[go: up one dir, main page]

JPS58199704A - Manufacture of adduct of sodium carbonate to hydrogen peroxide - Google Patents

Manufacture of adduct of sodium carbonate to hydrogen peroxide

Info

Publication number
JPS58199704A
JPS58199704A JP8140082A JP8140082A JPS58199704A JP S58199704 A JPS58199704 A JP S58199704A JP 8140082 A JP8140082 A JP 8140082A JP 8140082 A JP8140082 A JP 8140082A JP S58199704 A JPS58199704 A JP S58199704A
Authority
JP
Japan
Prior art keywords
sodium carbonate
hydrogen peroxide
concentration
added
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8140082A
Other languages
Japanese (ja)
Other versions
JPS6251882B2 (en
Inventor
Yoshiro Ito
伊藤 芳郎
Masahiro Saito
斉藤 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Peroxide Co Ltd
Original Assignee
Nippon Peroxide Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Peroxide Co Ltd filed Critical Nippon Peroxide Co Ltd
Priority to JP8140082A priority Critical patent/JPS58199704A/en
Publication of JPS58199704A publication Critical patent/JPS58199704A/en
Publication of JPS6251882B2 publication Critical patent/JPS6251882B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Detergent Compositions (AREA)

Abstract

PURPOSE:To manufacture inexpensively a stable, hollow and granular adduct of sodium carbonate to hydrogen peroxide by adding granular sodium carbonate, hydrogen peroxide and hexametaphosphate to a soln. contg. sodium carbonate, hydrogen peroxide and sodium chloride. CONSTITUTION:Granular Na2CO3, H2O2 and hexametaphosphate are added to a soln. contg. Na2CO3, H2O2 and NaCl to obtain a hollow and granular adduct of sodium carbonate to hydrogen peroxide. The shell of each granule is dense and has a moderate thickness. The preferred average grain size of the ganular Na2CO3 to be added is 50-1,000mum, and the preferred composition of the mother liquor to be maintained contains 80-290g/l NaCl, 20-120g/l Na2CO3, 6-50g/l H2O2 and <=2.0g/l hexametaphosphate and has <=1.8 molar ratio of Na2CO3: H2O2. A silicic acid compound and a magnesium compound may be added as stabilizers by 0.05-1.0pt.wt. expressed in terms of SiO2 and 0-0.2pt. expressed in terms of Mg per 100pts.wt. Na2CO3, respectively.

Description

【発明の詳細な説明】 本発明は中空粒状で且つ安定化された炭酸ナトリウム過
酸化水素付加物(2NalCO3・3)(,0,以下P
Cと略称する。)の製造法に関するものである。
Detailed Description of the Invention The present invention provides a hollow granular and stabilized sodium carbonate hydrogen peroxide adduct (2NalCO3.3) (,0, hereinafter P
It is abbreviated as C. ).

PCは主として家庭用あるいは業務用の酸素系漂白剤と
して、単独あるいは洗剤に配合されて一般的に使用され
ている。
PC is generally used as an oxygen bleaching agent for household or commercial use, either alone or in combination with detergents.

PCの製造法に関して種々の報告があるが、PC(7)
51品として求められる性質は、まず安定性。
There are various reports regarding the manufacturing method of PC, but PC(7)
The first quality required for 51 products is stability.

流動性に関して考゛えると、緻密な大きな粒子が良好で
あるが、それでは水溶性が悪く、又、カサ比重が高いの
でカサ比重の軽い洗剤に配合した場合。
When considering fluidity, dense large particles are good, but they have poor water solubility and have a high bulk specific gravity, so when blended into a detergent with a light bulk specific gravity.

