[go: up one dir, main page]

JPS5816216A - talbot interferometer - Google Patents

talbot interferometer

Info

Publication number
JPS5816216A
JPS5816216A JP11468181A JP11468181A JPS5816216A JP S5816216 A JPS5816216 A JP S5816216A JP 11468181 A JP11468181 A JP 11468181A JP 11468181 A JP11468181 A JP 11468181A JP S5816216 A JPS5816216 A JP S5816216A
Authority
JP
Japan
Prior art keywords
diffraction grating
grating
side diffraction
interference
talbot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11468181A
Other languages
Japanese (ja)
Other versions
JPH0153408B2 (en
Inventor
Ryuichi Sato
隆一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11468181A priority Critical patent/JPS5816216A/en
Publication of JPS5816216A publication Critical patent/JPS5816216A/en
Publication of JPH0153408B2 publication Critical patent/JPH0153408B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、参照波面が平面波の場合に、得られる等間隔
平行干渉縞の方向とシェアの方向が一致することを可能
とすると共に、球面波の場合でもその近軸成分に対する
等間隔平行干渉縞の方向な一致させることも可能なタル
ボ干渉針に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention makes it possible to match the direction of shear with the direction of equally spaced parallel interference fringes obtained when the reference wavefront is a plane wave, and also to make it possible to match the direction of the shear with the direction of the equidistant parallel interference fringes obtained when the reference wavefront is a plane wave. The present invention relates to a Talbot interference needle that can also align the directions of equally spaced parallel interference fringes with respect to components.

タルボ干渉計とは、コリメイトされた光と2枚の格子に
よって構成され、タルボ効果とモアレ技術を利用した干
渉針である。このタルボ効果は、コリメートされた光で
入射側回折格子を照明すると発生した回折光同志の重ね
合せの結果、格子の後方’1mdR/λ の位置に格子
の直後と全く同じ光の強度分布が得られ、後方(2m+
1 ) d”/λ の位置には格子の白黒を反転した像
が得られるものである。尚、ここではmは整数、dは格
子ピッチ、λは光の波長である。このようにして得られ
た像はフーリエ像と呼ばれ、入射側回折格子とその後方
mdt/λにあるフーリエ像との間に位相物体を挿入す
るとフーリエ像が変形する。この変形したフーリエ像に
射出側回折格子を重ね合せてモアレ縞を発生させ、フー
リエ像の変形を拡大検出するのがタルボ干渉針の原理で
ある。
A Talbot interferometer is an interference needle that is composed of collimated light and two gratings, and utilizes the Talbot effect and Moiré technology. This Talbot effect is caused by the superposition of the diffracted lights generated when collimated light illuminates the incident side diffraction grating, resulting in the exact same light intensity distribution at a position 1mdR/λ behind the grating as that immediately after the grating. and behind (2m+
1) At the position d”/λ, an image with the black and white of the grating inverted is obtained. Here, m is an integer, d is the grating pitch, and λ is the wavelength of the light. The resulting image is called a Fourier image, and when a phase object is inserted between the entrance side diffraction grating and the Fourier image at mdt/λ behind it, the Fourier image is deformed.The exit side diffraction grating is attached to this deformed Fourier image. The principle of the Talbot interference needle is to generate moiré fringes by superimposing them and to magnify and detect the deformation of the Fourier image.

このタルボ干渉針は、横ずらしのりエアリング干渉針の
一種として知られている。一般にこの種の干渉計に於い
ては平面波や、球面波の近軸成分に対応する干渉縞を等
間隔平行縞とし、その縞の方向とシェアの方向を一致さ
せた場合が有用な方法とされている。以下の説明に於い
ては、参照平面波や参照球面波に対応する等間隔平行干
渉縞を基準干渉縞と称すること)ニする。
This Talbot interference needle is known as a type of laterally shifted air ring interference needle. In general, in this type of interferometer, a useful method is to use equally spaced parallel fringes as the interference fringes corresponding to the paraxial component of a plane wave or a spherical wave, and to match the direction of the fringes with the direction of shear. ing. In the following description, equally spaced parallel interference fringes corresponding to the reference plane wave or the reference spherical wave will be referred to as reference interference fringes.

