JPS5825702A - Parabolic antenna device - Google Patents
Parabolic antenna deviceInfo
- Publication number
- JPS5825702A JPS5825702A JP12454381A JP12454381A JPS5825702A JP S5825702 A JPS5825702 A JP S5825702A JP 12454381 A JP12454381 A JP 12454381A JP 12454381 A JP12454381 A JP 12454381A JP S5825702 A JPS5825702 A JP S5825702A
- Authority
- JP
- Japan
- Prior art keywords
- aperture
- primary radiator
- parabolic
- radiator
- parabolic reflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010586 diagram Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/13—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination
Landscapes
- Aerials With Secondary Devices (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は一次放射器とパラボラ反射器(放物面反射器)
とが組合されて構成されるパラボラアンテナ装置に関し
、特に、改良された一次放射器が備えられて開口面効率
が高められたパラボラアンテナ装置に関する。[Detailed Description of the Invention] The present invention comprises a primary radiator and a parabolic reflector (parabolic reflector).
The present invention relates to a parabolic antenna device configured by combining the above, and particularly relates to a parabolic antenna device that is equipped with an improved primary radiator and has increased aperture efficiency.
マイクロ波信号の送・受信に用いられるアンテナの代表
的なものとしてパラボラアンテナがある。A parabolic antenna is a typical antenna used for transmitting and receiving microwave signals.
パラボラアンテナは、一般的に、送信あるいは受信マイ
クロ波電波を放物面をもって反射せしめるパラボラ反射
器と、このパラボラ反射、器の放物反射面の焦点部に配
され、送信マイクロ波電波をパラボラ反射器に向けて放
射する、あるいは、パラボラ反射器で反射された受信マ
イクロ波電波を受ける一次放射器とが組合されて構成さ
れる。A parabolic antenna generally consists of a parabolic reflector that reflects transmitted or received microwave radio waves with a parabolic surface, and a parabolic reflector that is placed at the focal point of the parabolic reflecting surface of the reflector to reflect the transmitted microwave radio waves parabolically. The primary radiator is configured in combination with a primary radiator that radiates toward the receiver or receives received microwave radio waves reflected by a parabolic reflector.
近年、人工衛星を打ち上げ工、その人工衛星を利用して
SHF帯のマイクロ波放送電波を送り、これを広い地域
に於いて受信する衛星放送システムが実用化の段階に向
っているが、斯かるシステムにあっては、受信地域に於
いて、例えば、各戸に比較的小形のパラボラアンテナが
備えられて人工衛星からのマイクロ波電波の受信が行わ
れるととになる。このような目的で用いられる比較的小
形のパラボラアンテナは、小径のパラボラ反射器を有す
ものとなシ、その利得を高めることが極めて重要なこと
となる。In recent years, satellite broadcasting systems that launch artificial satellites and use them to transmit microwave broadcast waves in the SHF band and receive them over a wide area are heading toward the stage of practical use. In the system, for example, each house in the reception area is equipped with a relatively small parabolic antenna to receive microwave radio waves from an artificial satellite. A relatively small parabolic antenna used for such a purpose has a small diameter parabolic reflector, so it is extremely important to increase its gain.
一般に、パラボラアンテナの利得Gは次式で表わすこと
かできる。G=g ・ (π・り)2、ここで、λは送
・受信マイクロ波電波の波長であシ、Dは開口面の直径
、即ち、パラボラ反射器の直径であシ、gpは開口面効
率で、簡単に言えば、幾何学的開口面積に対する実効面
積の比である。Generally, the gain G of a parabolic antenna can be expressed by the following equation. G=g ・ (π・ri)2, where λ is the wavelength of the transmitted and received microwave radio waves, D is the diameter of the aperture, that is, the diameter of the parabolic reflector, and gp is the aperture. Efficiency, simply put, is the ratio of effective area to geometric aperture area.