分離してしまう等の問題が起る。一方、カサ比重の軽い
粒子を作ると2表面積が大きくなり安定性が悪くなり、
又9粒子の強度が下るので輸送中にこわれ、微粉化しカ
サ比重が重くなってしまう等の欠点が表れて来る。これ
らの性質を一応満足させるには9粒子が中空で且つ殻が
緻密であることが望ましい。本発明はそのような中空P
Cを安価に製造する方法を提供することである。
Problems such as separation may occur. On the other hand, if particles with a light bulk specific gravity are made, the surface area will increase and the stability will deteriorate.
Also, since the strength of the 9 particles decreases, they break during transportation, resulting in pulverization, resulting in increased bulk specific gravity, and other drawbacks. In order to satisfy these properties to a certain extent, it is desirable that the nine particles be hollow and have dense shells. The present invention provides such a hollow P
The object of the present invention is to provide a method for manufacturing C at low cost.

即ち9本発明は炭酸ナトリウム、過酸化水素および塩化
ナトリウムを含有する溶液に粒状炭酸ナトリウム、過酸
化水素およびヘキサメタリン酸塩を添加することを特徴
とする中空粒状なPCの製造法に関する。
That is, the present invention relates to a method for producing hollow granular PC, which is characterized by adding granular sodium carbonate, hydrogen peroxide, and hexametaphosphate to a solution containing sodium carbonate, hydrogen peroxide, and sodium chloride.

中空なPC生成の機構は、Hヨ0.を含む溶液中に粒状
Na、Cogを添加した場合、Na、CO,が溶け。
The mechanism of hollow PC generation is Hyo0. When granular Na and Cog are added to a solution containing Na and CO, they dissolve.

沖合に拡散して行く際にHlへと反応し+ N a2 
C01粒子表面に空隙のあるPCの薄層がまず形成され
When it diffuses offshore, it reacts to Hl + Na2
A thin layer of PC with voids is first formed on the surface of the C01 particles.

その空隙を通して内部からN al COHの溶出が起
り。
N al COH elutes from inside through the voids.

外部からのIf、 0.との反応によってPC層は徐々
に厚みを増し、その結果、中空粒状なPCが生成される
のであるが、ここにはN a、 co、の濃度(添加粒
状Na1COHの溶解速度、拡散速度も関係する)。
If from outside, 0. The thickness of the PC layer gradually increases due to the reaction with Na1COH, and as a result, hollow granular PC is produced, but the concentration of Na, co, (the dissolution rate and diffusion rate of the added granular Na1COH also plays a role). do).

H,0,の濃度9反応温度、ヘキサメタリン酸塩(以下
H−M−Pと略称する。)の濃度、添加粒状Na2CO
1の粒度等の間に絶妙なバランスが必要である。これら
の要因はNa、CO3表面に形成されるPC層の厚さ、
空隙の程度を左右し、内部のNg1.COIの溶解速度
を著しく変化させることになり2反応初期に緻密な層が
形成されれば、内部に覆われたNa、CQの溶出は完全
に停止してしまう。例えばNa、COIとH,O,との
濃度のバランスがH,0,方向にずれ。
Concentration of H,0,9 reaction temperature, concentration of hexametaphosphate (hereinafter abbreviated as H-M-P), added granular Na2CO
An exquisite balance is required between particle size, etc. These factors include the thickness of the PC layer formed on the Na and CO3 surfaces;
The internal Ng1. If the dissolution rate of COI changes significantly and a dense layer is formed at the beginning of the second reaction, the elution of Na and CQ covered inside will be completely stopped. For example, the concentration balance between Na, COI and H, O shifts toward H, 0.