タルボ干渉針は参照波面を平面波とする場合)=は一般
に第1図に示すような構成となっている。
When the reference wavefront is a plane wave, the Talbot interference needle generally has a configuration as shown in FIG.

即ち、光源ランプ1、コンデンサーレンズ2(2a。That is, a light source lamp 1, a condenser lens 2 (2a).

2b)、フィルタ6、拡散板4、ピンホール5から成る
光源部6から射出された光が、ピンホール5に焦点を有
するコリメータレンズ7に入光し光軸(=平行な光線束
となり、入射側回折格子8、射出側回折格子9を経由し
て観察スクリーン10に到達する。試料11は入射側回
折格子8と射出側回折格子9の間;二挿入されるが、試
料11を光源部6と入射側回折格子8の中間に配置する
場合もある。試料11としては例えばレンズとし、その
収差や脈理を観察することができる。又、参照波面を球
面波とする場合はピンホール5をコリメータレンズ7の
焦点からディフォーカスした位置に配置すること(二よ
って行なわれる。
2b), the light emitted from the light source section 6 consisting of a filter 6, a diffuser plate 4, and a pinhole 5 enters a collimator lens 7 having a focal point at the pinhole 5, and becomes a bundle of light rays parallel to the optical axis (= parallel to the incident light beam). The sample 11 reaches the observation screen 10 via the side diffraction grating 8 and the exit side diffraction grating 9.The sample 11 is inserted between the entrance side diffraction grating 8 and the exit side diffraction grating 9; In some cases, the sample 11 is a lens, and its aberrations and striae can be observed.Also, when the reference wavefront is a spherical wave, the pinhole 5 is Placement at a position defocused from the focal point of the collimator lens 7 (this is done by two steps).

入射側回折格子8及び射出側回折格子9は格子ピッチを
dとし、その逆数1/dを基本周波数とし、格子8.9
同志は距離l、だけ離れて配置されている。座標軸とし
て入射側回折格子8の格子方向と平行なy軸、格子方向
と直交する方向にX軸をとる。実際の干渉針の操作に於
いてはモアレ縞を明瞭に現出させるために、射出側回折
格子9の格子方向をy軸に対して光軸Cを回転軸とし時
計廻りに若干の角度αだけ回転して使用する。試料11
は射出側回折格子9から光源部6の方向に距離12の位
置に置くものとする。又、入射側回折格子8によって生
ずる回折光のうち、0次回針元が、試料11を通過して
観察スクリーン10で得られる位相分布なW(x、y)
とする。このような構成に於いて、参照波面を平面波と
する場合に得られる干渉パターンは、 x(1−cosα) 十y sinα−(a w/ a
x ) In=m−d+定数 但し m = Q、±1、±2、・・・・・で表わされ
る曲線群となることが知られている。
The entrance side diffraction grating 8 and the exit side diffraction grating 9 have a grating pitch of d, the reciprocal of 1/d is the fundamental frequency, and the grating 8.9
Comrades are placed a distance l, apart. As the coordinate axes, the y-axis is parallel to the grating direction of the incident-side diffraction grating 8, and the x-axis is perpendicular to the grating direction. In the actual operation of the interference needle, in order to make Moiré fringes appear clearly, the grating direction of the exit side diffraction grating 9 is rotated by a slight angle α clockwise with the optical axis C as the rotation axis with respect to the y-axis. Rotate and use. Sample 11
is placed at a distance of 12 from the exit side diffraction grating 9 in the direction of the light source section 6. Also, of the diffracted light generated by the incident side diffraction grating 8, the 0th order needle head passes through the sample 11 and is obtained by the observation screen 10, which is the phase distribution W(x, y).
shall be. In such a configuration, the interference pattern obtained when the reference wavefront is a plane wave is x(1-cosα) y sinα-(aw/a
x) In=m-d+constant, where m=Q, ±1, ±2, . . . It is known that the curves are represented by a group of curves.