上述の式から明らかな如く、パラボラ反射器の直径りが
決められている場合にその利得をよシ大にするには、開
口面効率gpの向上を図ることが必要となる。通常、比
較的小形のパラボラアンテナに於ける一次放射器として
は、円形あるいは矩形の導波管を利用した小形の電磁ポ
ーンが用いられるが、従来の電磁ホー/で構成された一
次放射器とパラボラ反射器との組合せでは、開口面効率
Hpは30〜6θチ程度であって、高い開口面効率が実
現されているとは言えない。As is clear from the above equation, in order to increase the gain when the diameter of the parabolic reflector is determined, it is necessary to improve the aperture efficiency gp. Normally, a small electromagnetic pawn using a circular or rectangular waveguide is used as the primary radiator in a relatively small parabolic antenna, but the primary radiator composed of a conventional electromagnetic hole and the parabolic In combination with a reflector, the aperture efficiency Hp is about 30 to 6θ, and it cannot be said that a high aperture efficiency is achieved.
ところで、パラボラアンテナに於ける開口面効率gpは
、パラボラ反射器の開口角(−次放射器の位置、即ち、
反射面の焦点から反射面の中心と周辺とを見る角)Fと
一次放射器の指向性d(f)との関数となシ、縦軸に開
口面効率g、をとシ横軸に開口角Vをとって、−次放射
器の指向性d(φ)。By the way, the aperture efficiency gp in a parabolic antenna is determined by the aperture angle of the parabolic reflector (the position of the -order radiator, i.e.,
The angle at which the center and periphery of the reflective surface are viewed from the focal point of the reflective surface is a function of F and the directivity d(f) of the primary radiator, where the vertical axis is the aperture efficiency g, and the horizontal axis is the aperture. Taking the angle V, the directivity d(φ) of the −order radiator.
をパラメータとして表わすと、第1図に示される如くに
なる。ここで、曲線A、B及びCは、夫々、−次放射器
の指向性d(ψ°)がa%b及びC(但し、a (b
(c )の場合に於ける、開口角に対する開口面効率g
pの変化を示している。これより、パラボ、う反射器の
直径りが定められて開口角Vが所定の値に決められた場
合、斯かる開口角Wの所定値のもとに於いて開口面効率
を可及的に高いものとするためには、−次放射器の指向
性d(ψ)を制御すればよいことが理解される。従来提
案されている一次放射器の指向性を制御する手段として
は、−次放射器として複モード電磁ホーンやハイブリッ
ドモード電磁ホーンを用いるとと等があるが、これらの
特殊な電磁ホーンには設計の困難さや工作上の困難さの
問題が伴う難点があり、特に、小径のパラボラ反射器と
の組合せには適していない。When expressed as a parameter, it becomes as shown in FIG. Here, curves A, B, and C indicate that the directivity d (ψ°) of the -order radiator is a%b and C (however, a (b
Aperture surface efficiency g for the aperture angle in case (c)
It shows the change in p. From this, when the diameter of the parabolic reflector is determined and the aperture angle V is determined to a predetermined value, the aperture efficiency can be maximized under the predetermined value of the aperture angle W. It is understood that in order to make it high, the directivity d(ψ) of the -order radiator can be controlled. Conventionally proposed means for controlling the directivity of the primary radiator include using a multi-mode electromagnetic horn or a hybrid mode electromagnetic horn as the -order radiator, but these special electromagnetic horns require a design However, it is not suitable for use in combination with small-diameter parabolic reflectors.
斯かる点に鑑み本発明は、その指向性を制御できる構成
簡単な改床された一次放射器を備えることにより、定め
られた開口角のもとで高い開口面効率が得られ、その結
果大なる利得が得られるパラボラアンテナ装置を提供せ
んとするものである、以下、図面の第2図以降を参照し
て本発明の実施例について説明する。In view of these points, the present invention provides a primary radiator with a simple structure and a modified base whose directivity can be controlled, thereby achieving high aperture efficiency under a predetermined aperture angle. Hereinafter, embodiments of the present invention will be described with reference to FIG. 2 and subsequent figures of the drawings.
