[go: up one dir, main page]

JPS58137239A - Cooling apparatus for semiconductor element - Google Patents

Cooling apparatus for semiconductor element

Info

Publication number
JPS58137239A
JPS58137239A JP1896282A JP1896282A JPS58137239A JP S58137239 A JPS58137239 A JP S58137239A JP 1896282 A JP1896282 A JP 1896282A JP 1896282 A JP1896282 A JP 1896282A JP S58137239 A JPS58137239 A JP S58137239A
Authority
JP
Japan
Prior art keywords
heat
power transistor
heat sink
thermo module
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1896282A
Other languages
Japanese (ja)
Inventor
Masahiro Hirano
平野 正宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1896282A priority Critical patent/JPS58137239A/en
Publication of JPS58137239A publication Critical patent/JPS58137239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce size of cooling apparatus and cool as required semiconductor elements by using a thermo module. CONSTITUTION:A thermo module M is provided between a heat sink H and power transistor Tr and a metal plate B in the heat generating side is coupled to the heat sink H, while a power transistor Tr to a metal plate A in the heat absorbing side. When a current is applied to the thermo module M in such a structure, temperature difference T is generated between the heat sink H and power transistor Tr and the power transistor Tr can be set to a temperature lower than the heat sink H by only DELTAT. Therefore, when the heat sink H is cooled, a power transistor Tr is cooled while a temperature different DELTAT is kept and when heat generation of transistor Tr increase, heat absorption Q increases preventing temperature rise of Tr when an current being supplied increases.

Description

【発明の詳細な説明】 この発明は、%に大出力の半導体素子の冷却装置に@す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a cooling device for a semiconductor element with a relatively high output.

半1体、41にパワートランジスタの寿命rt、ソの箇
會一度に影響され、通常125℃〜150℃位で使用す
るとライフタイムが2000〜4000時間位であるが
、接合温度を10℃下げるとライフタイムがλフ倍位延
びるといわれてtする。
The lifespan of a power transistor is affected by the life rt of a power transistor in 41 and 41, and the life time is usually about 2000 to 4000 hours when used at about 125℃ to 150℃, but if the junction temperature is lowered by 10℃ It is said that the lifetime will be extended by a factor of λ.

したがって、動作中の半導体素子つ、温度を下げること
は、本来半導体素子の熱破か−1を防止するという目的
の外、電子機器のライフタイムの上b1らも重要な事項
になってくる。
Therefore, lowering the temperature of a semiconductor element during operation is not only intended to prevent thermal breakdown of the semiconductor element, but also has an important effect on the lifetime of the electronic device.

通常、発熱量の大きい半導体素子、1%にパワートラン
ジスタは大容量のヒートシンク、又はフィン付ヒートパ
イプなどを使用して放熱作用によりパワートランジスタ
の温度な下げることが行われているが、ヒートシンク(
又はヒートパイプ)などの放電機具の温[K対し、パワ
ートランジスタの接合温度は、通常5℃〜lO℃近く高
くなる。
Normally, power transistors, which are semiconductor elements that generate a large amount of heat, use large-capacity heat sinks or heat pipes with fins to lower the temperature of power transistors by dissipating heat.
The junction temperature of a power transistor is usually 5°C to 10°C higher than the temperature of a discharge device such as a heat pipe or a heat pipe.

そのため充分な冷却効果を与えるためにヒートシンクの
形状も大きくなり、電子機器の筐体も大型化して製造コ
ストも増大する。
Therefore, in order to provide a sufficient cooling effect, the shape of the heat sink becomes large, and the casing of the electronic device also becomes large, leading to an increase in manufacturing costs.

この発明は、か〜る点にかんがみてなされたもので、サ
ーモモジュールを使用することにより小皿化すると共に
、半導体素子を必要に応じて冷却するようにしたもので
ある。
This invention was made in view of the above points, and uses a thermo module to make the device smaller and to cool the semiconductor element as required.

以下、この発明の半導体素子の冷却装置について説明す
る。
Hereinafter, a cooling device for a semiconductor device according to the present invention will be explained.

まず、この発明で使用されているサーモモジュール(半
導体熱電子冷却ユニット)について説明する。
First, the thermo module (semiconductor thermionic cooling unit) used in this invention will be explained.