これはシェアリング干渉パターンであるが、わ照平面波
に対する基準干渉縞は傾きを(cosα−1)Ainα
とする等間隔平行干渉縞である。これは通常の構成では
、シェアの方向、即ちX軸の方向と参照平面波に対する
基準干渉縞の方向とが一致し得ないことを示している。
This is a shearing interference pattern, but the reference interference fringe for the beam plane wave has an inclination of (cosα-1)Ainα
These are equally spaced parallel interference fringes. This shows that in a normal configuration, the direction of shear, that is, the direction of the X-axis, and the direction of the reference interference fringe for the reference plane wave cannot coincide.

このため、方向の不一致を計算で補正するか、測定誤差
として無視し得る程度::使用範囲を制限しなければな
らない。
Therefore, the mismatch in direction must be corrected by calculation or the range of use must be limited to an extent that can be ignored as a measurement error.

本発明の目的は、上述の従来装置を改良し、参照平面波
(=対応する基準干渉縞とシェアの方向を一致させ、傾
きの補正を要しないタルボ干渉針を提供することにあり
、その要旨は、所定の間隔をもって対向して配置された
入射側回折格子及び射出側回折格子の格子ピッチをそれ
ぞれd8及びdll・(但しds> ds )とし、格
子同志を光軸な中心に相対的に角度α傾けた場合に、c
osα= d鵞/ dIなる関係を有するようにしたこ
とを特徴とするものである。
An object of the present invention is to improve the above-mentioned conventional device, and to provide a Talbot interference needle that matches the direction of shear with the reference plane wave (=corresponding standard interference fringe) and does not require correction of inclination. , the grating pitches of the entrance-side diffraction grating and the exit-side diffraction grating, which are arranged facing each other with a predetermined interval, are respectively d8 and dll (however, ds > ds), and the gratings are set at an angle α relative to the center of the optical axis. When tilted, c
It is characterized by having the following relationship: osα=d/dI.

本発明を第3図以下に図示の実施例に基づいて詳細に説
明する。
The present invention will be explained in detail based on the embodiment shown in FIG. 3 and below.

入射側回折格子12の格子ピッチをdl、射出側回折格
子16の格子ピップをdt (ただし’t > ’t)
とし、これらの基本周波数は格子ピッチの逆数であるi
/a+ 、 1/dffi となっている。回折格子1
2.16同志の間隔は第2図の場合と同様にl8、回折
格子13から試料11までの距離な12とする。座標軸
として入射側回折格子12の格子方向と平行にy軸、格
子方向に直交してX軸をとり、射出側回折格子16の格
子方向はy軸に対して、前述したように光軸Cを回転軸
として時計方向に角度αだけ回転しているものとする。
The grating pitch of the entrance side diffraction grating 12 is dl, and the grating pip of the exit side diffraction grating 16 is dt (however, 't >'t)
and these fundamental frequencies are i, which is the reciprocal of the grating pitch.
/a+, 1/dffi. Diffraction grating 1
2.16 The spacing between the two is 18 as in the case of FIG. 2, and the distance from the diffraction grating 13 to the sample 11 is 12. As the coordinate axes, the y-axis is parallel to the grating direction of the entrance-side diffraction grating 12, and the X-axis is perpendicular to the grating direction, and the grating direction of the exit-side diffraction grating 16 is the optical axis C with respect to the y-axis. Assume that the rotation axis is rotated clockwise by an angle α.