第1図は本発明に係るパラボラアンテナ装置の一例を示
す概略的側面図である。同図に於いて、lは放物反射面
を有したパラボラ反射器であり、コはパラボラ反射器/
に対向しその放物反射面の焦点位置に配された一次放射
器である。この−次放射器コは、電磁ホーンを形成する
、例えば、開口円形導波管部3と、この開口円形導波管
部3の外周のその開口端面3′から離れた位置に配され
た円板状のフラ/ジ部ダとで構成されている。そして、
−次放射器コには、送信マイクロ波電波を一次放射器コ
ヘ供給するための、あるいは、受信マイクロ波電波を一
次放射器コから導出するための導波管Sが結合部6を介
して接続されている。FIG. 1 is a schematic side view showing an example of a parabolic antenna device according to the present invention. In the figure, l is a parabolic reflector with a parabolic reflecting surface, and ko is a parabolic reflector/
It is a primary radiator placed at the focal point of the parabolic reflecting surface facing the radiator. This second-order radiator includes, for example, an open circular waveguide section 3 and a circle disposed on the outer periphery of the open circular waveguide section 3 at a position away from its open end surface 3', forming an electromagnetic horn. It consists of a plate-shaped flange/ji part. and,
- A waveguide S for supplying transmitted microwave radio waves to the primary radiator or for guiding received microwave radio waves from the primary radiator is connected to the secondary radiator via a coupling part 6. has been done.
第3図は上述の一次放射器コを拡大図示するもので、第
3図Aは正面図、第3図Bは側面図である。ここで、開
口円形導波管部3は内径Rを有しており、その開口端面
3′とは反対側の端部には接続部7が形成されている。FIG. 3 is an enlarged view of the above-mentioned primary radiator, with FIG. 3A being a front view and FIG. 3B being a side view. Here, the open circular waveguide section 3 has an inner diameter R, and a connecting section 7 is formed at the end opposite to the open end surface 3'.
この開口円形導波管部3の外周の、開口円形導波管部3
の開口端面3′から距離りだけ離れた位置に、円板状の
フラ/ジ部ダが配されており、この7279部の直径は
Fである。Open circular waveguide section 3 on the outer periphery of this open circular waveguide section 3
A disc-shaped flange portion is disposed at a distance from the opening end surface 3' of the opening end surface 3', and the diameter of this 7279 portion is F.
このように構成された一本発明の一実施例にあっては、
導波管Sから一次放射器コヘ供給されたマイクロ波電波
が、−次放射器コからパラボラ反射器lに向って放射さ
れ、パラボラ反射器lで反射されてビーム状、に外部へ
送信されること、また、外部よシパラボラ反射器lに到
達したマイクロ波電波がパラボラ反射器lで反射され、
−次放射器コで受けられて導波管Sにより導出されるこ
とに於いては通常のパラボラアンテナの如くであるが、
ここで、−次放射器コを構成する開口円形導波管部3に
配された円板状のフラ/ジ部ダの直径F及び開口円形導
波管部3の開口端面3′からの距離りを変化せしめるこ
とにより、−次放射器コの指向性を制御することができ
る。例えば、−次放射器コを円形導波管の基本モード(
TE//)で励振した場合、開口円形導波管部3の内径
Rを一定、例えば、/9mmとし、開口円形導波管部3
の開口端面3′から円板状のフランジ部tiiでの距離
りを一定に保って、円板状の7ランジ部グの直径Fを変
化せしめたときの、−次放射器コから放射されるマイク
ロ波電波の、電界面−E面及び磁界面・H面内での一次
放射器コの中心軸上のレベルに対する相対レベル1の変
化は、第を図Aに示される如くであった。ここで、縦軸
杖相対レベルlで、横軸は電界面・E面及び磁界面・H
面の夫々の面内に於ける位置と一次放射器コとを結ぶ線
が一次放射器コの中心軸に対してなす角度θであり、実
線曲線ll、破線曲線12及び一点鎖線曲線13は、夫
々、円板状の7う/ジ部ダの直径Fが29mm、s o
m m及び&2.!rmrnの場合である。これより
、円板状の7ランジ部ダの直径Fが変化すると相対レベ
ルlの同一値が得られる角度θが変化すること、即ち、
−次放射器コの指向性が変化することがわかる。特に、
E面内に於いて顕著である。また、同様に、−次放射器
コを円形導波管の基本モード(TI/ t )で励振し
た場合に、開口円形導波管部3の内@Rを一定、例えば
、79mmとし、円板状のフランジ、部ダの直径Fを一
定、例えば、somrpに保って、開口円形導波管部3
の開口端面3′から円板状のフラ/ジ部ダまでの距離り
を変化せしめたときの、−次放射器コから放射されるマ
イクロ波電波の、電界面・E面及び磁界面・H面内での
一次放射器コの中心軸上のレベルに対する相対レベルl
の変化は、第q図Bに示される如くであった。ここでも
”、縦軸は相対レベルlで、横軸は電界面・E面及び磁
界面・H面の夫々の面内に於ける位置と一次放射器2と
を結ぶ線が一次放射器コの中心軸に対してなす角度θで
あり、実線曲線”/z破線曲線1′コ及び一点鎖線曲線
1/3は、夫々2、開口円形導波管部3の開口端面3′
から円板状のフランジ部i4での距離りがOmm、4m
m及び/2.!;m mの場合である。これより、距離
りが変化すると相対レベル1の同一値が得られる角度θ
が変化すること、即ち、−次放射器コの指向性が変化す
ることがわかる。この場合も、特に、E面に於いて顕著
である。In one embodiment of the present invention configured as described above,
The microwave radio waves supplied from the waveguide S to the primary radiator are radiated from the -order radiator toward the parabolic reflector L, reflected by the parabolic reflector L, and transmitted to the outside in the form of a beam. In addition, microwave radio waves that reach the parabolic reflector l from the outside are reflected by the parabolic reflector l,