H,0,が過剰に存在する系では、このような現象が起
こり反応禁止状態になる。又2本発明に於いて、 H,
M、 Pの添加は特に重要で、これはPC層の結晶を緻
密にする効果があると共に、Na、CO3の拡散速度、
H,0,の内部への浸入速度をコントロールしPC殻の
生成を容易にし、且つ生成する条件の範囲を広くするこ
とが出来、又、生成する殻本強関があり9表面も滑らか
で製品粒子の流動性を良くシ、又、輸送中に破壊される
ことも無くするという多くの重要な効果があるが、H,
M、Pを多量に添加した場合には、PC層の緻密性が著
しく増すため内部からのNa、COBの溶出が韻書され
てしまうことがある。又、Na、COIとH,O,の濃
度バランスがNa1CO1濃度が高くなる方向に偏った
場合2例えば2反応温度の上昇はNa、CO,の溶解度
を増し、又、原料Na、CO,の小さな粒子は速やかに
溶解するため反応系のNa、Cog濃度を増す原因とな
り、H,M、Pの濃度が低い場合は細粒化してしまう。
In a system in which H,0, exists in excess, such a phenomenon occurs and the reaction is inhibited. In addition, in the present invention, H,
The addition of M and P is particularly important, as it has the effect of making the crystals of the PC layer denser, and also increases the diffusion rate of Na and CO3.
It is possible to control the rate of infiltration of H,0, into the interior of the PC shell, make it easier to generate a PC shell, and widen the range of conditions under which it can be generated.Also, there is a strong tendency for the shell to form, and the surface of the product is smooth. Although H,
When large amounts of M and P are added, the density of the PC layer increases significantly, which may result in elution of Na and COB from the inside. In addition, if the concentration balance of Na, COI and H, O, is biased in the direction where the Na1CO1 concentration becomes high,2 for example, an increase in the reaction temperature will increase the solubility of Na, CO, and the small concentration of raw materials Na, CO, Since the particles dissolve quickly, they cause an increase in the concentration of Na and Cog in the reaction system, and when the concentrations of H, M, and P are low, the particles become fine.

H,M、Pの母液濃度は、 2.0 t/を以上の範囲
で調整し、か1添加するH、M、Pは、添加される粒状
Na1C01重量に対しto/100以下の範囲で調整
して添加する。H,M、Pとポリアクリル酸ナトリウム
を併用することも可能であり2本発明を有利に実施出来
る。
The mother liquor concentration of H, M, and P is adjusted within a range of 2.0 t/or more, and the H, M, and P added are adjusted within a range of to/100 or less based on the weight of granular Na1C01 added. and add. It is also possible to use H, M, P and sodium polyacrylate in combination, and the present invention can be carried out advantageously.

維持すべき母液組成は、NaCt濃度に関し、80〜2
90 ?/l + Na、CO3濃度に関し20〜12
0f/l 、 H,O,濃度に関し6〜50 t/lで
あり、かつNa、CO3に対するHlo、そル比は1.
8以下に調整する。
The mother liquor composition to be maintained is between 80 and 2 in terms of NaCt concentration.
90? /l + 20 to 12 for Na, CO3 concentration
0f/l, H, O, concentration is 6 to 50 t/l, and the Hlo to Na, CO3 ratio is 1.
Adjust to 8 or less.

中空粗大なPCを得るのに重要なことは2反応に用いる
原料Na、COBの粒度である。中空PCの生成機構か
らも分るように、Na、COI粒子自身がPC粒子形成
の核となり、生成する20粒子の大きさを決定する一つ
の大きな要因となるからである。即ち、原料Na、CO
Bの平均粒子径は50〜1000μである。
What is important in obtaining hollow and coarse PC is the particle size of the raw materials Na and COB used in the two reactions. This is because, as can be seen from the formation mechanism of hollow PC, the Na and COI particles themselves serve as the nucleus for the formation of PC particles, and are one of the major factors that determine the size of the generated 20 particles. That is, raw materials Na, CO
The average particle diameter of B is 50 to 1000μ.

本発明に於いて塩化ナトリウムは、塩析効果によりPC
の収率向上の効果および製品の危険性防止効果の他に、
 Ng、CO,の溶解速度やPC析出速度の調節に大き
な効果がある。
In the present invention, sodium chloride has a salting-out effect that improves PC
In addition to the effect of improving yield and preventing product hazards,
It has a great effect on adjusting the dissolution rate of Ng, CO, and PC precipitation rate.

本発明方法に於いて、PCの安定剤としてケイ酸ナトリ
ウム等のケイ酸化合物および硫酸マグネシウム等のマグ
ネシウム化合物を添加して製造されたPCは、その安定
性が著しく向上する。ケイ酸化合物およびマグネシウム
化合物の添加量は。
In the method of the present invention, the stability of PC produced by adding a silicate compound such as sodium silicate and a magnesium compound such as magnesium sulfate as a PC stabilizer is significantly improved. What is the amount of silicic acid compound and magnesium compound added?