このような格子12.16を使用すると、参照波面を平
面とする場合に観察スクリーン10で観察される干渉パ
ターンは、 (1/d、−cosα/d宏’) x−)−(sinα
/d*>Y−(1/dt)−aw/ax)!、=m+定
数但し m = Q、±1、±2、・・・・・で表わさ
れる曲線群となる。ここで射出側回折格子16の回転角
αを調節して、第1項の係数が0となるように、cos
α” dt/dtなる関係が得られるようにする。これ
は格子ピッチをdl>d!としであることから実現可能
である。かくすることにより、干渉パターンは、 (sinα/da)y −(1/ds)−(aw/ax
)zs二m十定数 となるから、対応する基準干渉縞は、X軸に平行で間隔
が47 sinαの等間隔平行干渉縞となり、シェアの
方向と一致し所望の性質が得られることになる。
Using such a grating 12.16, the interference pattern observed on the observation screen 10 when the reference wavefront is a plane is (1/d, -cosα/dhi')x-)-(sinα
/d*>Y-(1/dt)-aw/ax)! , = m + constant, where m = Q, ±1, ±2, etc., resulting in a group of curves. Here, the rotation angle α of the exit side diffraction grating 16 is adjusted so that the coefficient of the first term becomes 0.
α” dt/dt is obtained. This can be realized by setting the grating pitch as dl>d!. By doing this, the interference pattern becomes (sin α/da)y − ( 1/ds) - (aw/ax
)zs2m0 constant, the corresponding reference interference fringes are parallel interference fringes parallel to the X axis with equal intervals of 47 sin α, which coincide with the shear direction and provide the desired properties.

又、上述のような構成であるから、球面波の近軸成分に
対する等間隔平行干渉縞と、シェアの方向を一致させる
ことも可能である。参照波面として、球面波の近軸成分
を用いた場合に得られる干渉縞は、 ((l+/d+)・(i/R)+ (1/d+) −(
cosα/dt))X+(aimα/d2)y−(1/
d+)−ew/Fx)zs=m+定数 但し m = Q、±1、±2、・・・・・Rは射出側
回折格子13を頂点 としたときの球面波の曲率 半径であり、曲率中心が、 射出側回折格子13より光 淵部6の側にあるときは負 の値、その反対側(二あると きは正の値 となる。従って、cosα’q 4/ dlのときは、
曲率半径が、 R=(lI/di) ((cosα/dt)−(i/c
tυ)なる球面波の近軸成分に対応する基準干渉縞と、
シェアの方向とを一致させることができる。これはレン
ズ等の球面収差を、有限距離の結像条件で測定する場合
に有用な性質である。
Moreover, since the configuration is as described above, it is also possible to match the equally spaced parallel interference fringes for the paraxial component of the spherical wave with the shear direction. The interference fringes obtained when using the paraxial component of a spherical wave as a reference wavefront are ((l+/d+)・(i/R)+ (1/d+) −(
cosα/dt))X+(aimα/d2)y−(1/
d+)-ew/Fx)zs=m+constant where m=Q, ±1, ±2,...R is the radius of curvature of the spherical wave when the exit side diffraction grating 13 is the apex, and the center of curvature is a negative value when it is closer to the light edge part 6 than the exit side diffraction grating 13, and a positive value when it is on the opposite side (two sides). Therefore, when cos α'q 4/dl,
The radius of curvature is R=(lI/di) ((cosα/dt)−(i/c
tυ) corresponding to the paraxial component of the spherical wave,
The direction of share can be matched. This property is useful when measuring the spherical aberration of a lens or the like under a finite distance imaging condition.