-It is like a normal parabolic antenna in that it is received by the secondary radiator and guided out by the waveguide S, but
Here, the diameter F of the disc-shaped flange part DA arranged in the open circular waveguide section 3 constituting the -order radiator and the distance from the open end surface 3' of the open circular waveguide section 3 By changing the angle, the directivity of the -order radiator can be controlled. For example, the fundamental mode of a circular waveguide (
TE//), the inner diameter R of the open circular waveguide section 3 is set constant, for example, /9 mm, and the open circular waveguide section 3
When the distance from the opening end surface 3' of the disc-shaped flange part tii to the disc-shaped flange part tii is kept constant and the diameter F of the disc-shaped seven flange parts is varied, the radiation from the -order radiator ko is Changes in the relative level 1 of the microwave radio waves with respect to the level on the central axis of the primary radiator in the electric plane-E plane and the magnetic plane/H plane were as shown in Figure A. Here, the vertical axis is the cane relative level l, and the horizontal axis is the electric surface/E surface and the magnetic surface/H
The line connecting the position in each plane of the surface and the primary radiator K is the angle θ that the line makes with the central axis of the primary radiator K, and the solid line curve 11, the broken line curve 12, and the dashed-dotted line curve 13 are as follows: The diameter F of the disc-shaped 7/J part is 29 mm, respectively.
m m and &2. ! This is the case for rmrn. From this, it can be seen that when the diameter F of the seven disc-shaped flange portions changes, the angle θ at which the same value of relative level l is obtained changes, that is,
- It can be seen that the directivity of the second radiator changes. especially,
This is noticeable in the E plane. Similarly, when the -order radiator is excited in the fundamental mode (TI/t) of the circular waveguide, the inside @R of the aperture circular waveguide section 3 is set constant, for example, 79 mm, and the circular waveguide The opening circular waveguide section 3 is formed by keeping the diameter F of the shaped flange constant, for example, somrp.
When the distance from the opening end surface 3' to the disc-shaped flange part DA is changed, the electric surface, E surface, and magnetic surface, H, of the microwave radio waves radiated from the -order radiator. Relative level l of the primary radiator in the plane to the level on the central axis
The changes were as shown in Figure q, B. Here again, the vertical axis is the relative level l, and the horizontal axis is the line connecting the primary radiator 2 and the position in each of the electric plane/E plane and the magnetic plane/H plane. The angle θ formed with the central axis is the solid line curve "/z, the broken line curve 1', and the dashed-dotted line curve 1/3, respectively.
The distance from the disc-shaped flange part i4 is Omm, 4m
m and /2. ! ;mm This is the case. From this, the angle θ that gives the same value of relative level 1 as the distance changes
It can be seen that this changes, that is, the directivity of the -order radiator changes. In this case as well, this is particularly noticeable on the E plane.
