JPS5825465A - Manufacture of rolled titanium alloy material having excellent structure - Google Patents
Manufacture of rolled titanium alloy material having excellent structureInfo
- Publication number
- JPS5825465A JPS5825465A JP12184381A JP12184381A JPS5825465A JP S5825465 A JPS5825465 A JP S5825465A JP 12184381 A JP12184381 A JP 12184381A JP 12184381 A JP12184381 A JP 12184381A JP S5825465 A JPS5825465 A JP S5825465A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- rolled
- temp
- temperature
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、組織の良好なチタン合金圧延材の製造方法、
特に多段スタンドの連続圧延による組織の曳好なチタン
合金圧延材の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing a rolled titanium alloy material with a good structure;
In particular, the present invention relates to a method for manufacturing a rolled titanium alloy material with a good texture by continuous rolling on a multi-stage stand.
チタン合金は比強度(重さに対する強さの比)が大であ
ることから、軽量で高強度を要求される航空機・宇宙開
発機材などの分野をはじめ、高信a性が要求される用途
、あるいは高温、高荷重、腐食などの苛酷な条件下での
耐久性が要求される用途Kll!吊されている。しかし
、これらの用途に対しては、単KIm6強寂・高耐食性
であるだけでは不充分で、41KIl″tたは欅の形態
で供給される場合には%ゲルトあるーは構造部品として
の*a製品への製造段階で必ず成形加工工程を経るので
、適寂なg性が不可欠である。そして、仁の延性の改善
Ktlj、均−且つ微細な組織であることが必須である
。Titanium alloys have a high specific strength (ratio of strength to weight), so they are used in fields such as aircraft and space development equipment that require light weight and high strength, as well as applications that require high reliability. Or for applications that require durability under harsh conditions such as high temperatures, high loads, and corrosion! It's hanging. However, for these applications, just being strong and highly corrosion resistant is not enough, and when supplied in the form of 41KIl''t or zelkova, % gelt or * as a structural component. Since a molding process is always carried out in the production stage of a product, it is essential to have suitable g properties.In order to improve the ductility of the grain, it is essential to have a uniform and fine structure.
ところで、チタン合金材#′ig加工材の1つで、その
製造方法に関する報告はほとんどない0例えば、鍛造材
については特開l@5l−47JI85号に開示されて
いるが、圧延材については実用化された例はなく、また
その報告例もない。By the way, there are few reports on the manufacturing method for titanium alloy material #'ig processed material. For example, forged material is disclosed in JP-A No. 1@5l-47JI85, but rolled material has not been practically used. There have been no cases where this has occurred, nor have there been any reports of it.
ちなみに、上記の鍛造材の製造は、/鍛造後、連続的に
α+β域で10¥1以上の加工を行ない、次いでβ域に
加熱後、20℃/分以上の冷却速寂でα+β域tたけα
域まで冷却することによシ行なわれ、それKxシ組織の
微細化を図っている。By the way, the production of the above forged material is as follows: / After forging, processing is performed continuously in the α + β region for 10 times or more, then heated to the β region, and then cooled at a cooling rate of 20 ° C / min or more to the α + β region t times. α
This is done by cooling to a temperature of Kx, which aims to refine the structure.
よって、本発明の目的は、チタン合金圧延材の製造方法
、%にα+β型チタン合金を均一かつ黴細な結晶組織と
することKよりW11械的性質のすぐれ九チタン合金圧
砥材を製造する方法を提供することである。Therefore, the purpose of the present invention is to provide a method for producing a rolled titanium alloy material, to produce a rolled titanium alloy material with excellent mechanical properties of α+β type titanium alloy with a uniform and fine crystal structure. The purpose is to provide a method.
かくして、本発明者らは、均一かつ微細な組織を示し、
機械的性質のすぐれたチタン合金材の高速圧延による製
造に関して鋭意研究を重ねた結果。Thus, we have shown a uniform and fine texture,
This is the result of extensive research into the production of titanium alloy materials with excellent mechanical properties through high-speed rolling.
