鉄のフロックが
析出した。凝集槽4cにおいて、これらのフロックを含
む懸濁液に高分子凝集剤25を添加して、フロック等を
さらに粗大化させた後、沈澱槽4cにおいて固液分離し
た。上澄水は、凝集沈澱処理水C 14として、次の砂
ろ過工程7で処理した。凝集沈澱汚泥C 14sは、濃
縮工程5に送って処理した。In the reaction tank 4a, a chelating agent (trade name "EpoFloc L-1"; manufactured by Miyoshi Oil & Fats Co., Ltd.) 26 is added to the acid-decomposed water 11 at a concentration of 60 mg / L. By adjusting to 8, microfloc containing heavy metal was deposited. Next, in the pH adjusting tank 4b, ferric chloride as the iron compound 24 was added at 100 mg / L, and the pH was maintained with the alkaline agent 23, thereby adsorbing and containing the heavy metal microfloc. Iron flocs precipitated. In the flocculation tank 4c, a polymer flocculant 25 was added to the suspension containing these flocs to further coarsen the flocs and the like, followed by solid-liquid separation in the precipitation tank 4c. The supernatant water was treated in the next sand filtration step 7 as coagulated sedimentation treated water C14. The coagulated sediment sludge C14s was sent to the concentration step 5 for treatment.
【0039】凝集沈澱処理水C 14は、実施例1の場
合と同様に、砂ろ過工程7、活性炭吸着工程8で順次処
理し、pH7.0に調整することによって、最終の処理
水18が得られた。実施例1および実施例2にもとづき
処理した結果を表に示す。The coagulated sedimented water C14 is sequentially treated in the sand filtration step 7 and the activated carbon adsorption step 8 in the same manner as in Example 1 to adjust the pH to 7.0, so that the final treated water 18 is obtained. Was done. The results of processing based on Example 1 and Example 2 are shown in the table.
【0040】[0040]
【表1】 (注)T−COD: COD成分の総量 S2O6−COD:二チオン酸の量 NS−COD:N−S化合物の量[Table 1] (Note) T-COD: total amount of COD component S 2 O 6 -COD: amount of dithionic acid NS-COD: amount of NS compound
【0041】[0041]
【発明の効果】本発明の方法には、次の効果がある。酸
分解工程において、難分解性の二チオン酸のみならず、
N−S化合物に起因するCOD成分も高効率に分解除去
することができる。従来の凝集沈澱で十分に除去できな
かったマンガン、カドミウム等の重金属をほぼ完全に除
去することができる。脱硫排水中の各成分に応じた処理
工程を有機的に組合わせて多段で処理することによっ
て、複数の成分を極めて効率的に処理することができ、
COD成分および各種重金属に関し、排出基準に定めら
れた値を完全に満足し得る。一連の工程に必要な設備を
小型化することができ、設備費用を大幅に低減化するこ
とができる。薬品の消費の無駄を省き、薬品の費用を大
幅に節減することができる。The method of the present invention has the following effects. In the acid decomposition step, not only the hardly decomposable dithionic acid,
COD components caused by the NS compound can also be decomposed and removed with high efficiency. Heavy metals such as manganese and cadmium, which could not be sufficiently removed by conventional coagulation sedimentation, can be almost completely removed. By organically combining the processing steps corresponding to each component in the desulfurization effluent and treating in multiple stages, it is possible to treat a plurality of components extremely efficiently,
With respect to the COD component and various heavy metals, the values defined in the emission standards can be completely satisfied. Equipment required for a series of processes can be reduced in size, and equipment costs can be significantly reduced. The waste of medicine consumption can be eliminated, and the cost of medicine can be greatly reduced.
【図1】本発明の第一の処理方法の工程図である。FIG. 1 is a process chart of a first processing method of the present invention.
【図2】本発明の第一または第二の処理方法中の酸分解
工程の説明図である。FIG. 2 is an explanatory diagram of an acid decomposition step in the first or second treatment method of the present invention.