第5図の実施例は第6図の構成図からコリメータレンズ
7及び試料11を取り除き、光源部6と入射側回折格子
12との間に被検レンズ14を配置し、被検レンズ14
の共役な結像点の一方が無限遠にある場合の球面収差を
測定する構成図である。回折格子12.13は前述した
ようなcosα=d2/dIなる関係を有しており、被
検レンズ14は、その焦点位置とピンホール5が一致す
るように光軸C上に配置する。このとき参照波面は平面
波でその基準干渉縞と、シェアの方向は一致;している
から、光軸Cを通る干渉縞とX軸との偏差は、球面収差
の横収差量に直接比例する量となる。又、縦収差量につ
いては、光源部6を光軸に沿って前後に移動し、被検レ
ンズ14に対してディフォーカスを与えることによって
、干渉縞は光軸Cを中心として回転する。このときのデ
ィフォーカス量に対して、光軸Cを通る干渉縞とX軸と
の交点をプロットすれば、これは、とりも直さず球面収
差の縦収差量である。このように本実施例によれば、基
準干渉縞の傾きを補正することなく球面収差を測定する
ことが可能となる。
In the embodiment shown in FIG. 5, the collimator lens 7 and sample 11 are removed from the configuration diagram shown in FIG.
FIG. 2 is a configuration diagram for measuring spherical aberration when one of the conjugate imaging points of is located at infinity. The diffraction gratings 12 and 13 have the above-mentioned relationship cosα=d2/dI, and the lens 14 to be tested is placed on the optical axis C so that its focal position coincides with the pinhole 5. At this time, the reference wavefront is a plane wave and the shear direction is the same as that of the reference interference fringe; therefore, the deviation between the interference fringe passing through the optical axis C and the X-axis is an amount directly proportional to the amount of transverse aberration of spherical aberration. becomes. Regarding the amount of longitudinal aberration, the interference fringes are rotated about the optical axis C by moving the light source section 6 back and forth along the optical axis and defocusing the lens 14 to be tested. If the intersection of the interference fringes passing through the optical axis C and the X-axis is plotted against the amount of defocus at this time, this is the amount of longitudinal aberration of spherical aberration. As described above, according to this embodiment, it is possible to measure spherical aberration without correcting the inclination of the reference interference fringes.

第6図の実施例は、有限距離の結像条件でのレンズの球
面収差を測定する場合の構成図である。
The embodiment shown in FIG. 6 is a configuration diagram for measuring the spherical aberration of a lens under finite distance imaging conditions.

被検レンズ14はその共役な結像点の一方と、ピンホー
ル5が一致するように、光軸C上に配置する。又、もう
一方の共役な結像点Pと、参照球面波の球の中心゛が一
致するように、回折格子12.16は、 R= (lt/d+) ((coaα/da)−(i/
ds) )−’但しRは射出側回折格子16が測った 結像点Pの距離 なる関係を有する配置とする。このとき結像点Pに対応
する球面波が基準干渉縞となりシェアの方向と一致する
ので、第5図の場合と同様にしてレンズの球面収差を測
定することができる。
The lens to be tested 14 is placed on the optical axis C so that one of its conjugate imaging points coincides with the pinhole 5. In addition, the diffraction grating 12.16 is arranged as R= (lt/d+) ((coaα/da)−(i /
ds) )-' However, the arrangement is such that R is the distance of the imaging point P measured by the exit-side diffraction grating 16. At this time, the spherical wave corresponding to the imaging point P becomes the reference interference fringe and coincides with the shear direction, so that the spherical aberration of the lens can be measured in the same manner as in the case of FIG.