圧延工程における冷却争件のコントロールが組織の均一
微細化に極めて有効であることを見出し、本発明を完成
するに到りた。The inventors have discovered that controlling cooling issues in the rolling process is extremely effective in achieving uniform and fine microstructures, and have completed the present invention.
ここに1本発明は、少なくとも被圧延材が加工熱により
昇温するような圧延速度以上で仕上EEm℃以下とし、
且つ壱Nlυ温度を950〜660℃に調節することを
特徴とする、組織の良好なチタン合金圧延材の製造方法
である。Herein, one aspect of the present invention is that at least the rolling speed is higher than the rolling speed at which the temperature of the rolled material increases due to processing heat, and the finishing EEm℃ or lower,
In addition, the present invention is a method for producing a rolled titanium alloy material with a good structure, which is characterized in that the Nlυ temperature is adjusted to 950 to 660°C.
以下、本発明を詳述する。The present invention will be explained in detail below.
チタン合金は変形抵抗が高い上に比熱が小さいために1
加工による発熱が著しい、低速かつ低加工度の場合は、
発熱による被圧延材の温Wl#′i無視速度が6鳳/秒
程度以上になると、用工熱による被圧延材の温度上昇が
顕著となる。そのために、例えば960℃近傍での熱間
圧延では、約970℃の変態点を超過してしまう。した
がって、このような材料の温度上昇を生ずる加工熱を適
宜手段によって除去する必要がある。この点、本発明に
よれば、熱間圧延の被圧延材温度を960℃以下に規制
することにニジ、被圧延材の過度の温度上昇を防止でき
、良好な組織を確保できる。被圧延材の温度が圧延中に
950℃以上になると約970℃の変態点を超過してし
まい、組織が針状のベータ(ロ)組織となり、圧延後良
好な組織が得られない。Titanium alloy has high deformation resistance and low specific heat, so
In the case of low speed and low machining where the heat generated by machining is significant,
When the temperature Wl#'i of the material to be rolled due to heat generation is ignored at a rate of about 6/sec or more, the temperature of the material to be rolled due to industrial heat increases significantly. For this reason, for example, in hot rolling at around 960°C, the transformation point of about 970°C is exceeded. Therefore, it is necessary to remove the processing heat that causes the temperature increase of the material by appropriate means. In this regard, according to the present invention, by regulating the temperature of the rolled material during hot rolling to 960° C. or lower, excessive temperature rise of the rolled material can be prevented and a good structure can be ensured. If the temperature of the material to be rolled rises to 950° C. or higher during rolling, the transformation point of approximately 970° C. will be exceeded, and the structure will become an acicular beta (b) structure, making it impossible to obtain a good structure after rolling.
さらに、本発明者らは、チタン合金材の連続圧延の温度
制ii!lK関して種々の実験を行なり九結果、巻取シ
温度が950℃を越えると組織が粗くなりて、針状の好
ましくない組織が生じ、一方、巻取シ温度が65’0℃
を下回ると、組織の劣化は特に起らないが巻取りが困−
となりてくるので実を規制することによって、巻取り温
度も960℃以下に制御でき、そしてそれに工って上述
のようなすぐれた効果が責合して得られることになる。Furthermore, the present inventors have discovered that the temperature control of continuous rolling of titanium alloy material ii! We conducted various experiments regarding lK and found that when the winding temperature exceeds 950°C, the structure becomes coarse and an undesirable acicular structure occurs;
If it is below this level, there will be no particular deterioration of the structure, but winding will be difficult.
Therefore, by controlling the grain size, the winding temperature can be controlled to 960°C or less, and by working on this, the excellent effects described above can be obtained.