【図3】本発明の第一の処理方法中の凝集沈澱工程Aの
説明図である。FIG. 3 is an explanatory view of a coagulation / precipitation step A in the first treatment method of the present invention.
【図4】本発明の第一の処理方法中の凝集沈澱工程Bの
説明図である。FIG. 4 is an explanatory diagram of a coagulation / precipitation step B in the first treatment method of the present invention.
【図5】本発明の第二の処理方法の工程図である。FIG. 5 is a process chart of a second processing method of the present invention.
【図6】本発明の第二の処理方法中の凝集沈澱工程Cの
説明図である。FIG. 6 is an explanatory diagram of a coagulation / precipitation step C in the second treatment method of the present invention.
1 酸分解工程 1a 鉱酸混合槽 1b 水蒸気混合器 1c 分解槽 1d 中和槽 2 凝集沈澱工程A 2a pH調整槽 2b 凝集槽 2c 沈澱槽 3 凝集沈澱工程B 3a 凝集槽 3b 反応槽 3c 沈澱槽 4 凝集沈澱工程C 4a 反応槽 4b pH調整槽 4c 凝集槽 4d 沈澱槽 5 濃縮工程 6 脱水工程 7 砂ろ過工程 8 活性炭吸着工程 10 脱硫排水 11 酸分解処理水 12 凝集沈澱処理水A 12s 凝集沈澱汚泥A 13 凝集沈澱処理水B 13s 凝集沈澱汚泥B 14 凝集沈澱処理水C 14s 凝集沈澱汚泥C 15s 濃縮汚泥 15w 分離水 16s ケーキ 16w 脱離水 17 砂ろ過処理水 17w 逆洗廃水 18 処理水 18w 洗浄廃水 21 水蒸気 22 鉱酸23 アルカリ剤 24 鉄化合物 25 高分子凝集剤 26 キレート剤 1 Acid Decomposition Step 1a Mineral Acid Mixing Tank 1b Steam Mixer 1c Decomposition Tank 1d Neutralization Tank 2 Coagulation Precipitation Step A 2a pH Adjustment Tank 2b Coagulation Tank 2c Precipitation Tank 3 Coagulation Precipitation Step B 3a Coagulation Tank 3b Reaction Tank 3c Precipitation Tank 4 Coagulation sedimentation step C 4a Reaction tank 4b pH adjustment tank 4c Coagulation tank 4d Precipitation tank 5 Concentration step 6 Dehydration step 7 Sand filtration step 8 Activated carbon adsorption step 10 Desulfurization wastewater 11 Acid decomposition treatment water 12 Coagulation precipitation treatment water A 12s Coagulation precipitation sludge A 13 Coagulated sedimentation treated water B 13s Coagulated sedimented sludge B 14 Coagulated sedimentation treated water C 14s Coagulated sedimentation sludge C 15s Condensed sludge 15w Separated water 16s Cake 16w Desorption water 17 Sand filtration treatment water 17w Backwash wastewater 18 Treatment water 18w Wash wastewater 21 Steam 22 Mineral acid 23 Alkali agent 24 Iron compound 25 Polymer flocculant 26 Chelating agent
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 哲也 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 (72)発明者 神吉 秀起 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 (72)発明者 西田 守賢 兵庫県神戸市兵庫区小松通五丁目1番16号 株式会社神菱ハイテック内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsuya Ito 5-1-1-16 Komatsu-dori, Hyogo-ku, Kobe-shi, Hyogo Prefecture Inside Shinryo High-Tech Co., Ltd. (72) Hideki Kamiyoshi Komatsu-dori, Hyogo-ku, Hyogo Prefecture 5-1-1-16 Shinryo High-Tech Co., Ltd. (72) Inventor Morishita Nishida 5-1-1-16 Komatsu-dori, Hyogo-ku, Kobe-shi, Hyogo Pref.