そわ、ぞれの添加比率が添加されるNa、CO3重量に
対し、Sin、として0.05/1oo〜1.0/1o
o1Mgとしてo、2/100以ドであり、又、ケイ酸
化合物+Mg化合物にEDTA、’)ン酸塩等の公知の
安定剤を併用して使用することも可能である。
The addition ratio of each is 0.05/1oo to 1.0/1o as Sin to the weight of Na and CO3 added.
o1Mg is 2/100 or more, and it is also possible to use the silicate compound + Mg compound in combination with a known stabilizer such as EDTA or phosphate.

本発明を実施すれば、水溶性、安定性および流動性の改
善された中空粒状なPCを有利に製造することが可能で
あり2本発明は産業上、極めて有利な製造法となる。
By carrying out the present invention, it is possible to advantageously produce hollow granular PC with improved water solubility, stability and fluidity, and the present invention is an extremely advantageous production method industrially.

以下に本発明を実施例で詳しく説明する。The present invention will be explained in detail below using examples.

実施例1 塩化ナトリウム濃度279f/l、炭酸ナトリウム濃度
50 f/l 、過酸化水素濃度6 f/lの組成を有
する母液XOtに攪拌を行いつつ、840p以下99.
7%、300μ以下25.8%の粒度を持つ粒状炭酸ナ
トリウムを2.004+/毎時、濃度750y7tの過
酸化水素を1.32t/毎時の速度で供給すると同時に
濃度0.1F/−のへキサメタリン酸ナトリウム水溶液
を68−/毎時、濃度0 、5 f/mlの硫酸マグネ
シウム水溶液18−/毎時、濃度0,5f/−の3号ケ
イ酸ナトリウへao−、’毎時の速度で連続的に添加し
2反応中6″液温な22℃に維持した。
Example 1 While stirring a mother liquor XOt having a composition of sodium chloride concentration of 279 f/l, sodium carbonate concentration of 50 f/l, and hydrogen peroxide concentration of 6 f/l, a concentration of 99.
Granular sodium carbonate with a particle size of 7%, 300 μ or less and 25.8% is supplied at a rate of 2.004+/hour and hydrogen peroxide with a concentration of 750y7t is supplied at a rate of 1.32t/hour, and at the same time hexamethalin with a concentration of 0.1F/- is supplied. An aqueous sodium sulfate solution with a concentration of 0.5 f/ml is added continuously at a rate of 68/hour, an aqueous solution of magnesium sulfate with a concentration of 0.5 f/ml to No. 3 sodium silicate with a concentration of 18/hour, ao. During the second reaction, the liquid temperature was maintained at 22°C.

反応1時間後にすべての供給を停止し、10分間攪拌を
行った後、スラリーを抜出し、遠心分離機で固液分離し
た。濾液は炭酸ナトリウムについて44.2t/l、過
酸化水素について16.4f/lの濃度を有していた。
After 1 hour of reaction, all supplies were stopped, and after stirring for 10 minutes, the slurry was taken out and separated into solid and liquid using a centrifuge. The filtrate had a concentration of 44.2 t/l for sodium carbonate and 16.4 f/l for hydrogen peroxide.

生成した粒子はそのおおよそが中空状であり、有効酸素
14.0%を含有していた。
The particles produced were generally hollow and contained 14.0% available oxygen.

比較例1 初母液組成を塩化ナトリウム濃度280 f/l。Comparative example 1 The initial mother liquor composition had a sodium chloride concentration of 280 f/l.