かくして2本発明によれば、被圧延材が加工熱により昇
温する工うな圧延速度以上、例えば秒速5m以上の速度
で仕上圧延する連続ばルにおいて、適轟な冷却手段、例
えばロール間の水冷、圧延直後の水冷又は両者の併用に
ぶり加工熱を除去するネ皮HL達材
ことKよって、備圭褥子装置を960℃以下に規制する
とともに、4I取り温度を960〜650℃に14節す
る。このような温度調節によシ、後述するような組織の
良好なチタン合金圧延材を得ることが可能となる。Thus, according to the present invention, in a continuous rolling mill in which finish rolling is performed at a rolling speed higher than that at which the temperature of the rolled material increases due to processing heat, for example, at a speed of 5 m/s or higher, an appropriate cooling means, such as water cooling between the rolls, is used. , water cooling immediately after rolling or a combination of both to remove processing heat. Therefore, the temperature of the bedclothes equipment is regulated to 960°C or less, and the 4I temperature is set to 960 to 650°C for 14 times. . By controlling the temperature in this manner, it becomes possible to obtain a rolled titanium alloy material with a good structure as described below.
々お、加工熱の除去手段として#i、上述のよう愈ロー
ル間の水冷、圧延直後の水冷または両者の併用が考えら
れるが、必ずしもそれらに制限されるものではない。水
冷を採用する場合、流量調節によりて温f調節を行なっ
てもよい。As a means for removing processing heat, water cooling between the rolls as described above, water cooling immediately after rolling, or a combination of both may be considered, but the method is not necessarily limited to these. When water cooling is employed, the temperature f may be adjusted by adjusting the flow rate.
本発明は、好ましくはα+β灘チクチタフ合金用される
ものであるが、代表的なα+β型チタン合金HTi−6
ht−4VオXびTi −4At−4Mn テあり、そ
の他の例としてFiT i −?At−4Mo 、 T
i −1ムt−26V、Ti −4At−4Mo−I
V、TITl−1Fe−2Or−2カ挙げられる。良だ
し、本発明がそれら0−)K制限されるものでないこと
は理解されよう。The present invention is preferably used for α+β type titanium alloy HTi-6, which is a typical α+β type titanium alloy.
There are ht-4V and Ti-4At-4Mn, and other examples include FiTi-? At-4Mo, T
i-1Mo-26V, Ti-4At-4Mo-I
V, TITl-1Fe-2Or-2. However, it will be understood that the present invention is not limited to these 0-)K.
次に実施例によシ本発明を具体的に説明する。Next, the present invention will be specifically explained using examples.
実施例
Ti−6At−4V合金を真空アーク溶解して1トンの
鋳塊をIV製し、分塊圧延したのち、皮むきを行なって
表面疵を除去し、そののち本発明方法に従って第1表に
示す如く、直径180■および22■の丸棒tst+造
し、連続孔r1111E延機によシ第1表に示す仕上圧
嬌速寂で直径9−の丸棒に圧延した。Example Ti-6At-4V alloy was vacuum arc melted to produce a 1 ton IV ingot, which was bloomed and peeled to remove surface flaws. As shown in Table 1, round bars tst+ with diameters of 180 cm and 22 cm were made and rolled into round bars with a diameter of 9- by a continuous hole R1111E rolling mill at the finishing rolling speed shown in Table 1.
圧延が高速度で行なわれ九ため、圧延による温度上昇が
見られ九ので、本発1jQKI!りてロール間および/
i九は圧延直後に水吹付けKよる冷却を行なり九、得ら
れ九各圧延材について1wk述の組織**を行なった。Since rolling was carried out at high speed, a temperature rise due to rolling was observed. between rolls and/or
Immediately after rolling, the specimens were cooled by water spray K, and the resulting rolled materials were subjected to microstructure** as described in 1wk.
王延東件および結果を、比較偶のそれと共[111表K
まとめて示す。Wang Yandong case and results together with those of comparative case [111 Table K
Shown all together.
第1表において記号A−Eは本発明例を、記号F−Hは
比較例をそれぞれ示す。In Table 1, symbols A-E indicate examples of the present invention, and symbols F-H indicate comparative examples, respectively.
第1嵌の結果から明らかなように、α+β域に加熱され
たチタン合金素材を、連続圧延途中または圧延直後に冷
却することによって加工終了温度を960℃以下に規制
するととも、K巻取り温度を950℃以下に調節すると
、良好な組織を得ることができる。As is clear from the results of the first fitting, by cooling the titanium alloy material heated to the α+β region during or immediately after continuous rolling, the finishing temperature is regulated to 960°C or less, and the K winding temperature is If the temperature is adjusted to 950°C or lower, a good structure can be obtained.