#I1図はサーモモジュールの原理を示すもので、1は
piiiの半導体、2はNllの半導体、^、8は前記
各半導体1,2に結合されている金属板である。
#I1 diagram shows the principle of a thermomodule, where 1 is a PIII semiconductor, 2 is an Nll semiconductor, and 8 is a metal plate coupled to each of the semiconductors 1 and 2.

このような構造において、電源Eより電a1を前記両生
導体1,2KillEすとベル手工効果によって金属板
Aの側では熱の吸収が発生し、その温度が低下すと同w
#に金属板Bの方では発熱作用が発生し、温度が上昇す
ることが知られている。
In such a structure, when electricity a1 is applied from the power supply E to the amphiboid conductors 1 and 2, heat absorption occurs on the metal plate A side due to the Bell's handiwork effect, and as the temperature decreases, the same
It is known that heat generation occurs on the metal plate B and the temperature rises.

前記半導体1,2としてはペルチェ効果の大きい、例え
ばスズ、77千モンの合金trどが使用されか−る構造
を多数個集積してカスケード接続することkよりサーモ
モジュールが構成される。
The semiconductors 1 and 2 are made of a material having a large Peltier effect, such as tin or a 77,000 mon alloy.A thermomodule is constructed by integrating a large number of semiconductors and cascading them together.

第2図はサーモモジニールの骨性の一例を示したもので
、サーモモジュールの供給電流をパラメータとし、縦軸
に金属板^・8間の温度差ΔT。
Figure 2 shows an example of the bone quality of thermomodine, where the supply current of the thermomodule is used as a parameter, and the vertical axis represents the temperature difference ΔT between the metal plates.

横軸に吸熱IQな示したもめである。The horizontal axis shows endothermic IQ.

この特性図から明らかなように吸熱、側と発熱側の一度
差ΔTは吸熱量Qが低いときは最大60〜フO℃とする
ことかでき、一定の温度差ΔTとするサーそモジュール
の供給域流産と吸熱量Qははげ比例関係にある。
As is clear from this characteristic diagram, the one-time difference ΔT between the endothermic side and the exothermic side can be set to a maximum of 60 to 0°C when the amount of heat absorption Q is low, and the supply of a thermos module that maintains a constant temperature difference ΔT Regional miscarriage and endothermic amount Q are in a proportional relationship with baldness.

第3図はサーモモジュールを使用してパワートランジス
タな冷却するときの構造な側面図としたもので1Mはサ
ーモモジュール、Hはヒートシンク、Tr はパワート
ランジスタである。この構造ではし一トシンクHとパワ
ートランジスタTrの関にサーモモジュールMを介在し
、その発熱側の金属板BはヒートシンクHな、吸熱側の
金属板へにパワートランジスタTrを結合しである。こ
の構造でサーモモジュールMKt流を流すとヒートシン
クHとパワートランジスタTrの間に温Kll。
FIG. 3 is a structural side view of a power transistor being cooled using a thermo module. 1M is a thermo module, H is a heat sink, and Tr is a power transistor. In this structure, a thermo module M is interposed between the heat sink H and the power transistor Tr, and the metal plate B on the heat generating side is a heat sink H, which is a metal plate on the heat absorbing side and the power transistor Tr is coupled thereto. With this structure, when the thermo module MKt current flows, the temperature Kll will be between the heat sink H and the power transistor Tr.

ΔTが発生し、パワートランジスタTrがΔTだけヒー
トシンクHより低い点に設定することかで會る。
This is achieved by setting the power transistor Tr to a point lower than the heat sink H by ΔT.

したがって、ヒートシンクHk冷却t、bと、温度差Δ
Tを保ってパワートランジスタTrが冷却r され、パワートランジスタの発熱量が増加した場合も、
サーモモジュール114に供給されている電流を増加す
れば吸熱量qが増加しパワートランジス中 りの温度上昇を阻止することかできる。なお、ヒートシ
ンクHK代えてフィン付のヒートパイプを使用してもよ
い。
Therefore, the heat sink Hk cooling t, b and the temperature difference Δ
Even if the power transistor Tr is cooled while maintaining T and the amount of heat generated by the power transistor increases,
If the current supplied to the thermo-module 114 is increased, the amount of heat absorbed q will increase, making it possible to prevent the temperature in the power transistor from rising. Note that a heat pipe with fins may be used instead of the heat sink HK.