炭酸ナトリウム濃度18 f/l 、過酸化水素濃度6
f/lとした以外は実施例1と同一=−条件下で反応を
行った。反応終了後の母液は炭酸ナトリウム21.3t
7t 、過酸化水素46.1f/Lの濃度を有し、得ら
れた粒子は有効酸素92%であり2粒子の内部には未反
応の炭酸ナトリウムがまわりを炭酸ナトリウム過酸化水
素付加物で覆われた形で存在していた。
Sodium carbonate concentration 18 f/l, hydrogen peroxide concentration 6
The reaction was carried out under the same conditions as in Example 1 except that f/l was used. After the reaction, the mother liquor contains 21.3 tons of sodium carbonate.
7t, hydrogen peroxide concentration of 46.1 f/L, the obtained particles have 92% effective oxygen, and the inside of the two particles contains unreacted sodium carbonate surrounded by sodium carbonate hydrogen peroxide adduct. It existed in a hidden form.

実施例2 塩化ナトリウム濃度260 f/l 、炭酸ナトリウム
濃度50 f/l 、−酸化水素濃度6 f/lの組成
を有する初母液10tを用い、基本的には実施例1と同
一供給速度で添加物を供給したが、炭酸ナトリウムと過
酸化水素については母液中の炭酸ナトリウム濃度が40
〜55 f/l 、過酸化水素濃度が13〜20 f/
lを維持するように途中断続的に調節し、さらに塩化ナ
トリウム濃度が260〜270y7tを保つように塩化
ナトリウムを供給して連続的な反応を行った。反応中は
スラリー濃度が250f/lとなるようにスラリーを抜
出し、遠心分離後の濾液は反応容器内に循環させた。反
応温度は23°Cとした。
Example 2 Using 10 t of initial mother liquor having a composition of sodium chloride concentration of 260 f/l, sodium carbonate concentration of 50 f/l, and hydrogen oxide concentration of 6 f/l, addition was basically made at the same feed rate as in Example 1. However, for sodium carbonate and hydrogen peroxide, the sodium carbonate concentration in the mother liquor was 40%.
~55 f/l, hydrogen peroxide concentration 13-20 f/l
The reaction was carried out intermittently during the reaction so as to maintain the concentration of sodium chloride at 260 to 270 y7t, and sodium chloride was supplied so as to maintain the sodium chloride concentration at 260 to 270 y7t. During the reaction, the slurry was extracted so that the slurry concentration was 250 f/l, and the filtrate after centrifugation was circulated in the reaction vessel. The reaction temperature was 23°C.

原料炭酸ナトリウムの粒度は840μ以下99.6%、
300μ以下34.3%のものを用いた。生成した粒子
はその多くが中空状の粒子であり、有効酸素含有量は1
3.9〜14.2%であった。
The particle size of the raw material sodium carbonate is 840 μ or less, 99.6%,
A material with a particle size of 34.3% of 300μ or less was used. Most of the generated particles are hollow particles, and the effective oxygen content is 1.
It was 3.9-14.2%.

日本パーオキサイド株式会社 1Nippon Peroxide Co., Ltd. 1

Claims (1)