既述のように、チタン合金は比熱が小さく、シか41”
形抵抗が高いために高速圧延では熱の発生が大きく、被
圧延材の中心温度が上昇しやすい。As mentioned above, titanium alloy has a small specific heat and has a strength of 41"
Due to the high shape resistance, high-speed rolling generates a large amount of heat, and the center temperature of the rolled material tends to rise.
その丸め、記号Jで示す比較例のように、加熱温ばを8
50℃と低温にしても加工終了温度は好ましくないli
[Ktで上昇し、組織不要を起す。As in the comparative example shown with the symbol J, the heating temperature is 8.
Even if the temperature is as low as 50℃, the finishing temperature is not desirable.
[Kt increases, causing tissue dispensing.
組織の判定は、添付図djBK略式模式図で示すように
1等軸晶よりなるα+β組織を1級(図(荀参jl)、
全面が針状の1組績のものを4級としく図(d)参照)
、中心部に針状β組繊が集中しているもて存在している
ものを2級とした(図(ト)参照)。To determine the structure, as shown in the attached diagram djBK schematic diagram, the α+β structure consisting of uniaxed crystals is grade 1 (Fig.
One set with needle-like surfaces is classified as grade 4 (see figure (d)).
, those in which acicular β fibers were concentrated in the center were classified as grade 2 (see Figure (G)).
以上説明したように%本発明はα÷/皺チクチタフ合金
段スタンド連続圧延、特に高速かつ^圧下率でのEE延
に対して有効な方法である。すなわち、前述のように、
チタン合金は比強度が大であるため、加工熱によシ被圧
延材の温度上昇を生じ、圧延速度と圧下率が高くなる程
、温度上昇も大きくなる。したがって、高速強圧下圧延
を行なうと、980℃以上のβ域で加工をすることKな
)、組織の不嵐化が起るので、低速軽加工しかできない
Kよって、多スタンドでの高速強圧下圧延が可能となる
ので、その実用的な価値は非常に大きい。As explained above, the present invention is an effective method for α÷/corrugated tough alloy plate stand continuous rolling, particularly for EE rolling at high speed and reduction. That is, as mentioned above,
Since titanium alloys have a high specific strength, processing heat causes a temperature rise in the rolled material, and the higher the rolling speed and reduction ratio, the greater the temperature rise. Therefore, when performing high-speed hard reduction rolling, it is necessary to perform processing in the β region of 980°C or higher), but since the structure becomes unstable, only low-speed light processing is possible. Since rolling becomes possible, its practical value is very great.
添付図面は、等軸晶組績の判定基準を示す結晶組織の模
式図であり、図(荀、伽L (@)および(由はそれぞ
れ1級、2級、8級および4級の各等級の組織に相当す
る。
(α) (b)
(C) (d)手続補正書(自
発)
昭和り6年10月22日
特許庁長官 島 1)春 樹 殿
1、事件の表示
昭和SA年特許願第1λ/g’13号
2・発明の名称
゛ 組織の良好なチタン合金圧延材の製造方法3、補
正をする者
事件との関係 特許出願人
住 所 大阪市東区北浜S丁目75番地名 称 (
211)住友金属工業株式会社4、代理人
5、補正の対象 図 面
6、補正の内容 別紙の通り
(日力め(a)、(b)、 (e−)、(改)と月象丙
逼り不釘正す3)
(The attached drawing is a schematic diagram of the crystal structure showing the criteria for determining equiaxed crystal structure. (α) (b) (C) (d) Procedural amendment (voluntary) October 22, 1930 Director General of the Japan Patent Office Shima 1) Haruki Tono 1, indication of the case Showa SA patent Application No. 1λ/g'13 2. Name of the invention ゛ Method for producing rolled titanium alloy material with good structure 3, relationship to the case of the person making the amendment Patent applicant address 75 Kitahama S-chome, Higashi-ku, Osaka Name (
211) Sumitomo Metal Industries Co., Ltd. 4, Agent 5, Subject of amendment Drawing 6, Contents of amendment As attached Correct mistakes 3) (
Claims (1)
速度以上で仕上圧延するチタン合金材の連続圧延におい
て、上記加工熱を除去することKよって圧延中の[圧延
材の温度を950℃以下とし且つ巻堆り温度を960〜
650℃に調節することを特徴とする、組織の良好なチ
タン合金圧延材の製造方法。In continuous rolling of titanium alloy materials, which are finish rolled at least at a rolling speed higher than that at which the temperature of the rolled material rises due to processing heat, the temperature of the rolled material during rolling is reduced to 950°C by removing the processing heat. or less, and the rolling temperature is 960~