第4図はか〜る構造のサーモモジュールMを利用して、
パワートランジスタの温度上昇を阻止するパワーアンプ
又はプリアンプ回路を示したもので、TI は入力トラ
ンジスタ、T寞I Ts  はドライブトランジスタs
 Ta p Tsはパワートランジスタ、Mは第3図に
示したようなヒートシンクH。
Figure 4 shows that using a thermo module M with the above structure,
This shows a power amplifier or preamplifier circuit that prevents the temperature rise of the power transistor, where TI is the input transistor, and Ts is the drive transistor s.
Ta p Ts is a power transistor, and M is a heat sink H as shown in FIG.

パワートランジスタ丁rを付加しているサーモモジュー
ルである。
This is a thermo module equipped with a power transistor.

この回路は電源十VCC、−VCICの電流回路にサー
モモジュールMな挿入し、パワートランジスタT4 、
  Ts のフレフタ電流にはぼ相当する電流をサーモ
モジニールMK流しているので、音声入力信号が増大し
フレフタ電流が増加したとき、つまリバワートランジス
タT4   Tl の発熱量が大ぎ! くなるとき、f−モモジュールtdK流れる電流が増大
し、パワートランジスタTa、Ts の温度上外を妨げ
ることになる。サーモモジュールMの電圧降下は0.3
M位と低いので、デカップリング用ノコンデンサCは必
IHc応じて付加すればよく、サーモモジュールMは絶
縁層を設けてパワートランジスタTa 、 Ts  を
絶縁1て固定出来るようにすれば1個にしてもよい。
In this circuit, a thermo module M is inserted into the current circuit of the power supply 1 VCC, -VCIC, and the power transistor T4,
Since a current roughly equivalent to the flefter current of Ts is flowing through the thermomodineal MK, when the audio input signal increases and the flefter current increases, the amount of heat generated by the re-bower transistor T4 Tl becomes too large! When this happens, the current flowing through the f-mo module tdK increases, which prevents the power transistors Ta and Ts from rising or rising in temperature. The voltage drop of thermo module M is 0.3
Since the M level is low, it is only necessary to add a decoupling capacitor C according to IHc, and the thermo module M can be reduced to one by providing an insulating layer and fixing the power transistors Ta and Ts with insulation 1. Good too.

又、サーそモジュールMK&す電流はl1m回路の電源
電流を利用してもよく、パワーアンプ又はプリアンプの
形式はl電源方式の場合でもよいことはいうまでもない
Further, it goes without saying that the current of the thermoelectric module MK&S may utilize the power supply current of the l1m circuit, and that the power amplifier or preamplifier may be of the l power supply type.

以上説明したよ5に、この発明の半導体素子の冷却装置
は、サーモモジニールの吸熱側プレートに半導体素子な
、発熱側プレートに放熱手段(ヒートシンクなど)を接
合し、前記半導体素子に流れている電流を含んだ供給電
流でサーモモジュール駆動しているので、その冷却作用
も発熱量に応じて発揮されるという効果がある。さらに
パワーアンプなどに適用することによって、回路の温度
補正回路が大幅に省略でき、熱暴走のおそれも少ない、
又、サーモモジュールの冷却効果は速効性であるため、
アンプのフイドラ電流は最初からはぼ一定になるように
設定でき、スイツ牛オンしたW*にもパワーアンプを動
作することができるという利点を有する。
As explained above, in the cooling device for a semiconductor device of the present invention, a semiconductor device is connected to the heat absorption side plate of the thermomodineer, and a heat dissipation means (such as a heat sink) is connected to the heat generation side plate of the thermomodineal, so that heat flows to the semiconductor device. Since the thermo module is driven by a supply current that includes current, its cooling effect is also effective in accordance with the amount of heat generated. Furthermore, by applying it to power amplifiers, etc., the temperature correction circuit in the circuit can be largely omitted, and there is less risk of thermal runaway.
In addition, since the cooling effect of the thermo module is fast-acting,
The power amplifier current can be set to be approximately constant from the beginning, and has the advantage that the power amplifier can be operated even when the power amplifier is turned on.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサーモモジュールの原理を示す図、第2図はサ
ーモモジュールの供給電流をパラメータとした温度特性
図、第3!@lは半導体の冷却に使用゛するサーモモジ
ュールの側面図、第4図はサーモモジュールな組み込ん
だパワーアンプの一実施例を示す回路図である。 図中、Tr、T4. T@ はパワートランジスタ、M
はサーモモジュール、Hはヒートシンクを示す。 第1凶 第2図 −a 91熱量(W)
Figure 1 is a diagram showing the principle of the thermo module, Figure 2 is a temperature characteristic diagram with the supply current of the thermo module as a parameter, and Figure 3! @1 is a side view of a thermo module used for cooling semiconductors, and FIG. 4 is a circuit diagram showing an embodiment of a power amplifier incorporating the thermo module. In the figure, Tr, T4. T@ is a power transistor, M
indicates a thermo module, and H indicates a heat sink. 1st evil figure 2-a 91 calorific value (W)