Claims (6)
去する湿式排煙脱硫装置から排出される排煙脱硫排水の
処理方法において、 (a)該排水に鉱酸を添加して酸性下で昇温し、該排水
中の二チオン酸および窒素−硫黄化合物を分解する酸分
解工程と、 (b)該酸分解工程で処理された排水をpH10〜11
に調整して、排水中のマグネシウムを水酸化物としてフ
ロックを析出させ、該フロックが重金属成分を捕捉して
生成した沈澱物を分離する凝集沈澱工程Aと、 (c)該凝集沈澱工程Aで処理された排水に、キレート
剤および鉄化合物を添加すると共にpH6〜8に調整し
て、重金属キレート化合物を生成させると共に水酸化第
二鉄のフロックを析出させ、該水酸化第二鉄のフロック
が該重金属キレート化合物を捕捉して生成した沈澱物を
分離する凝集沈澱工程Bとを含むことを特徴とする排煙
脱硫排水の処理方法。1. A method for treating flue gas desulfurization effluent discharged from a wet flue gas desulfurization apparatus for absorbing and removing sulfur oxides in heavy oil combustion exhaust gas, comprising: An acid decomposition step of raising the temperature and decomposing dithionic acid and a nitrogen-sulfur compound in the wastewater; and (b) treating the wastewater treated in the acid decomposition step with a pH of 10 to 11.
(C) coagulation and precipitation step A in which magnesium in the wastewater is precipitated as hydroxide to precipitate floc, and the floc captures heavy metal components to separate a precipitate formed; To the treated waste water, a chelating agent and an iron compound are added and the pH is adjusted to 6 to 8 to generate a heavy metal chelate compound and precipitate flocs of ferric hydroxide. A coagulation sedimentation step B for separating the precipitate formed by capturing the heavy metal chelate compound.
排水を、砂ろ過処理して懸濁物を除去する砂ろ過工程
と、 (e)該砂ろ過工程で処理された排水を、活性炭と接触
させて有機性のCOD成分を吸着除去する活性炭吸着工
程とを更に含む請求項1に記載の排煙脱硫排水の処理方
法。(D) a sand filtration step of removing the suspended matter by subjecting the wastewater treated in the coagulation and precipitation step B to sand filtration, and (e) a wastewater treated in the sand filtration step. The method for treating flue gas desulfurization effluent according to claim 1, further comprising an activated carbon adsorption step of contacting with activated carbon to adsorb and remove organic COD components.
去する湿式排煙脱硫装置から排出される排煙脱硫排水の
処理方法において、 (a)該排水に鉱酸を添加して酸性下で昇温し、該排水
中の二チオン酸および窒素−硫黄化合物を分解する酸分
解工程と、 (b)該酸分解工程で処理された排水に、キレート剤を
添加すると共にpH8〜10に調整して、重金属キレー
ト化合物を生成させた後、鉄化合物を添加すると共にp
H8〜10に維持して、水酸化第二鉄のフロックを析出
させ、該水酸化第二鉄のフロックが該重金属キレート化
合物を捕捉して生成した沈澱物を分離する凝集沈澱工程
Cとを含むことを特徴とする排煙脱硫排水の処理方法。3. A method for treating flue gas desulfurization effluent discharged from a wet flue gas desulfurization device for absorbing and removing sulfur oxides in heavy oil combustion exhaust gas, comprising the steps of: (a) adding a mineral acid to the effluent under acidic conditions; An acid decomposition step of raising the temperature to decompose dithionic acid and nitrogen-sulfur compounds in the wastewater; and (b) adding a chelating agent to the wastewater treated in the acid decomposition step and adjusting the pH to 8 to 10. To form a heavy metal chelate compound, add an iron compound and
Agglomerated sedimentation step C in which the ferric hydroxide floc is precipitated while maintaining the pH at H8-10, and the ferric hydroxide floc captures the heavy metal chelate compound to separate a precipitate formed. A method for treating flue gas desulfurization wastewater, comprising:
排水を、砂ろ過処理して懸濁物を除去する砂ろ過工程
と、 (d)該砂ろ過工程で処理された排水を、活性炭と接触
させて有機性のCOD成分を吸着除去する活性炭吸着工
程とを更に含む請求項3に記載の排煙脱硫排水の処理方
法。(C) a sand filtration step of subjecting the wastewater treated in the coagulation and sedimentation step C to sand filtration to remove suspended matter; and (d) a wastewater treated in the sand filtration step. The method for treating flue gas desulfurization effluent according to claim 3, further comprising an activated carbon adsorption step of adsorbing and removing an organic COD component by bringing the organic COD component into contact with activated carbon.