本発明に係るタルボ干渉計は、上述のように格子同志の
角度とピッチな所定の関係に調整することにより、平面
波に対応する基準干渉縞の方向と、シェアの方向を一致
させることができるので傾きの補正をする必要がなく、
射出側回折格子の基本0 周波数と角度を選ぶことによって所望のピッチを持つ基
準干渉縞を得ることができる。又、球面波に対応する基
準干渉縞も得ることができる。
The Talbot interferometer according to the present invention can match the direction of the reference interference fringe corresponding to a plane wave with the direction of shear by adjusting the angle and pitch of the gratings to a predetermined relationship as described above. There is no need to correct the tilt,
By selecting the fundamental zero frequency and angle of the exit-side diffraction grating, a reference interference fringe with a desired pitch can be obtained. Further, reference interference fringes corresponding to spherical waves can also be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、通常のタルボ干渉計の構成図、第2図はその
回折格子の斜視図、第3図以下は本発明に係るタルボ干
渉計の実施例であり、第6図はその構成図、第4図は回
折格子の斜視図、第5図及び第6図はレンズの球面収差
を測定する場合の構成図である。 符号6は光源部、7はコリメータレンズ、10は観察ス
クリーン、11は試料、12は入射側回折格子、13は
射出側回折格子、14は被検レンズ、d、は入射側回折
格子の格子ピッチ、d、は射出側回折格子の格子ピッチ
、11は入射側回折格子と射出側回折格子との距離、l
tは試料と射出側回折格子との距離、Pは結像点である
。 1
Fig. 1 is a block diagram of a conventional Talbot interferometer, Fig. 2 is a perspective view of its diffraction grating, Fig. 3 and subsequent figures are examples of the Talbot interferometer according to the present invention, and Fig. 6 is a block diagram thereof. , FIG. 4 is a perspective view of the diffraction grating, and FIGS. 5 and 6 are configuration diagrams for measuring the spherical aberration of a lens. 6 is a light source, 7 is a collimator lens, 10 is an observation screen, 11 is a sample, 12 is an entrance side diffraction grating, 13 is an exit side diffraction grating, 14 is a test lens, d is a grating pitch of the entrance side diffraction grating , d is the grating pitch of the exit side diffraction grating, 11 is the distance between the entrance side diffraction grating and the exit side diffraction grating, l
t is the distance between the sample and the exit side diffraction grating, and P is the imaging point. 1

Claims (1)

【特許請求の範囲】 1、 所定の間隔をもって対向して配置された入射側回
折格子及び射出側回折格子の格子ピッチなそれぞれd、
及びdt (但し’+ >’t )とし、格子同志を光
軸な中心に相対的に角度α傾けた場合に、COIα= 
dt/’sなる関係を有するようにしたことを特徴とす
るタルボ干渉針。 2、入射側回折格子の格子方向を鉛直方向とし、射出側
回折格子の格子方向を鉛直線から角度α傾は基準干渉縞
が水平方向に現出するようにした特許請求の範囲第1項
に記載のタルボ干渉計。
[Claims] 1. Each of the grating pitches d of the entrance-side diffraction grating and the exit-side diffraction grating arranged oppositely at a predetermined interval,
and dt (where '+ >'t), and when the gratings are tilted at an angle α relative to the optical axis center, COIα=
A Talbot interference needle characterized by having a relationship of dt/'s. 2. The grating direction of the entrance side diffraction grating is in the vertical direction, and the grating direction of the exit side diffraction grating is tilted at an angle α from the vertical line so that the reference interference fringes appear in the horizontal direction. Talbot interferometer as described.
JP11468181A 1981-07-22 1981-07-22 talbot interferometer Granted JPS5816216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11468181A JPS5816216A (en) 1981-07-22 1981-07-22 talbot interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11468181A JPS5816216A (en) 1981-07-22 1981-07-22 talbot interferometer

Publications (2)

Publication Number Publication Date
JPS5816216A true JPS5816216A (en) 1983-01-29
JPH0153408B2 JPH0153408B2 (en) 1989-11-14

Family

ID=14643966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11468181A Granted JPS5816216A (en) 1981-07-22 1981-07-22 talbot interferometer

Country Status (1)