A method for producing a rolled titanium alloy material with a good structure, the method comprising adjusting the temperature to 650°C.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12184381A JPS5825465A (en) | 1981-08-05 | 1981-08-05 | Manufacture of rolled titanium alloy material having excellent structure |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12184381A JPS5825465A (en) | 1981-08-05 | 1981-08-05 | Manufacture of rolled titanium alloy material having excellent structure |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5825465A true JPS5825465A (en) | 1983-02-15 |
| JPS6367550B2 JPS6367550B2 (en) | 1988-12-26 |
Family
ID=14821302
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP12184381A Granted JPS5825465A (en) | 1981-08-05 | 1981-08-05 | Manufacture of rolled titanium alloy material having excellent structure |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5825465A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002070763A1 (en) * | 2001-02-28 | 2002-09-12 | Jfe Steel Corporation | Titanium alloy bar and method for production thereof |
| US7878925B2 (en) | 2005-02-23 | 2011-02-01 | Jfe Steel Corporation | Golf club head |
-
1981
- 1981-08-05 JP JP12184381A patent/JPS5825465A/en active Granted
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002070763A1 (en) * | 2001-02-28 | 2002-09-12 | Jfe Steel Corporation | Titanium alloy bar and method for production thereof |
| US7878925B2 (en) | 2005-02-23 | 2011-02-01 | Jfe Steel Corporation | Golf club head |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS6367550B2 (en) | 1988-12-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4013761B2 (en) | Manufacturing method of titanium alloy bar | |
| US4292077A (en) | Titanium alloys of the Ti3 Al type | |
| CA3109213A1 (en) | High-strength titanium alloy for additive manufacturing | |
| JPS62149859A (en) | Manufacturing method of β-type titanium alloy wire | |
| US5125986A (en) | Process for preparing titanium and titanium alloy having fine acicular microstructure | |
| US5092940A (en) | Process for production of titanium and titanium alloy material having fine equiaxial microstructure | |
| JP2017190480A (en) | Titanium sheet | |
| JPS5825465A (en) | Manufacture of rolled titanium alloy material having excellent structure | |
| JPH06293946A (en) | Production of fine crystal grain super alloy member | |
| JPS63313635A (en) | Production of high strength al pipe stock for heat exchanger | |
| JP2016108652A (en) | Titanium plate, heat exchanger plate and fuel cell separator | |
| JPH06292906A (en) | Method for manufacturing titanium and titanium alloy rods and wires | |
| JPS61231150A (en) | Manufacture of ti alloy wire rod | |
| JPS634049A (en) | Manufacture of al-alloy sheet for vessel | |
| EP0835330B1 (en) | Fuel boxes and a method for manufacturing fuel boxes | |
| US1018369A (en) | Manufacture of manganese-steel wire. | |
| JPS5825422A (en) | Manufacturing method for high strength and high ductility rolled titanium alloy material | |
| TWI565807B (en) | Method of producing titanium alloy bulk material and application thereof | |
| JPS58100663A (en) | Method for producing rolled titanium alloy material with good structure | |
| US2047873A (en) | Free cutting alloys | |
| JPS5825424A (en) | Method for producing rolled titanium alloy material with good structure | |
| US2388563A (en) | Thermal treatment for aluminum base alloys | |
| TWI667358B (en) | Method of producing titanium alloy wire rod | |
| JPS6156234A (en) | Manufacture of austenite stainless fine grain steel | |
| JPH04202732A (en) | Co base alloy member having surface excellent in heat damage resistance |