をその濃度が0.2〜2.0重量%となるように添加し
て、95〜130℃に昇温するものである請求項1〜4
のいずれかに記載の排煙脱硫排水の処理方法。5. The acid decomposition step in which hydrochloric acid is added to flue gas desulfurization effluent so that the concentration thereof becomes 0.2 to 2.0% by weight, and the temperature is raised to 95 to 130 ° C. Items 1-4
The method for treating flue gas desulfurization effluent according to any one of the above.
てジチオカルバミン酸基またはチオール基を有するもの
である請求項1〜5のいずれかに記載の排煙脱硫排水の
処理方法。6. The method according to claim 1, wherein the chelating agent has a dithiocarbamic acid group or a thiol group as a chelating group.
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9254481A JPH1190165A (en) | 1997-09-19 | 1997-09-19 | Treatment of waste water from flue gas desulfurization |
| TW087113497A TW412433B (en) | 1997-09-19 | 1998-08-17 | Processes for the treatment of flue gas desulfurization waste water |
| CNB981192459A CN1137747C (en) | 1997-09-19 | 1998-09-14 | Processes for treatment of flue gas desulfurization waste water |
| IDP981227A ID20901A (en) | 1997-09-19 | 1998-09-14 | PROCESSES FOR WASTEWATER DESULFURIZATION OF WASTE GAS |
| KR1019980038216A KR100313221B1 (en) | 1997-09-19 | 1998-09-16 | Treatment of flue gas desulfurization drainage |
| HK99103694.5A HK1018946B (en) | 1997-09-19 | 1999-08-27 | Processes for the treatment of flue gas |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP9254481A JPH1190165A (en) | 1997-09-19 | 1997-09-19 | Treatment of waste water from flue gas desulfurization |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH1190165A true JPH1190165A (en) | 1999-04-06 |
Family
ID=17265660
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP9254481A Pending JPH1190165A (en) | 1997-09-19 | 1997-09-19 | Treatment of waste water from flue gas desulfurization |
Country Status (5)
| Country | Link |
|---|---|
| JP (1) | JPH1190165A (en) |
| KR (1) | KR100313221B1 (en) |
| CN (1) | CN1137747C (en) |
| ID (1) | ID20901A (en) |
| TW (1) | TW412433B (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009101359A (en) * | 2009-02-03 | 2009-05-14 | Ube Ind Ltd | Cement kiln extraction dust processing method |
| JP2010000436A (en) * | 2008-06-19 | 2010-01-07 | Ebara Engineering Service Co Ltd | Method and apparatus for dewatering organic sludge |
| CN102183518A (en) * | 2011-01-26 | 2011-09-14 | 中节能六合天融环保科技有限公司 | A method for rapid determination of sulfate content in magnesium desulfurization process |
| WO2013054810A1 (en) * | 2011-10-13 | 2013-04-18 | 栗田工業株式会社 | Organic sewage collection processing device and collection processing method |
| JP2013141641A (en) * | 2012-01-11 | 2013-07-22 | Kurita Water Ind Ltd | Method for treating heavy metal-containing waste water |
| US8562828B2 (en) | 2004-02-16 | 2013-10-22 | Mitsubishi Heavy Industries, Ltd. | Wastewater treatment apparatus |
| CN108439644A (en) * | 2018-04-16 | 2018-08-24 | 新疆华泰重化工有限责任公司 | A kind of processing of desulfurization wastewater and chemical industry for making chlorine and alkali technique link processing system |
| CN110152612A (en) * | 2018-03-01 | 2019-08-23 | 济南开发区星火科学技术研究院 | A kind of crude oil absorption desulfurization desulfurizing agent |