Country Link
JP (1) JPS5816216A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247133A (en) * 1984-05-22 1985-12-06 Yoshiaki Nakano Focal-length measuring method of lens by using moire fringe
JP2003524175A (en) * 2000-02-23 2003-08-12 カール−ツアイス−スチフツング Wavefront detector
US7030998B2 (en) 2002-01-31 2006-04-18 Canon Kabushiki Kaisha Phase measurement apparatus for measuring characterization of optical thin films
US7595931B2 (en) 2003-01-15 2009-09-29 Asml Holding N.V. Grating for EUV lithographic system aberration measurement
US7602503B2 (en) 2003-01-15 2009-10-13 Asml Holdings N.V. Methods for measuring a wavefront of an optical system
WO2011033798A1 (en) 2009-09-16 2011-03-24 コニカミノルタエムジー株式会社 X-ray imaging device, x-ray image system, and x-ray image generation method
JP2011106975A (en) * 2009-11-18 2011-06-02 Canon Inc Measuring method and measuring apparatus of refractive index distribution
JP2011117897A (en) * 2009-12-07 2011-06-16 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring apparatus
US8989474B2 (en) 2010-03-18 2015-03-24 Konica Minolta Medical & Graphic, Inc. X-ray image capturing system
US9044154B2 (en) 2012-03-01 2015-06-02 Konica Minolta, Inc. Joint imaging apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247133A (en) * 1984-05-22 1985-12-06 Yoshiaki Nakano Focal-length measuring method of lens by using moire fringe
JP2003524175A (en) * 2000-02-23 2003-08-12 カール−ツアイス−スチフツング Wavefront detector
US7030998B2 (en) 2002-01-31 2006-04-18 Canon Kabushiki Kaisha Phase measurement apparatus for measuring characterization of optical thin films
US7327467B2 (en) 2002-01-31 2008-02-05 Canon Kabushiki Kaisha Phase measuring method and apparatus for measuring characterization of optical thin films
US7595931B2 (en) 2003-01-15 2009-09-29 Asml Holding N.V. Grating for EUV lithographic system aberration measurement
US7602503B2 (en) 2003-01-15 2009-10-13 Asml Holdings N.V. Methods for measuring a wavefront of an optical system
WO2011033798A1 (en) 2009-09-16 2011-03-24 コニカミノルタエムジー株式会社 X-ray imaging device, x-ray image system, and x-ray image generation method
US9025725B2 (en) 2009-09-16 2015-05-05 Konica Minolta Medical & Graphic, Inc. X-ray image capturing apparatus, X-ray imaging system and X-ray image creation method
JP2011106975A (en) * 2009-11-18 2011-06-02 Canon Inc Measuring method and measuring apparatus of refractive index distribution
JP2011117897A (en) * 2009-12-07 2011-06-16 Canon Inc Refractive index distribution measuring method and refractive index distribution measuring apparatus
US8989474B2 (en) 2010-03-18 2015-03-24 Konica Minolta Medical & Graphic, Inc. X-ray image capturing system
US9044154B2 (en) 2012-03-01 2015-06-02 Konica Minolta, Inc. Joint imaging apparatus

Also Published As

Publication number Publication date
JPH0153408B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US3829219A (en) Shearing interferometer
US7605926B1 (en) Optical system, method of manufacturing an optical system and method of manufacturing an optical element
JP2019090819A (en) Diffractive optical element and measurement method
JPS5816216A (en) talbot interferometer
KR20150143661A (en) Method of minimizing stacking element distortions in optical assemblies
JPH10512955A (en) Optical device and method for using the device for optical inspection of objects
JPH0422442B2 (en)
EP0157230A2 (en) Method and apparatus for optically testing cylindrical surfaces
US4693604A (en) Interference method and interferometer for testing the surface precision of a parabolic mirror
Rubin Scatterplate interferometry
US6744523B2 (en) Imaging optical system for oblique incidence interferometer
JPS5845526A (en) Talbot interferometer
JP2000097622A (en) Interferometer
JP2595050B2 (en) Small angle measuring device
HU195882B (en) Arrangement for interference examination of the flatness of technical surfaces
JPS6365882B2 (en)
Liu et al. A simple real-time method for checking parallelism between the two gratings in Talbot interferometry
JPH08110214A (en) Flat plate having computer generated hologram and surface accuracy measuring method using the same
JPH0933228A (en) Interferometer device
JPH0626986A (en) Lens measuring device
JPH0447242B2 (en)
JP2000146515A (en) Shearing interferometer and shearing interference method
JPS63298107A (en) Grazing incidence interferometer device
JPS612035A (en) Method for measuring eccentricity of cylinder lens
JPS61187630A (en) Optical measurement of cylindrical lens