Claims (1)

【特許請求の範囲】[Claims] 冷却すべき半導体素子と、放熱手段をサーモモ素子Km
れる電@によって供給するような構成としたことを特徴
とする半導体素子の冷却装置。
The semiconductor element to be cooled and the heat dissipation means are connected to a thermoelectric element Km.
1. A cooling device for a semiconductor device, characterized in that the cooling device is configured to supply electricity by flowing electricity.
JP1896282A 1982-02-10 1982-02-10 Cooling apparatus for semiconductor element Pending JPS58137239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1896282A JPS58137239A (en) 1982-02-10 1982-02-10 Cooling apparatus for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1896282A JPS58137239A (en) 1982-02-10 1982-02-10 Cooling apparatus for semiconductor element

Publications (1)

Publication Number Publication Date
JPS58137239A true JPS58137239A (en) 1983-08-15

Family

ID=11986267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1896282A Pending JPS58137239A (en) 1982-02-10 1982-02-10 Cooling apparatus for semiconductor element

Country Status (1)

Country Link
JP (1) JPS58137239A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008736A (en) * 1989-11-20 1991-04-16 Motorola, Inc. Thermal protection method for a power device
WO1993008600A1 (en) * 1991-10-15 1993-04-29 Velox Computer Technology, Inc. Intrinsically controlled cooling container
US5457342A (en) * 1994-03-30 1995-10-10 Herbst, Ii; Gerhardt G. Integrated circuit cooling apparatus
EP2317550A1 (en) * 2009-10-29 2011-05-04 Chia-Cheng Chang Three-layered cold/hot controller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5008736A (en) * 1989-11-20 1991-04-16 Motorola, Inc. Thermal protection method for a power device
WO1993008600A1 (en) * 1991-10-15 1993-04-29 Velox Computer Technology, Inc. Intrinsically controlled cooling container
US5457342A (en) * 1994-03-30 1995-10-10 Herbst, Ii; Gerhardt G. Integrated circuit cooling apparatus
EP2317550A1 (en) * 2009-10-29 2011-05-04 Chia-Cheng Chang Three-layered cold/hot controller

Similar Documents

Publication Publication Date Title
US4012770A (en) Cooling a heat-producing electrical or electronic component
JP3414004B2 (en) Electric vehicle battery temperature controller
JP5353577B2 (en) heatsink
JPH0722549A (en) Electronic cooling semiconductor device
JPH1084291A (en) Cooling system for high output solid-state am transmitter
CN112748633B (en) Laser light source and laser projection equipment
WO2013113221A1 (en) Heat sensitive device and heat dissipation system thereof
US4153107A (en) Temperature equalizing element for a conduction cooling module
KR20030068633A (en) Integrated circuit cooler using thermoelectric element
JP2010245181A (en) Electronic equipment cooling device
JPS58137239A (en) Cooling apparatus for semiconductor element
JP2924369B2 (en) Heat pump device
RU2133084C1 (en) Thermoelectric semiconducting device for heat transfer and temperature stabilization of microassemblies
JP2004200428A (en) Cooling system
US3248471A (en) Heat sinks
JP2006041355A (en) Cooling system
CN212132716U (en) Electrical apparatus box structure and air condensing units
CN210986789U (en) A multimedia host cooling device, a multimedia host and a vehicle
US20200258809A1 (en) Semiconductor module and method of evaluating semiconductor module
Wang et al. Phase change materials at the cold/hot sides of thermoelectric cooler for temperature control
CN101541161A (en) On-vehicle power amplifier heat dissipating device and on-vehicle power amplifier system
CN216901447U (en) Control circuit of thermoelectric refrigerator
CN218941495U (en) A cooling type remote information monitoring data acquisition box
JPH0715140Y2 (en) Electronic component cooling system
JPH0715962B2 (en) Semiconductor device