| JP2020000962A (en) * | 2018-06-26 | 2020-01-09 | 一般財団法人電力中央研究所 | Method for treating NS compounds affecting COD of desulfurization wastewater |
| CN113636685A (en) * | 2021-09-03 | 2021-11-12 | 中冶赛迪工程技术股份有限公司 | Method for treating nanofiltration concentrated water and sodium chloride evaporation mother liquor |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1318318C (en) * | 2003-01-27 | 2007-05-30 | 荣成纸业股份有限公司 | Wastewater treatment method after exhaust gas desulfurization treatment of steam-electricity cogeneration equipment |
| US20080060999A1 (en) * | 2006-09-07 | 2008-03-13 | Musale Deepak A | Method of heavy metal removal from industrial wastewater using submerged ultrafiltration or microfiltration membranes |
| CN100450943C (en) * | 2006-12-31 | 2009-01-14 | 湖南华迪电力环保工程技术有限公司 | Method and system unit for flue gas desulfurization and wastewater treatment |
| CN101838070B (en) * | 2010-05-17 | 2012-05-02 | 邹炎 | Method of air and water combined cycling purification |
| CN101844819B (en) * | 2010-05-21 | 2012-07-25 | 重庆大学 | Spray evaporation treatment method of wet method flue gas desulfurization wastewater in thermal power station |
| KR101818492B1 (en) * | 2016-07-07 | 2018-01-15 | 대구대학교 산학협력단 | Treatment process including selective mercury removal for desulfurization waste water of flue gas |
| CN108014444A (en) * | 2018-01-24 | 2018-05-11 | 东莞市升佳净水材料有限公司 | A kind of flying dust chelating agent and preparation method thereof |
| CN111099787A (en) * | 2018-10-29 | 2020-05-05 | 香港生产力促进局 | Total nitrogen treatment process for desulfurization wastewater of coal-fired power plant |
| CN114230075B (en) * | 2021-12-16 | 2024-05-07 | 华能辛店发电有限公司 | A system, method and application for preparing snow melting agent using desulfurization wastewater |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0236316B2 (en) * | 1983-06-16 | 1990-08-16 | Mitsubishi Heavy Ind Ltd | HAIENDATSURYUHAISUINOSHORIHOHO |
| JPH07195085A (en) * | 1994-01-12 | 1995-08-01 | Electric Power Dev Co Ltd | Method for treating water containing dithionate ion |
-
1997
- 1997-09-19 JP JP9254481A patent/JPH1190165A/en active Pending
-
1998
- 1998-08-17 TW TW087113497A patent/TW412433B/en not_active IP Right Cessation
- 1998-09-14 CN CNB981192459A patent/CN1137747C/en not_active Expired - Fee Related
- 1998-09-14 ID IDP981227A patent/ID20901A/en unknown
- 1998-09-16 KR KR1019980038216A patent/KR100313221B1/en not_active Expired - Fee Related
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8562828B2 (en) | 2004-02-16 | 2013-10-22 | Mitsubishi Heavy Industries, Ltd. | Wastewater treatment apparatus |
| JP2010000436A (en) * | 2008-06-19 | 2010-01-07 | Ebara Engineering Service Co Ltd | Method and apparatus for dewatering organic sludge |
| JP2009101359A (en) * | 2009-02-03 | 2009-05-14 | Ube Ind Ltd | Cement kiln extraction dust processing method |
| CN102183518A (en) * | 2011-01-26 | 2011-09-14 | 中节能六合天融环保科技有限公司 | A method for rapid determination of sulfate content in magnesium desulfurization process |
| WO2013054810A1 (en) * | 2011-10-13 | 2013-04-18 | 栗田工業株式会社 | Organic sewage collection processing device and collection processing method |