以上の如く、第3藺に示される如くの一次放射器コを有
する本発明の実施例では、円板状のフラ/ジ部ダ、の直
径F及び距離りを変化せしめることにより一次放射器2
の指向性を制御できるので、この−次放射器コの指向性
を、定められた直径を有 ′するパラボラ反射器lのも
とで、開口面効率を可及的に高くするように設定するこ
とができる。実験結果では、直径t!rOmmのパラボ
ラ反射器の場合に、/ 2GHzのマイクロ波電波で、
開口面効率を約70−とすることができた。As described above, in the embodiment of the present invention having the primary radiator as shown in the third section, the diameter F and the distance of the disc-shaped flange portion DA are changed.
Since the directivity of this -order radiator can be controlled, the directivity of this -order radiator can be set to make the aperture efficiency as high as possible under a parabolic reflector with a predetermined diameter. be able to. In the experimental results, the diameter t! In the case of rOmm parabolic reflector, /2GHz microwave radio wave,
The aperture efficiency could be set to about 70-.
上述の実施例は、−次放射器コが開口円形導波管部3と
円板状の7279部すとで構成された例であるが、この
−次放射器2を開口矩形導波管部と矩形板状7ランジ部
との組合せで構成することもできる。第S図A及びBは
、斯かる矩形部材で構成された、本発明に係る一次放射
器の他の例を示し、この列は、開口矩形導波管部ざとそ
の外周の開口端面j′から所定の距離だけ離隔した位置
に配された矩形板状フランジ部りとから成っている、こ
の場合も、矩形板状フランジ部りの縦及び横の寸法及び
開ロ矩形導波管部gtv開ロ端面ざ′から矩形板状7う
79部9までの距離を変化せしめて、−次放射器の指向
性を制御できること、第3図に示された例の場合と同様
である。In the above embodiment, the -order radiator 2 is composed of an open circular waveguide section 3 and a disc-shaped 7279 section. It can also be configured by a combination of a rectangular plate-like seven flange portions. Figures A and B show another example of the primary radiator according to the present invention, which is constructed of such a rectangular member, and this row extends from the opening end face j' of the opening rectangular waveguide section and its outer periphery. In this case, the vertical and horizontal dimensions of the rectangular plate-shaped flange parts and the opening width of the rectangular plate-shaped flange parts are also determined. Similar to the example shown in FIG. 3, the directivity of the -order radiator can be controlled by changing the distance from the end face to the rectangular plate 79 part 9.
以上説明した如く、本発明に係るパラボラアンテナ装置
によれげ、その−次放射器の指向性を簡単な構成をもっ
て容易に制御することができるので、定められた大きさ
のパラボラ反射器のもとての開口面効率を可及的に高く
することができ、その結果、大なる利得が容易に得られ
る。特に4本発明に係るパラボラアンテナ装置は、小径
のパラボラ反射器を用いて構成される場合にその効果を
顕著に発揮し、比較的小形のパラボラアンテナ装置とし
て用いるに適している。As explained above, with the parabolic antenna device according to the present invention, the directivity of the second-order radiator can be easily controlled with a simple configuration. The aperture efficiency of all the apertures can be made as high as possible, and as a result, a large gain can be easily obtained. In particular, the parabolic antenna device according to the fourth aspect of the present invention exhibits remarkable effects when configured using a small-diameter parabolic reflector, and is suitable for use as a relatively small parabolic antenna device.
なお、本発明に係るパラボラアンテナ装置に於いて、開
口導波管部とともに一次放射器を構成する7う72部の
形状は、上述の例に限られるものではなく、適宜、種々
の形状がとられてよい1.In addition, in the parabolic antenna device according to the present invention, the shape of the 72 part that constitutes the primary radiator together with the aperture waveguide part is not limited to the above-mentioned example, and various shapes may be used as appropriate. 1.