【特許請求の範囲】 1、 炭酸ナトリウム、過酸化水素および塩化ナトリウ
ムを含有する溶液に粒状炭酸ナトリウム、過酸化水素お
よびヘキサメタリン酸塩を添加することを特徴とする中
空粒状な炭酸ナトリウム過酸化水素付加物の製造法。 2、添加する粒状炭酸ナトリウムの平均粒子径が50〜
1000μである特許請求の範囲第1項記載の製造法。 3、維持すべき母液組成が塩化す)+7ウム濃度に関し
80〜290 t/l 、炭酸ナトリウム濃度に関し2
0〜x20f/1.、過酸化水素濃度に関し6〜s o
 t7t 、ヘキサメタリン酸塩濃度に関し2.0 f
/を以下であり、かつ炭酸ナトリウムに対する過酸化水
素モル比が1.8以下である特許請求の範囲第1項記載
の製造法。 4、 安定剤としてケイ酸化合物および、−2グネシウ
ム化合物をそれぞれの添加比率が添加される炭酸ナトリ
ウム重量に対し、  Sin、として0.05/100
〜t、o 71ooおよびMgとして0〜0雪。 添加する特許請求の範囲第1項記載の製造法。 5、 添加するヘキサメタリン酸塩が添加される炭酸ナ
トリウム重量に対し1・o/100以下である特許請求
の範囲第1項記載の製造法。
[Claims] 1. Hollow granular sodium carbonate hydrogen peroxide addition characterized by adding granular sodium carbonate, hydrogen peroxide and hexametaphosphate to a solution containing sodium carbonate, hydrogen peroxide and sodium chloride. How things are manufactured. 2. The average particle diameter of the granular sodium carbonate to be added is 50~
1000μ manufacturing method according to claim 1. 3. The mother liquor composition to be maintained is 80 to 290 t/l for the chloride +7 um concentration, and 2 for the sodium carbonate concentration.
0~x20f/1. , 6 to s o for hydrogen peroxide concentration
t7t, 2.0 f for hexametaphosphate concentration
The manufacturing method according to claim 1, wherein / is the following, and the molar ratio of hydrogen peroxide to sodium carbonate is 1.8 or less. 4. Addition ratio of silicate compound and -2gnesium compound as stabilizers is 0.05/100 as Sin, relative to the weight of sodium carbonate to be added.
~t, o 71oo and 0-0 snow as Mg. A manufacturing method according to claim 1. 5. The manufacturing method according to claim 1, wherein the amount of hexametaphosphate to be added is 1·o/100 or less based on the weight of sodium carbonate to be added.
JP8140082A 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide Granted JPS58199704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8140082A JPS58199704A (en) 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8140082A JPS58199704A (en) 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide

Publications (2)

Publication Number Publication Date
JPS58199704A true JPS58199704A (en) 1983-11-21
JPS6251882B2 JPS6251882B2 (en) 1987-11-02

Family

ID=13745258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8140082A Granted JPS58199704A (en) 1982-05-17 1982-05-17 Manufacture of adduct of sodium carbonate to hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPS58199704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741255B2 (en) 2007-07-27 2014-06-03 Exxonmobil Chemical Patents Inc. Oxidation process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8741255B2 (en) 2007-07-27 2014-06-03 Exxonmobil Chemical Patents Inc. Oxidation process

Also Published As

Publication number Publication date
JPS6251882B2 (en) 1987-11-02

Similar Documents

Publication Publication Date Title
US4146571A (en) Preparation of sodium percarbonate
US5346680A (en) Sodium percarbonate stabilized by coating
US4117087A (en) Process for preparing stabilized sodium percarbonate
US5294427A (en) Continuous process for preparing sodium percarbonate
JP2001500097A (en) Method for producing percarbonate
US4328200A (en) Process for producing calcium hypochlorite
CN112357890B (en) Method for controlling crystal growth of potassium hydrogen peroxymonosulfate composite salt
US4440732A (en) Hollow granular percarbonate
US6207177B1 (en) Monosodium cyanuric acid slurry
CA1106136A (en) Process for producing sodium percarbonate from a soda solution of suspension
JPS58199704A (en) Manufacture of adduct of sodium carbonate to hydrogen peroxide
US4400367A (en) Hydrogen peroxide adduct and process for preparation and use thereof
US4118466A (en) Process for the production of compact, coarse sodium percarbonate
US3801706A (en) Preparation of sodium percarbonate
CA1213415A (en) Continuous process for producing granular calcium hypochlorite particles
US4390512A (en) Process for producing calcium hypochlorite
JPS6096511A (en) Production of stabilized granular sodium percarbonate
US3598524A (en) Production of sodium perborate
US2380779A (en) Method of preparing sodium perborate of low bulk density
DE69703460T3 (en) Sodium percarbonate and process for its preparation
KR100541269B1 (en) Method of manufacturing percarbonate
US2065744A (en) Direct process for making sodium perborate
US5290476A (en) Process for preparing microcrystalline perborate products
CN115448257B (en) Potassium hydrogen peroxymonosulfate compound salt spherulites and preparation method thereof
US4374115A (en) Making calcium hypochlorite from impure lime