| JP2013085983A (en) * | 2011-10-13 | 2013-05-13 | Kurita Water Ind Ltd | Organic wastewater collection processing device and collection processing method |
| JP2013141641A (en) * | 2012-01-11 | 2013-07-22 | Kurita Water Ind Ltd | Method for treating heavy metal-containing waste water |
| CN110152612A (en) * | 2018-03-01 | 2019-08-23 | 济南开发区星火科学技术研究院 | A kind of crude oil absorption desulfurization desulfurizing agent |
| CN108439644A (en) * | 2018-04-16 | 2018-08-24 | 新疆华泰重化工有限责任公司 | A kind of processing of desulfurization wastewater and chemical industry for making chlorine and alkali technique link processing system |
| JP2020000962A (en) * | 2018-06-26 | 2020-01-09 | 一般財団法人電力中央研究所 | Method for treating NS compounds affecting COD of desulfurization wastewater |
| CN113636685A (en) * | 2021-09-03 | 2021-11-12 | 中冶赛迪工程技术股份有限公司 | Method for treating nanofiltration concentrated water and sodium chloride evaporation mother liquor |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1212898A (en) | 1999-04-07 |
| CN1137747C (en) | 2004-02-11 |
| KR19990029840A (en) | 1999-04-26 |
| HK1018946A1 (en) | 2000-01-14 |
| KR100313221B1 (en) | 2002-02-28 |
| TW412433B (en) | 2000-11-21 |
| ID20901A (en) | 1999-03-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100313221B1 (en) | Treatment of flue gas desulfurization drainage | |
| AU724510B2 (en) | A process for treating arsenic-containing waste water | |
| KR100221556B1 (en) | Treatment method of flue gas desulfurization drainage | |
| JP3600458B2 (en) | Treatment of flue gas desulfurization wastewater | |
| JP4839653B2 (en) | Method for treating waste containing chlorine and heavy metals | |
| JP5118572B2 (en) | Sewage treatment method | |
| JP2001000831A (en) | Treatment of absorbed liquid slurry and flue gas desulfurization system | |
| JP2001239273A (en) | Method for treating boron and fluorine-containing water | |
| JP2002205077A (en) | Method and apparatus for treating organic sewage | |
| US5762807A (en) | Composition and process for treating water and gas streams containing heavy metals and other pollutants | |
| JP3709156B2 (en) | Treatment method for fluorine-containing wastewater | |
| CN1233592A (en) | Method of treating sludge containing arsenic | |
| JP4831799B2 (en) | Method for removing manganese ions in waste water | |
| JPH0975925A (en) | Treatment of flue gas desulfurization wastewater | |
| KR100262689B1 (en) | Treatment of stack gas desulfurization waste water | |
| JPH0141110B2 (en) | ||
| JP2007175673A (en) | Treatment of ammonia-containing wastewater | |
| JPH11267662A (en) | Method of removing fluorine in waste water of flue gas desulfurization | |
| JP2737614B2 (en) | Treatment of flue gas desulfurization wastewater | |
| JP2003047972A (en) | Treatment method for wastewater containing fluorine | |
| TW201420513A (en) | Method for treatment of boron-containing waste water | |
| CA1160370A (en) | Waste water treatment system for elemental phosphorus removal | |
| JP2907158B2 (en) | Treatment method for wastewater containing fluorine | |
| JPH0314519B2 (en) | ||
| JP2899697B1 (en) | Method for treating wastewater containing molybdenum compound and / or antimony compound |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040319 |