第1回はパラボラアンテナ装置の開口面効率の説明に用
いられる図、第2図は本発明に係るパラボラアンテナ装
置の一例を示す概略的側面図、第3図A及びBは本発明
に係るパラボラアンテナ装置に用いられる一次放射器の
一例を示す正面図及び側面図、第V図A及びBは、夫々
、本発明に係るアンテナ装置の特性を説明するための特
性図、第5図A及びBは本発明に係るパラボラアンテナ
装置に用いられる一次放射器の他の同を示す正面図及び
側面図である。
図中、lはパラボラ反射器、2は一次放射器、3及びg
は開口導波管部、3′及びg′は開口端面、q及び9は
7279部である。
111図
第2図
第3図
第4図
A(L・−幻
第5図
A BThe first part is a diagram used to explain the aperture efficiency of a parabolic antenna device, FIG. 2 is a schematic side view showing an example of a parabolic antenna device according to the present invention, and FIGS. 3 A and B are diagrams used to explain the aperture efficiency of a parabolic antenna device. A front view and a side view showing an example of a primary radiator used in the antenna device, and FIGS. FIG. 2 is a front view and a side view showing another primary radiator used in the parabolic antenna device according to the present invention. In the figure, l is a parabolic reflector, 2 is a primary radiator, 3 and g
is an open waveguide section, 3' and g' are open end faces, and q and 9 are 7279 sections. 111Figure 2Figure 3Figure 4A (L・-IllusionFigure 5A B
Claims (1)
だけ離隔して上記開口導波管部の外周に配された7う7
9部とから成る一次放射器と、該−次放射器に対向して
配されたパラボラ反射器とを有して構成されたパラボラ
アンテナ装置9.an aperture waveguide portion and a 7 ridge 7 disposed on the outer periphery of the aperture waveguide portion at a predetermined distance from the aperture end face of the aperture waveguide portion;
9. A parabolic antenna device configured to include a primary radiator consisting of 9 parts, and a parabolic reflector arranged opposite to the secondary radiator.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12454381A JPS5825702A (en) | 1981-08-08 | 1981-08-08 | Parabolic antenna device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12454381A JPS5825702A (en) | 1981-08-08 | 1981-08-08 | Parabolic antenna device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS5825702A true JPS5825702A (en) | 1983-02-16 |
Family
ID=14888076
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP12454381A Pending JPS5825702A (en) | 1981-08-08 | 1981-08-08 | Parabolic antenna device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5825702A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62147910U (en) * | 1986-03-12 | 1987-09-18 | ||
| JP2006246271A (en) * | 2005-03-07 | 2006-09-14 | Japan Radio Co Ltd | Horn antenna |
| JP2007228359A (en) * | 2006-02-24 | 2007-09-06 | Kyocera Corp | Aperture antenna |
-
1981
- 1981-08-08 JP JP12454381A patent/JPS5825702A/en active Pending
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62147910U (en) * | 1986-03-12 | 1987-09-18 | ||
| JP2006246271A (en) * | 2005-03-07 | 2006-09-14 | Japan Radio Co Ltd | Horn antenna |
| JP2007228359A (en) * | 2006-02-24 | 2007-09-06 | Kyocera Corp | Aperture antenna |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3162858A (en) | Ring focus antenna feed | |
| RU2380802C1 (en) | Compact multibeam mirror antenna | |
| US4168504A (en) | Multimode dual frequency antenna feed horn | |
| JP2001044742A (en) | Antenna feed horn with multi-mode choke | |
| JPH0936634A (en) | Feedome, primary radiator and antenna for microwave | |
| US4844198A (en) | Plane wave focusing lens | |
| JP2000315910A (en) | Multimode, multistep antenna power feeding horn | |
| US4025805A (en) | Conical transducer and reflector apparatus | |
| WO2018096307A1 (en) | A frequency scanned array antenna | |
| US3216018A (en) | Wide angle horn feed closely spaced to main reflector | |
| JPS5825702A (en) | Parabolic antenna device | |
| US4058812A (en) | Dish antenna with impedance matched splash plate feed | |
| US6023248A (en) | Multiplexed channel beam forming unit | |
| JPH0474005A (en) | Reflection type antenna | |
| JPH0936655A (en) | Multi-beam antenna | |
| JPH073688Y2 (en) | Antenna device | |
| JPH06334432A (en) | Antenna system | |
| JP2001068919A (en) | Primary radiator for two-beams, feeder and antenna for receiving satellite signal | |
| JPH0566763B2 (en) | ||
| JP3034262B2 (en) | Aperture antenna device | |
| JP2571378B2 (en) | Omni-directional antenna in horizontal plane | |
| CA1037155A (en) | Reflector antenna | |
| JP2710416B2 (en) | Elliptical aperture double reflector antenna | |
| JPH053762B2 (en) | ||
| JPH0385005A (en) | Dual reflection mirror antenna |